Academic literature on the topic 'Locally conformally symplectic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Locally conformally symplectic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Locally conformally symplectic"

1

Belgun, F., O. Goertsches, and D. Petrecca. "Locally conformally symplectic convexity." Journal of Geometry and Physics 135 (January 2019): 235–52. http://dx.doi.org/10.1016/j.geomphys.2018.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Otiman, Alexandra. "Locally conformally symplectic bundles." Journal of Symplectic Geometry 16, no. 5 (2018): 1377–408. http://dx.doi.org/10.4310/jsg.2018.v16.n5.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stanciu, Miron. "Locally conformally symplectic reduction." Annals of Global Analysis and Geometry 56, no. 2 (June 3, 2019): 245–75. http://dx.doi.org/10.1007/s10455-019-09666-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bazzoni, Giovanni. "Locally conformally symplectic and Kähler geometry." EMS Surveys in Mathematical Sciences 5, no. 1 (November 19, 2018): 129–54. http://dx.doi.org/10.4171/emss/29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gatsé, Servais Cyr. "AN EXAMPLE OF LOCALLY CONFORMALLY SYMPLECTIC MANIFOLDS." Advances in Mathematics: Scientific Journal 12, no. 1 (January 21, 2023): 187–92. http://dx.doi.org/10.37418/amsj.12.1.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bande, G., and D. Kotschick. "Moser stability for locally conformally symplectic structures." Proceedings of the American Mathematical Society 137, no. 07 (January 28, 2009): 2419–24. http://dx.doi.org/10.1090/s0002-9939-09-09821-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alekseevsky, D. V., V. Cortés, K. Hasegawa, and Y. Kamishima. "Homogeneous locally conformally Kähler and Sasaki manifolds." International Journal of Mathematics 26, no. 06 (June 2015): 1541001. http://dx.doi.org/10.1142/s0129167x15410013.

Full text
Abstract:
We prove various classification results for homogeneous locally conformally symplectic manifolds. In particular, we show that a homogeneous locally conformally Kähler manifold of a reductive group is of Vaisman type if the normalizer of the isotropy group is compact. We also show that such a result does not hold in the case of non-compact normalizer and determine all left-invariant lcK structures on reductive Lie groups.
APA, Harvard, Vancouver, ISO, and other styles
8

Esen, Oğul, Manuel de León, Cristina Sardón, and Marcin Zajşc. "Hamilton–Jacobi formalism on locally conformally symplectic manifolds." Journal of Mathematical Physics 62, no. 3 (March 1, 2021): 033506. http://dx.doi.org/10.1063/5.0021790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stanciu, Miron. "Locally conformally symplectic reduction of the cotangent bundle." Annals of Global Analysis and Geometry 61, no. 3 (January 16, 2022): 533–51. http://dx.doi.org/10.1007/s10455-021-09815-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Otiman, Alexandra, and Miron Stanciu. "Darboux–Weinstein theorem for locally conformally symplectic manifolds." Journal of Geometry and Physics 111 (January 2017): 1–5. http://dx.doi.org/10.1016/j.geomphys.2016.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Locally conformally symplectic"

1

Currier, Adrien. "Quelques outils pour l’étude des sous-variétés lagrangiennes dans les fibrés cotangents avec structure lcs." Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU4021.

Full text
Abstract:
La géométrie localement conformément symplectique (lcs) est une généralisation de la géométrie symplectique dans laquelle une variété est munie d’une 2-forme non-dégénérée qui est localement une forme symplectique à un facteur positif près. Si les comportements locaux de telles variétés restent relativement similaires à ceux que l’on rencontre en géométrie symplectique, les comportements globaux peuvent néanmoins différer. Par exemple, nous pouvons étendre la définition des lagrangiennes à la géométrie lcs, mais S3 × S1 possède une structure lcs “exacte” donnée par la structure de contact canonique sur S3. Cette “fléxibilité” de la géométrie lcs rend toutefois difficile l’étude de phénomènes de rigidités et certains outils classiques, comme l’homologie de Floer, ne possèdent pas de version lcs. Dans ce manuscrit, nous étudierons donc la rigidité des lagrangiennes exactes (lcs) dans les cotangents de variétés fermés avec structure lcs. Dans un premier temps, nous étudierons les limites d’une version lcs du théorème d’Abouzaid-Kragh. En particulier, nous dégagerons de nouvelles stratégies pour l’étude des cordes de Reeb dans les espaces de jets. Dans un second temps, nous développerons une stratégie pour l’étude des points critiques de fonctions génératrices, aboutissant à un raffinement des inégalités de Chantraine-Murphy
Locally conformally symplectic (lcs) geometry is a generalization of symplectic geometry in which a manifold is endowed with a non-degenerate 2-form that is locally a symplectic form up to some positive factor. If the local behavior of such a manifold is largely identical to that of a symplectic manifold, the global behavior can nonetheless vastly differ. For example, while it is possible to define Lagrangian submanifolds in lcs geometry, we also have to contend with the fact that S3 × S1 has a canonical “exact” lcs structure given by the canonical contact form of S3 through a process known as circular lcs-ization. However, lcs geometry’s “flexibility” makes the study of rigidity phenomena difficult an some of the classical tools, such as Floer homology, do not have a lcs variant. In this manuscript, we will study the rigidity of exact (lcs) Lagrangians in cotangent bundles of closed manifolds with lcs structure. We will begin with the study of the limits of a lcs version of the Abouzaid-Kragh theorem. In particular, we will see a new strategy for the study of Reeb chords in cotangent bundles. We will follow with a strategy for the study of critical points of generating functions, concluding with a refinement of Chantraine-Murphy’s inequalities
APA, Harvard, Vancouver, ISO, and other styles
2

Istrati, Nicolina. "Conformal structures on compact complex manifolds." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC054/document.

Full text
Abstract:
Dans cette thèse on s’intéresse à deux types de structures conformes non-dégénérées sur une variété complexe compacte donnée. La première c’est une forme holomorphe symplectique twistée (THS), i.e. une deux-forme holomorphe non-dégénérée à valeurs dans un fibré en droites. Dans le deuxième contexte, il s’agit des métriques localement conformément kähleriennes (LCK). Dans la première partie, on se place sur un variété de type Kähler. Les formes THS généralisent les formes holomorphes symplectiques, dont l’existence équivaut à ce que la variété admet une structure hyperkählerienne, par un théorème de Beauville. On montre un résultat similaire dans le cas twisté, plus précisément: une variété compacte de type kählerien qui admet une structure THS est un quotient fini cyclique d’une variété hyperkählerienne. De plus, on étudie sous quelles conditions une variété localement hyperkählerienne admet une structure THS. Dans la deuxième partie, les variétés sont supposées de type non-kählerien. Nous présentons quelques critères pour l’existence ou non-existence de métriques LCK spéciales, en terme du groupe de biholomorphismes de la variété. En outre, on étudie le problème d’irréductibilité analytique des variétés LCK, ainsi que l’irréductibilité de la connexion de Weyl associée. Dans un troisième temps, nous étudions les variétés LCK toriques, qui peuvent être définies en analogie avec les variétés de Kähler toriques. Nous montrons qu’une variété LCK torique compacte admet une métrique de Vaisman torique, ce qui mène à une classification de ces variétés par le travail de Lerman. Dans la dernière partie, on s’intéresse aux propriétés cohomologiques des variétés d’Oeljeklaus-Toma (OT). Plus précisément, nous calculons leur cohomologie de de Rham et celle twistée. De plus, on démontre qu’il existe au plus une classe de de Rham qui représente la forme de Lee d’une métrique LCK sur un variété OT. Finalement, on détermine toutes les classes de cohomologie twistée des métriques LCK sur ces variétés
In this thesis, we are concerned with two types of non-degenerate conformal structures on a given compact complex manifold. The first structure we are interested in is a twisted holomorphic symplectic (THS) form, i.e. a holomorphic non-degenerate two-form valued in a line bundle. In the second context, we study locally conformally Kähler (LCK) metrics. In the first part, we deal with manifolds of Kähler type. THS forms generalise the well-known holomorphic symplectic forms, the existence of which is equivalent to the manifold admitting a hyperkähler structure, by a theorem of Beauville. We show a similar result in the twisted case, namely: a compact manifold of Kähler type admitting a THS structure is a finite cyclic quotient of a hyperkähler manifold. Moreover, we study under which conditions a locally hyperkähler manifold admits a THS structure. In the second part, manifolds are supposed to be of non-Kähler type. We present a few criteria for the existence or non-existence for special LCK metrics, in terms of the group of biholomorphisms of the manifold. Moreover, we investigate the analytic irreducibility issue for LCK manifolds, as well as the irreducibility of the associated Weyl connection. Thirdly, we study toric LCK manifolds, which can be defined in analogy with toric Kähler manifolds. We show that a compact toric LCK manifold always admits a toric Vaisman metric, which leads to a classification of such manifolds by the work of Lerman. In the last part, we study the cohomological properties of Oeljeklaus-Toma (OT) manifolds. Namely, we compute their de Rham and twisted cohomology. Moreover, we prove that there exists at most one de Rham class which represents the Lee form of an LCK metric on an OT manifold. Finally, we determine all the twisted cohomology classes of LCK metrics on these manifolds
APA, Harvard, Vancouver, ISO, and other styles
3

Origlia, Marcos Miguel. "Estructuras localmente conformes Kähler y localmente conformes simplécticas en solvariedades compacta." Doctoral thesis, 2017. http://hdl.handle.net/11086/5837.

Full text
Abstract:
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.
En esta tesis estudiamos las estructuras localmente conformes Kähler (LCK) y localmente conformes simplécticas (LCS) invariantes a izquierda en grupos de Lie, o equivalentemente tales estructuras en álgebras de Lie. Luego se buscan retículos (subgrupos discretos co-compactos) en dichos grupos. De esta manera obtenemos estructuras LCK o LCS en las solvariedades compactas (cociente de un grupo de Lie por un retículo). Específicamente estudiamos las estructuras LCK en solvariedades con estructuras complejas abelianas. Luego describimos explícitamente la estructura de las álgebras de Lie que admiten estructuras de Vaisman. También determinamos los grupos de Lie casi abelianos que admiten estructuras LCK o LCS y además analizamos la existencia de retículos en ellos. Finalmente desarrollamos un método para construir de manera sistemática ejemplos de álgebras de Lie equipadas con estructuras LCK o LCS a partir de un álgebra de Lie que ya admite tales estructuras y una representación compatible.
In this thesis we study left invariant locally conformal Kähler (LCK) structures and locally conformal symplectic structures (LCS) on Lie groups, or equivalently such structures on Lie algebras. Then we analize the existence of lattices (co-compact discrete subgroups) on these Lie groups. Therefore, we obtain LCK or LCS structures on compact solvmanifolds (quotients of a Lie group by a lattice). Specifically we study LCK structures on solvmanifold where the complex structure is abelian. Then we describe the structure of a Lie algebra admitting a Vaisman structure. On the other hand we determine the almost abelian Lie groups equipped with a LCK or LCS structures, and we also analize the existence of lattices on these groups. Finally we construct a method to produce examples of Lie algebras admitting LCK or LCS structures beginning with a Lie algebra with these structures and a compatible representation.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Locally conformally symplectic"

1

Guha, Partha. "The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally Conformal Symplectic Structure." In STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 275–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97175-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Locally conformally symplectic"

1

HALLER, STEFAN. "SOME PROPERTIES OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BANYAGA, A. "ON THE GEOMETRY OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cioroianu, Eugen-Mihaita. "Locally conformal symplectic structures: From standard to line bundle approach." In TIM 19 PHYSICS CONFERENCE. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Domitrz, Wojciech. "Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation." In Geometry and topology of caustics. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography