Journal articles on the topic 'Local-interpretable-model-agnostic'

To see the other types of publications on this topic, follow the link: Local-interpretable-model-agnostic.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Local-interpretable-model-agnostic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zafar, Muhammad Rehman, and Naimul Khan. "Deterministic Local Interpretable Model-Agnostic Explanations for Stable Explainability." Machine Learning and Knowledge Extraction 3, no. 3 (June 30, 2021): 525–41. http://dx.doi.org/10.3390/make3030027.

Full text
Abstract:
Local Interpretable Model-Agnostic Explanations (LIME) is a popular technique used to increase the interpretability and explainability of black box Machine Learning (ML) algorithms. LIME typically creates an explanation for a single prediction by any ML model by learning a simpler interpretable model (e.g., linear classifier) around the prediction through generating simulated data around the instance by random perturbation, and obtaining feature importance through applying some form of feature selection. While LIME and similar local algorithms have gained popularity due to their simplicity, the random perturbation methods result in shifts in data and instability in the generated explanations, where for the same prediction, different explanations can be generated. These are critical issues that can prevent deployment of LIME in sensitive domains. We propose a deterministic version of LIME. Instead of random perturbation, we utilize Agglomerative Hierarchical Clustering (AHC) to group the training data together and K-Nearest Neighbour (KNN) to select the relevant cluster of the new instance that is being explained. After finding the relevant cluster, a simple model (i.e., linear model or decision tree) is trained over the selected cluster to generate the explanations. Experimental results on six public (three binary and three multi-class) and six synthetic datasets show the superiority for Deterministic Local Interpretable Model-Agnostic Explanations (DLIME), where we quantitatively determine the stability and faithfulness of DLIME compared to LIME.
APA, Harvard, Vancouver, ISO, and other styles
2

Neves, Inês, Duarte Folgado, Sara Santos, Marília Barandas, Andrea Campagner, Luca Ronzio, Federico Cabitza, and Hugo Gamboa. "Interpretable heartbeat classification using local model-agnostic explanations on ECGs." Computers in Biology and Medicine 133 (June 2021): 104393. http://dx.doi.org/10.1016/j.compbiomed.2021.104393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Palatnik de Sousa, Iam, Marley Maria Bernardes Rebuzzi Vellasco, and Eduardo Costa da Silva. "Local Interpretable Model-Agnostic Explanations for Classification of Lymph Node Metastases." Sensors 19, no. 13 (July 5, 2019): 2969. http://dx.doi.org/10.3390/s19132969.

Full text
Abstract:
An application of explainable artificial intelligence on medical data is presented. There is an increasing demand in machine learning literature for such explainable models in health-related applications. This work aims to generate explanations on how a Convolutional Neural Network (CNN) detects tumor tissue in patches extracted from histology whole slide images. This is achieved using the “locally-interpretable model-agnostic explanations” methodology. Two publicly-available convolutional neural networks trained on the Patch Camelyon Benchmark are analyzed. Three common segmentation algorithms are compared for superpixel generation, and a fourth simpler parameter-free segmentation algorithm is proposed. The main characteristics of the explanations are discussed, as well as the key patterns identified in true positive predictions. The results are compared to medical annotations and literature and suggest that the CNN predictions follow at least some aspects of human expert knowledge.
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Enshuo. "UniformLIME: A Uniformly Perturbed Local Interpretable Model-Agnostic Explanations Approach for Aerodynamics." Journal of Physics: Conference Series 2171, no. 1 (January 1, 2022): 012025. http://dx.doi.org/10.1088/1742-6596/2171/1/012025.

Full text
Abstract:
Abstract Machine learning and deep learning are widely used in the field of aerodynamics. But most models are often seen as black boxes due to lack of interpretability. Local Interpretable Model-agnostic Explanations (LIME) is a popular method that uses a local surrogate model to explain a single instance of machine learning. Its main disadvantages are the instability of the explanations and low local fidelity. In this paper, we propose an original modification to LIME by employing a new perturbed sample generation method for aerodynamic tabular data in regression model, which makes the differences between perturbed samples and the input instance vary in a larger range. We make several comparisons with three subtasks and show that our proposed method results in better metrics.
APA, Harvard, Vancouver, ISO, and other styles
5

Nguyen, Hai Thanh, Cham Ngoc Thi Nguyen, Thao Minh Nguyen Phan, and Tinh Cong Dao. "Pleural Effusion Diagnosis using Local Interpretable Model-agnostic Explanations and Convolutional Neural Network." IEIE Transactions on Smart Processing & Computing 10, no. 2 (April 30, 2021): 101–8. http://dx.doi.org/10.5573/ieiespc.2021.10.2.101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Admassu, Tsehay. "Evaluation of Local Interpretable Model-Agnostic Explanation and Shapley Additive Explanation for Chronic Heart Disease Detection." Proceedings of Engineering and Technology Innovation 23 (January 1, 2023): 48–59. http://dx.doi.org/10.46604/peti.2023.10101.

Full text
Abstract:
This study aims to investigate the effectiveness of local interpretable model-agnostic explanation (LIME) and Shapley additive explanation (SHAP) approaches for chronic heart disease detection. The efficiency of LIME and SHAP are evaluated by analyzing the diagnostic results of the XGBoost model and the stability and quality of counterfactual explanations. Firstly, 1025 heart disease samples are collected from the University of California Irvine. Then, the performance of LIME and SHAP is compared by using the XGBoost model with various measures, such as consistency and proximity. Finally, Python 3.7 programming language with Jupyter Notebook integrated development environment is used for simulation. The simulation result shows that the XGBoost model achieves 99.79% accuracy, indicating that the counterfactual explanation of the XGBoost model describes the smallest changes in the feature values for changing the diagnosis outcome to the predefined output.
APA, Harvard, Vancouver, ISO, and other styles
7

Rajapaksha, Dilini, and Christoph Bergmeir. "LIMREF: Local Interpretable Model Agnostic Rule-Based Explanations for Forecasting, with an Application to Electricity Smart Meter Data." Proceedings of the AAAI Conference on Artificial Intelligence 36, no. 11 (June 28, 2022): 12098–107. http://dx.doi.org/10.1609/aaai.v36i11.21469.

Full text
Abstract:
Accurate electricity demand forecasts play a key role in sustainable power systems. To enable better decision-making especially for demand flexibility of the end-user, it is necessary to provide not only accurate but also understandable and actionable forecasts. To provide accurate forecasts Global Forecasting Models (GFM) that are trained across time series have shown superior results in many demand forecasting competitions and real-world applications recently, compared with univariate forecasting approaches. We aim to fill the gap between the accuracy and the interpretability in global forecasting approaches. In order to explain the global model forecasts, we propose Local Interpretable Model-agnostic Rule-based Explanations for Forecasting (LIMREF), which is a local explainer framework that produces k-optimal impact rules for a particular forecast, considering the global forecasting model as a black-box model, in a model-agnostic way. It provides different types of rules which explain the forecast of the global model and the counterfactual rules, which provide actionable insights for potential changes to obtain different outputs for given instances. We conduct experiments using a large-scale electricity demand dataset with exogenous features such as temperature and calendar effects. Here, we evaluate the quality of the explanations produced by the LIMREF framework in terms of both qualitative and quantitative aspects such as accuracy, fidelity and comprehensibility, and benchmark those against other local explainers.
APA, Harvard, Vancouver, ISO, and other styles
8

Singh, Devesh. "Interpretable Machine-Learning Approach in Estimating FDI Inflow: Visualization of ML Models with LIME and H2O." TalTech Journal of European Studies 11, no. 1 (May 1, 2021): 133–52. http://dx.doi.org/10.2478/bjes-2021-0009.

Full text
Abstract:
Abstract In advancement of interpretable machine learning (IML), this research proposes local interpretable model-agnostic explanations (LIME) as a new visualization technique in a novel informative way to analyze the foreign direct investment (FDI) inflow. This article examines the determinants of FDI inflow through IML with a supervised learning method to analyze the foreign investment determinants in Hungary by using an open-source artificial intelligence H2O platform. This author used three ML algorithms—general linear model (GML), gradient boosting machine (GBM), and random forest (RF) classifier—to analyze the FDI inflow from 2001 to 2018. The result of this study shows that in all three classifiers GBM performs better to analyze FDI inflow determinants. The variable value of production in a region is the most influenced determinant to the inflow of FDI in Hungarian regions. Explanatory visualizations are presented from the analyzed dataset, which leads to their use in decision-making.
APA, Harvard, Vancouver, ISO, and other styles
9

GhoshRoy, Debasmita, Parvez Ahmad Alvi, and KC Santosh. "Explainable AI to Predict Male Fertility Using Extreme Gradient Boosting Algorithm with SMOTE." Electronics 12, no. 1 (December 21, 2022): 15. http://dx.doi.org/10.3390/electronics12010015.

Full text
Abstract:
Infertility is a common problem across the world. Infertility distribution due to male factors ranges from 40% to 50%. Existing artificial intelligence (AI) systems are not often human interpretable. Further, clinicians are unaware of how data analytical tools make decisions, and as a result, they have limited exposure to healthcare. Using explainable AI tools makes AI systems transparent and traceable, enhancing users’ trust and confidence in decision-making. The main contribution of this study is to introduce an explainable model for investigating male fertility prediction. Nine features related to lifestyle and environmental factors are utilized to develop a male fertility prediction model. Five AI tools, namely support vector machine, adaptive boosting, conventional extreme gradient boost (XGB), random forest, and extra tree algorithms are deployed with a balanced and imbalanced dataset. To produce our model in a trustworthy way, an explainable AI is applied. The techniques are (1) local interpretable model-agnostic explanations (LIME) and (2) Shapley additive explanations (SHAP). Additionally, ELI5 is utilized to inspect the feature’s importance. Finally, XGB outperformed and obtained an AUC of 0.98, which is optimal compared to existing AI systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Toğaçar, Mesut, Nedim Muzoğlu, Burhan Ergen, Bekir Sıddık Binboğa Yarman, and Ahmet Mesrur Halefoğlu. "Detection of COVID-19 findings by the local interpretable model-agnostic explanations method of types-based activations extracted from CNNs." Biomedical Signal Processing and Control 71 (January 2022): 103128. http://dx.doi.org/10.1016/j.bspc.2021.103128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sathyan, Anoop, Abraham Itzhak Weinberg, and Kelly Cohen. "Interpretable AI for bio-medical applications." Complex Engineering Systems 2, no. 4 (2022): 18. http://dx.doi.org/10.20517/ces.2022.41.

Full text
Abstract:
This paper presents the use of two popular explainability tools called Local Interpretable Model-Agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP) to explain the predictions made by a trained deep neural network. The deep neural network used in this work is trained on the UCI Breast Cancer Wisconsin dataset. The neural network is used to classify the masses found in patients as benign or malignant based on 30 features that describe the mass. LIME and SHAP are then used to explain the individual predictions made by the trained neural network model. The explanations provide further insights into the relationship between the input features and the predictions. SHAP methodology additionally provides a more holistic view of the effect of the inputs on the output predictions. The results also present the commonalities between the insights gained using LIME and SHAP. Although this paper focuses on the use of deep neural networks trained on UCI Breast Cancer Wisconsin dataset, the methodology can be applied to other neural networks and architectures trained on other applications. The deep neural network trained in this work provides a high level of accuracy. Analyzing the model using LIME and SHAP adds the much desired benefit of providing explanations for the recommendations made by the trained model.
APA, Harvard, Vancouver, ISO, and other styles
12

Weitz, Katharina, Teena Hassan, Ute Schmid, and Jens-Uwe Garbas. "Deep-learned faces of pain and emotions: Elucidating the differences of facial expressions with the help of explainable AI methods." tm - Technisches Messen 86, no. 7-8 (July 26, 2019): 404–12. http://dx.doi.org/10.1515/teme-2019-0024.

Full text
Abstract:
AbstractDeep neural networks are successfully used for object and face recognition in images and videos. In order to be able to apply such networks in practice, for example in hospitals as a pain recognition tool, the current procedures are only suitable to a limited extent. The advantage of deep neural methods is that they can learn complex non-linear relationships between raw data and target classes without limiting themselves to a set of hand-crafted features provided by humans. However, the disadvantage is that due to the complexity of these networks, it is not possible to interpret the knowledge that is stored inside the network. It is a black-box learning procedure. Explainable Artificial Intelligence (AI) approaches mitigate this problem by extracting explanations for decisions and representing them in a human-interpretable form. The aim of this paper is to investigate the explainable AI methods Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations (LIME). These approaches are applied to explain how a deep neural network distinguishes facial expressions of pain from facial expressions of emotions such as happiness and disgust.
APA, Harvard, Vancouver, ISO, and other styles
13

Hsia, Chih-Hsien, Yi-Hsuan Lee, and Chin-Feng Lai. "An Explainable and Lightweight Deep Convolutional Neural Network for Quality Detection of Green Coffee Beans." Applied Sciences 12, no. 21 (October 29, 2022): 10966. http://dx.doi.org/10.3390/app122110966.

Full text
Abstract:
In recent years, the demand for coffee has increased tremendously. During the production process, green coffee beans are traditionally screened manually for defective beans before they are packed into coffee bean packages; however, this method is not only time-consuming but also increases the rate of human error due to fatigue. Therefore, this paper proposed a lightweight deep convolutional neural network (LDCNN) for a quality detection system of green coffee beans, which combined depthwise separable convolution (DSC), squeeze-and-excite block (SE block), skip block, and other frameworks. To avoid the influence of low parameters of the lightweight model caused by the model training process, rectified Adam (RA), lookahead (LA), and gradient centralization (GC) were included to improve efficiency; the model was also put into the embedded system. Finally, the local interpretable model-agnostic explanations (LIME) model was employed to explain the predictions of the model. The experimental results indicated that the accuracy rate of the model could reach up to 98.38% and the F1 score could be as high as 98.24% when detecting the quality of green coffee beans. Hence, it can obtain higher accuracy, lower computing time, and lower parameters. Moreover, the interpretable model verified that the lightweight model in this work was reliable, providing the basis for screening personnel to understand the judgment through its interpretability, thereby improving the classification and prediction of the model.
APA, Harvard, Vancouver, ISO, and other styles
14

Massaoudi, Mohamed, Ines Chihi, Lilia Sidhom, Mohamed Trabelsi, Shady S. Refaat, and Fakhreddine S. Oueslati. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements." Energies 14, no. 13 (July 2, 2021): 3992. http://dx.doi.org/10.3390/en14133992.

Full text
Abstract:
Short-term Photovoltaic (PV) Power Forecasting (STPF) is considered a topic of utmost importance in smart grids. The deployment of STPF techniques provides fast dispatching in the case of sudden variations due to stochastic weather conditions. This paper presents an efficient data-driven method based on enhanced Random Forest (RF) model. The proposed method employs an ensemble of attribute selection techniques to manage bias/variance optimization for STPF application and enhance the forecasting quality results. The overall architecture strategy gathers the relevant information to constitute a voted feature-weighting vector of weather inputs. The main emphasis in this paper is laid on the knowledge expertise obtained from weather measurements. The feature selection techniques are based on local Interpretable Model-Agnostic Explanations, Extreme Boosting Model, and Elastic Net. A comparative performance investigation using an actual database, collected from the weather sensors, demonstrates the superiority of the proposed technique versus several data-driven machine learning models when applied to a typical distributed PV system.
APA, Harvard, Vancouver, ISO, and other styles
15

Başağaoğlu, Hakan, Debaditya Chakraborty, Cesar Do Lago, Lilianna Gutierrez, Mehmet Arif Şahinli, Marcio Giacomoni, Chad Furl, Ali Mirchi, Daniel Moriasi, and Sema Sevinç Şengör. "A Review on Interpretable and Explainable Artificial Intelligence in Hydroclimatic Applications." Water 14, no. 8 (April 11, 2022): 1230. http://dx.doi.org/10.3390/w14081230.

Full text
Abstract:
This review focuses on the use of Interpretable Artificial Intelligence (IAI) and eXplainable Artificial Intelligence (XAI) models for data imputations and numerical or categorical hydroclimatic predictions from nonlinearly combined multidimensional predictors. The AI models considered in this paper involve Extreme Gradient Boosting, Light Gradient Boosting, Categorical Boosting, Extremely Randomized Trees, and Random Forest. These AI models can transform into XAI models when they are coupled with the explanatory methods such as the Shapley additive explanations and local interpretable model-agnostic explanations. The review highlights that the IAI models are capable of unveiling the rationale behind the predictions while XAI models are capable of discovering new knowledge and justifying AI-based results, which are critical for enhanced accountability of AI-driven predictions. The review also elaborates the importance of domain knowledge and interventional IAI modeling, potential advantages and disadvantages of hybrid IAI and non-IAI predictive modeling, unequivocal importance of balanced data in categorical decisions, and the choice and performance of IAI versus physics-based modeling. The review concludes with a proposed XAI framework to enhance the interpretability and explainability of AI models for hydroclimatic applications.
APA, Harvard, Vancouver, ISO, and other styles
16

Hijazi, Haytham, Manar Abu Talib, Ahmad Hasasneh, Ali Bou Nassif, Nafisa Ahmed, and Qassim Nasir. "Wearable Devices, Smartphones, and Interpretable Artificial Intelligence in Combating COVID-19." Sensors 21, no. 24 (December 17, 2021): 8424. http://dx.doi.org/10.3390/s21248424.

Full text
Abstract:
Physiological measures, such as heart rate variability (HRV) and beats per minute (BPM), can be powerful health indicators of respiratory infections. HRV and BPM can be acquired through widely available wrist-worn biometric wearables and smartphones. Successive abnormal changes in these indicators could potentially be an early sign of respiratory infections such as COVID-19. Thus, wearables and smartphones should play a significant role in combating COVID-19 through the early detection supported by other contextual data and artificial intelligence (AI) techniques. In this paper, we investigate the role of the heart measurements (i.e., HRV and BPM) collected from wearables and smartphones in demonstrating early onsets of the inflammatory response to the COVID-19. The AI framework consists of two blocks: an interpretable prediction model to classify the HRV measurements status (as normal or affected by inflammation) and a recurrent neural network (RNN) to analyze users’ daily status (i.e., textual logs in a mobile application). Both classification decisions are integrated to generate the final decision as either “potentially COVID-19 infected” or “no evident signs of infection”. We used a publicly available dataset, which comprises 186 patients with more than 3200 HRV readings and numerous user textual logs. The first evaluation of the approach showed an accuracy of 83.34 ± 1.68% with 0.91, 0.88, 0.89 precision, recall, and F1-Score, respectively, in predicting the infection two days before the onset of the symptoms supported by a model interpretation using the local interpretable model-agnostic explanations (LIME).
APA, Harvard, Vancouver, ISO, and other styles
17

Lu, Haohui, and Shahadat Uddin. "Explainable Stacking-Based Model for Predicting Hospital Readmission for Diabetic Patients." Information 13, no. 9 (September 15, 2022): 436. http://dx.doi.org/10.3390/info13090436.

Full text
Abstract:
Artificial intelligence is changing the practice of healthcare. While it is essential to employ such solutions, making them transparent to medical experts is more critical. Most of the previous work presented disease prediction models, but did not explain them. Many healthcare stakeholders do not have a solid foundation in these models. Treating these models as ‘black box’ diminishes confidence in their predictions. The development of explainable artificial intelligence (XAI) methods has enabled us to change the models into a ‘white box’. XAI allows human users to comprehend the results from machine learning algorithms by making them easy to interpret. For instance, the expenditures of healthcare services associated with unplanned readmissions are enormous. This study proposed a stacking-based model to predict 30-day hospital readmission for diabetic patients. We employed Random Under-Sampling to solve the imbalanced class issue, then utilised SelectFromModel for feature selection and constructed a stacking model with base and meta learners. Compared with the different machine learning models, performance analysis showed that our model can better predict readmission than other existing models. This proposed model is also explainable and interpretable. Based on permutation feature importance, the strong predictors were the number of inpatients, the primary diagnosis, discharge to home with home service, and the number of emergencies. The local interpretable model-agnostic explanations method was also employed to demonstrate explainability at the individual level. The findings for the readmission of diabetic patients could be helpful in medical practice and provide valuable recommendations to stakeholders for minimising readmission and reducing public healthcare costs.
APA, Harvard, Vancouver, ISO, and other styles
18

EL Shawi, Radwa, and Mouaz H. Al-Mallah. "Interpretable Local Concept-based Explanation with Human Feedback to Predict All-cause Mortality." Journal of Artificial Intelligence Research 75 (November 18, 2022): 833–55. http://dx.doi.org/10.1613/jair.1.14019.

Full text
Abstract:
Machine learning models are incorporated in different fields and disciplines in which some of them require a high level of accountability and transparency, for example, the healthcare sector. With the General Data Protection Regulation (GDPR), the importance for plausibility and verifiability of the predictions made by machine learning models has become essential. A widely used category of explanation techniques attempts to explain models’ predictions by quantifying the importance score of each input feature. However, summarizing such scores to provide human-interpretable explanations is challenging. Another category of explanation techniques focuses on learning a domain representation in terms of high-level human-understandable concepts and then utilizing them to explain predictions. These explanations are hampered by how concepts are constructed, which is not intrinsically interpretable. To this end, we propose Concept-based Local Explanations with Feedback (CLEF), a novel local model agnostic explanation framework for learning a set of high-level transparent concept definitions in high-dimensional tabular data that uses clinician-labeled concepts rather than raw features. CLEF maps the raw input features to high-level intuitive concepts and then decompose the evidence of prediction of the instance being explained into concepts. In addition, the proposed framework generates counterfactual explanations, suggesting the minimum changes in the instance’s concept based explanation that will lead to a different prediction. We demonstrate with simulated user feedback on predicting the risk of mortality. Such direct feedback is more effective than other techniques, that rely on hand-labelled or automatically extracted concepts, in learning concepts that align with ground truth concept definitions.
APA, Harvard, Vancouver, ISO, and other styles
19

Connie, Tee, Yee Fan Tan, Michael Kah Ong Goh, Hock Woon Hon, Zulaikha Kadim, and Li Pei Wong. "Explainable health prediction from facial features with transfer learning." Journal of Intelligent & Fuzzy Systems 42, no. 3 (February 2, 2022): 2491–503. http://dx.doi.org/10.3233/jifs-211737.

Full text
Abstract:
In the recent years, Artificial Intelligence (AI) has been widely deployed in the healthcare industry. The new AI technology enables efficient and personalized healthcare systems for the public. In this paper, transfer learning with pre-trained VGGFace model is applied to identify sick symptoms based on the facial features of a person. As the deep learning model’s operation is unknown for making a decision, this paper investigates the use of Explainable AI (XAI) techniques for soliciting explanations for the predictions made by the model. Various XAI techniques including Integrated Gradient, Explainable region-based AI (XRAI) and Local Interpretable Model-Agnostic Explanations (LIME) are studied. XAI is crucial to increase the model’s transparency and reliability for practical deployment. Experimental results demonstrate that the attribution method can give proper explanations for the decisions made by highlighting important attributes in the images. The facial features that account for positive and negative classes predictions are highlighted appropriately for effective visualization. XAI can help to increase accountability and trustworthiness of the healthcare system as it provides insights for understanding how a conclusion is derived from the AI model.
APA, Harvard, Vancouver, ISO, and other styles
20

Assegie, Tsehay Admassu, Thulasi Karpagam, Radha Mothukuri, Ravulapalli Lakshmi Tulasi, and Minychil Fentahun Engidaye. "Extraction of human understandable insight from machine learning model for diabetes prediction." Bulletin of Electrical Engineering and Informatics 11, no. 2 (April 1, 2022): 1126–33. http://dx.doi.org/10.11591/eei.v11i2.3391.

Full text
Abstract:
Explaining the reason for model’s output as diabetes positive or negative is crucial for diabetes diagnosis. Because, reasoning the predictive outcome of model helps to understand why the model predicted an instance into diabetes positive or negative class. In recent years, highest predictive accuracy and promising result is achieved with simple linear model to complex deep neural network. However, the use of complex model such as ensemble and deep learning have trade-off between accuracy and interpretability. In response to the problem of interpretability, different approaches have been proposed to explain the predictive outcome of complex model. However, the relationship between the proposed approaches and the preferred approach for diabetes prediction is not clear. To address this problem, the authors aimed to implement and compare existing model interpretation approaches, local interpretable model agnostic explanation (LIME), shapely additive explanation (SHAP) and permutation feature importance by employing extreme boosting (XGBoost). Experiment is conducted on diabetes dataset with the aim of investigating the most influencing feature on model output. Overall, experimental result evidently appears to reveal that blood glucose has the highest impact on model prediction outcome.
APA, Harvard, Vancouver, ISO, and other styles
21

Udo Sass, A., E. Esatbeyoglu, and T. Iwwerks. "Signal Pre-Selection for Monitoring and Prediction of Vehicle Powertrain Component Aging." Science & Technique 18, no. 6 (December 5, 2019): 519–24. http://dx.doi.org/10.21122/2227-1031-2019-18-6-519-524.

Full text
Abstract:
Predictive maintenance has become important for avoiding unplanned downtime of modern vehicles. With increasing functionality the exchanged data between Electronic Control Units (ECU) grows simultaneously rapidly. A large number of in-vehicle signals are provided for monitoring an aging process. Various components of a vehicle age due to their usage. This component aging is only visible in a certain number of in-vehicle signals. In this work, we present a signal selection method for in-vehicle signals in order to determine relevant signals to monitor and predict powertrain component aging of vehicles. Our application considers the aging of powertrain components with respect to clogging of structural components. We measure the component aging process in certain time intervals. Owing to this, unevenly spaced time series data is preprocessed to generate comparable in-vehicle data. First, we aggregate the data in certain intervals. Thus, the dynamic in-vehicle database is reduced which enables us to analyze the signals more efficiently. Secondly, we implement machine learning algorithms to generate a digital model of the measured aging process. With the help of Local Interpretable Model-Agnostic Explanations (LIME) the model gets interpretable. This allows us to extract the most relevant signals and to reduce the amount of processed data. Our results show that a certain number of in-vehicle signals are sufficient for predicting the aging process of the considered structural component. Consequently, our approach allows to reduce data transmission of in-vehicle signals with the goal of predictive maintenance.
APA, Harvard, Vancouver, ISO, and other styles
22

Ullah, Ihsan, Andre Rios, Vaibhav Gala, and Susan Mckeever. "Explaining Deep Learning Models for Tabular Data Using Layer-Wise Relevance Propagation." Applied Sciences 12, no. 1 (December 23, 2021): 136. http://dx.doi.org/10.3390/app12010136.

Full text
Abstract:
Trust and credibility in machine learning models are bolstered by the ability of a model to explain its decisions. While explainability of deep learning models is a well-known challenge, a further challenge is clarity of the explanation itself for relevant stakeholders of the model. Layer-wise Relevance Propagation (LRP), an established explainability technique developed for deep models in computer vision, provides intuitive human-readable heat maps of input images. We present the novel application of LRP with tabular datasets containing mixed data (categorical and numerical) using a deep neural network (1D-CNN), for Credit Card Fraud detection and Telecom Customer Churn prediction use cases. We show how LRP is more effective than traditional explainability concepts of Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP) for explainability. This effectiveness is both local to a sample level and holistic over the whole testing set. We also discuss the significant computational time advantage of LRP (1–2 s) over LIME (22 s) and SHAP (108 s) on the same laptop, and thus its potential for real time application scenarios. In addition, our validation of LRP has highlighted features for enhancing model performance, thus opening up a new area of research of using XAI as an approach for feature subset selection.
APA, Harvard, Vancouver, ISO, and other styles
23

Kumar, Akshi, Shubham Dikshit, and Victor Hugo C. Albuquerque. "Explainable Artificial Intelligence for Sarcasm Detection in Dialogues." Wireless Communications and Mobile Computing 2021 (July 2, 2021): 1–13. http://dx.doi.org/10.1155/2021/2939334.

Full text
Abstract:
Sarcasm detection in dialogues has been gaining popularity among natural language processing (NLP) researchers with the increased use of conversational threads on social media. Capturing the knowledge of the domain of discourse, context propagation during the course of dialogue, and situational context and tone of the speaker are some important features to train the machine learning models for detecting sarcasm in real time. As situational comedies vibrantly represent human mannerism and behaviour in everyday real-life situations, this research demonstrates the use of an ensemble supervised learning algorithm to detect sarcasm in the benchmark dialogue dataset, MUStARD. The punch-line utterance and its associated context are taken as features to train the eXtreme Gradient Boosting (XGBoost) method. The primary goal is to predict sarcasm in each utterance of the speaker using the chronological nature of a scene. Further, it is vital to prevent model bias and help decision makers understand how to use the models in the right way. Therefore, as a twin goal of this research, we make the learning model used for conversational sarcasm detection interpretable. This is done using two post hoc interpretability approaches, Local Interpretable Model-agnostic Explanations (LIME) and Shapley Additive exPlanations (SHAP), to generate explanations for the output of a trained classifier. The classification results clearly depict the importance of capturing the intersentence context to detect sarcasm in conversational threads. The interpretability methods show the words (features) that influence the decision of the model the most and help the user understand how the model is making the decision for detecting sarcasm in dialogues.
APA, Harvard, Vancouver, ISO, and other styles
24

Patel, Jinal, Charmi Amipara, Tariq Ahamed Ahanger, Komal Ladhva, Rajeev Kumar Gupta, Hashem O. Alsaab, Yusuf S. Althobaiti, and Rajnish Ratna. "A Machine Learning-Based Water Potability Prediction Model by Using Synthetic Minority Oversampling Technique and Explainable AI." Computational Intelligence and Neuroscience 2022 (September 20, 2022): 1–15. http://dx.doi.org/10.1155/2022/9283293.

Full text
Abstract:
During the last few decades, the quality of water has deteriorated significantly due to pollution and many other issues. As a consequence of this, there is a need for a model that can make accurate projections about water quality. This work shows the comparative analysis of different machine learning approaches like Support Vector Machine (SVM), Decision Tree (DT), Random Forest, Gradient Boost, and Ada Boost, used for the water quality classification. The model is trained on the Water Quality Index dataset available on Kaggle. Z-score is used to normalize the dataset before beginning the training process for the model. Because the given dataset is unbalanced, Synthetic Minority Oversampling Technique (SMOTE) is used to balance the dataset. Experiments results depict that Random Forest and Gradient Boost give the highest accuracy of 81%. One of the major issues with the machine learning model is lack of transparency which makes it impossible to evaluate the results of the model. To address this issue, explainable AI (XAI) is used which assists us in determining which features are the most important. Within the context of this investigation, Local Interpretable Model-agnostic Explanations (LIME) is utilized to ascertain the significance of the features.
APA, Harvard, Vancouver, ISO, and other styles
25

Alharbi, Basma, Zhenwen Liang, Jana M. Aljindan, Ammar K. Agnia, and Xiangliang Zhang. "Explainable and Interpretable Anomaly Detection Models for Production Data." SPE Journal 27, no. 01 (November 30, 2021): 349–63. http://dx.doi.org/10.2118/208586-pa.

Full text
Abstract:
Summary Trusting a machine-learning model is a critical factor that will speed the spread of the fourth industrial revolution. Trust can be achieved by understanding how a model is making decisions. For white-box models, it is easy to “see” the model and examine its prediction. For black-box models, the explanation of the decision process is not straightforward. In this work, we compare the performance of several white- and black-box models on two production data sets in an anomaly detection task. The presence of anomalies in production data can significantly influence business decisions and misrepresent the results of the analysis, if not identified. Therefore, identifying anomalies is a crucial and necessary step to maintain safety and ensure that the wells perform at full capacity. To achieve this, we compare the performance of K-nearest neighbor (KNN), logistic regression (Logit), support vector machines (SVMs), decision tree (DT), random forest (RF), and rule fit classifier (RFC). F1 and complexity are the two main metrics used to compare the prediction performance and interpretability of these models. In one data set, RFC outperformed the remaining models in both F1 and complexity, where F1 = 0.92, and complexity = 0.5. In the second data set, RF outperformed the rest in prediction performance with F1 = 0.84, yet it had the lowest complexity metric (0.04). We further analyzed the best performing models by explaining their predictions using local interpretable model-agnostic explanations, which provide justification for decisions made for each instance. Additionally, we evaluated the global rules learned from white-box models. Local and global analysis enable decision makers to understand how and why models are making certain decisions, which in turn allows trusting the models.
APA, Harvard, Vancouver, ISO, and other styles
26

Modhukur, Vijayachitra, Shakshi Sharma, Mainak Mondal, Ankita Lawarde, Keiu Kask, Rajesh Sharma, and Andres Salumets. "Machine Learning Approaches to Classify Primary and Metastatic Cancers Using Tissue of Origin-Based DNA Methylation Profiles." Cancers 13, no. 15 (July 27, 2021): 3768. http://dx.doi.org/10.3390/cancers13153768.

Full text
Abstract:
Metastatic cancers account for up to 90% of cancer-related deaths. The clear differentiation of metastatic cancers from primary cancers is crucial for cancer type identification and developing targeted treatment for each cancer type. DNA methylation patterns are suggested to be an intriguing target for cancer prediction and are also considered to be an important mediator for the transition to metastatic cancer. In the present study, we used 24 cancer types and 9303 methylome samples downloaded from publicly available data repositories, including The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). We constructed machine learning classifiers to discriminate metastatic, primary, and non-cancerous methylome samples. We applied support vector machines (SVM), Naive Bayes (NB), extreme gradient boosting (XGBoost), and random forest (RF) machine learning models to classify the cancer types based on their tissue of origin. RF outperformed the other classifiers, with an average accuracy of 99%. Moreover, we applied local interpretable model-agnostic explanations (LIME) to explain important methylation biomarkers to classify cancer types.
APA, Harvard, Vancouver, ISO, and other styles
27

Grzeszczyk, Tadeusz A., and Michal K. Grzeszczyk. "Justifying Short-Term Load Forecasts Obtained with the Use of Neural Models." Energies 15, no. 5 (March 2, 2022): 1852. http://dx.doi.org/10.3390/en15051852.

Full text
Abstract:
There is a lot of research on the neural models used for short-term load forecasting (STLF), which is crucial for improving the sustainable operation of energy systems with increasing technical, economic, and environmental requirements. Neural networks are computationally powerful; however, the lack of clear, readable and trustworthy justification of STLF obtained using such models is a serious problem that needs to be tackled. The article proposes an approach based on the local interpretable model-agnostic explanations (LIME) method that supports reliable premises justifying and explaining the forecasts. The use of the proposed approach makes it possible to improve the reliability of heuristic and experimental neural modeling processes, the results of which are difficult to interpret. Explaining the forecasting may facilitate the justification of the selection and the improvement of neural models for STLF, while contributing to a better understanding of the obtained results and broadening the knowledge and experience supporting the enhancement of energy systems security based on reliable forecasts and simplifying dispatch decisions.
APA, Harvard, Vancouver, ISO, and other styles
28

Kawakura, Shinji, Masayuki Hirafuji, Seishi Ninomiya, and Ryosuke Shibasaki. "Analyses of Diverse Agricultural Worker Data with Explainable Artificial Intelligence: XAI based on SHAP, LIME, and LightGBM." European Journal of Agriculture and Food Sciences 4, no. 6 (November 8, 2022): 11–19. http://dx.doi.org/10.24018/ejfood.2022.4.6.348.

Full text
Abstract:
We use recent explainable artificial intelligence (XAI) based on SHapley Additive exPlanations (SHAP), Local Interpretable Model-agnostic Explanations (LIME), and Light Gradient Boosting Machine (LightGBM) to analyze diverse physical agricultural (agri-) worker datasets. We have developed various promising body-sensing systems to enhance agri-technical advancement, training and worker development, and security. However, existing methods and systems are not sufficient for in-depth analysis of human motion. Thus, we have also developed wearable sensing systems (WS) that can capture real-time three-axis acceleration and angular velocity data related to agri-worker motion by analyzing human dynamics and statistics in different agri-fields, meadows, and gardens. After investigating the obtained time-series data using a novel program written in Python, we discuss our findings and recommendations with real agri-workers and managers. In this study, we use XAI and visualization to analyze diverse data of experienced and inexperienced agri-workers to develop an applied method for agri-directors to train agri-workers.
APA, Harvard, Vancouver, ISO, and other styles
29

Hung, Sheng-Chieh, Hui-Ching Wu, and Ming-Hseng Tseng. "Remote Sensing Scene Classification and Explanation Using RSSCNet and LIME." Applied Sciences 10, no. 18 (September 4, 2020): 6151. http://dx.doi.org/10.3390/app10186151.

Full text
Abstract:
Classification is needed in disaster investigation, traffic control, and land-use resource management. How to quickly and accurately classify such remote sensing imagery has become a popular research topic. However, the application of large, deep neural network models for the training of classifiers in the hope of obtaining good classification results is often very time-consuming. In this study, a new CNN (convolutional neutral networks) architecture, i.e., RSSCNet (remote sensing scene classification network), with high generalization capability was designed. Moreover, a two-stage cyclical learning rate policy and the no-freezing transfer learning method were developed to speed up model training and enhance accuracy. In addition, the manifold learning t-SNE (t-distributed stochastic neighbor embedding) algorithm was used to verify the effectiveness of the proposed model, and the LIME (local interpretable model, agnostic explanation) algorithm was applied to improve the results in cases where the model made wrong predictions. Comparing the results of three publicly available datasets in this study with those obtained in previous studies, the experimental results show that the model and method proposed in this paper can achieve better scene classification more quickly and more efficiently.
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Huan, Wei Wu, Chunxia Han, Jiaqi Zheng, Xinyu Cai, Shimin Chang, Junlong Shi, Nan Xu, and Zisheng Ai. "Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning–Based Development and Validation Study." JMIR Medical Informatics 9, no. 11 (November 19, 2021): e30079. http://dx.doi.org/10.2196/30079.

Full text
Abstract:
Background The absolute number of femoral neck fractures (FNFs) is increasing; however, the prediction of traumatic femoral head necrosis remains difficult. Machine learning algorithms have the potential to be superior to traditional prediction methods for the prediction of traumatic femoral head necrosis. Objective The aim of this study is to use machine learning to construct a model for the analysis of risk factors and prediction of osteonecrosis of the femoral head (ONFH) in patients with FNF after internal fixation. Methods We retrospectively collected preoperative, intraoperative, and postoperative clinical data of patients with FNF in 4 hospitals in Shanghai and followed up the patients for more than 2.5 years. A total of 259 patients with 43 variables were included in the study. The data were randomly divided into a training set (181/259, 69.8%) and a validation set (78/259, 30.1%). External data (n=376) were obtained from a retrospective cohort study of patients with FNF in 3 other hospitals. Least absolute shrinkage and selection operator regression and the support vector machine algorithm were used for variable selection. Logistic regression, random forest, support vector machine, and eXtreme Gradient Boosting (XGBoost) were used to develop the model on the training set. The validation set was used to tune the model hyperparameters to determine the final prediction model, and the external data were used to compare and evaluate the model performance. We compared the accuracy, discrimination, and calibration of the models to identify the best machine learning algorithm for predicting ONFH. Shapley additive explanations and local interpretable model-agnostic explanations were used to determine the interpretability of the black box model. Results A total of 11 variables were selected for the models. The XGBoost model performed best on the validation set and external data. The accuracy, sensitivity, and area under the receiver operating characteristic curve of the model on the validation set were 0.987, 0.929, and 0.992, respectively. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of the model on the external data were 0.907, 0.807, 0.935, and 0.933, respectively, and the log-loss was 0.279. The calibration curve demonstrated good agreement between the predicted probability and actual risk. The interpretability of the features and individual predictions were realized using the Shapley additive explanations and local interpretable model-agnostic explanations algorithms. In addition, the XGBoost model was translated into a self-made web-based risk calculator to estimate an individual’s probability of ONFH. Conclusions Machine learning performs well in predicting ONFH after internal fixation of FNF. The 6-variable XGBoost model predicted the risk of ONFH well and had good generalization ability on the external data, which can be used for the clinical prediction of ONFH after internal fixation of FNF.
APA, Harvard, Vancouver, ISO, and other styles
31

Akpudo, Ugochukwu Ejike, and Jang-Wook Hur. "An Explainable DL-Based Condition Monitoring Framework for Water-Emulsified Diesel CR Systems." Electronics 10, no. 20 (October 15, 2021): 2522. http://dx.doi.org/10.3390/electronics10202522.

Full text
Abstract:
Despite global patronage, diesel engines still contribute significantly to urban air pollution, and with the ongoing campaign for green automobiles, there is an increasing demand for controlling/monitoring the pollution severity of diesel engines especially in heavy-duty industries. Emulsified diesel fuels provide a readily available solution to engine pollution; however, the inherent reduction in engine power, component corrosion, and/or damage poses a major concern for global adoption. Notwithstanding, on-going investigations suggest the need for reliable condition monitoring frameworks to accurately monitor/control the water-diesel emulsion compositions for inevitable cases. This study proposes the use of common rail (CR) pressure differentials and a deep one-dimensional convolutional neural network (1D-CNN) with the local interpretable model-agnostic explanations (LIME) for empirical diagnostic evaluations (and validations) using a KIA Sorento 2004 four-cylinder line engine as a case study. CR pressure signals were digitally extracted at various water-in-diesel emulsion compositions at various engine RPMs, pre-processed, and used for necessary transient and spectral analysis, and empirical validations. Results reveal high model trustworthiness with an average validation accuracy of 95.9%.
APA, Harvard, Vancouver, ISO, and other styles
32

Ibrahim, Muhammad Amien, Samsul Arifin, I. Gusti Agung Anom Yudistira, Rinda Nariswari, Abdul Azis Abdillah, Nerru Pranuta Murnaka, and Puguh Wahyu Prasetyo. "An Explainable AI Model for Hate Speech Detection on Indonesian Twitter." CommIT (Communication and Information Technology) Journal 16, no. 2 (June 8, 2022): 175–82. http://dx.doi.org/10.21512/commit.v16i2.8343.

Full text
Abstract:
To avoid citizen disputes, hate speech on social media, such as Twitter, must be automatically detected. The current research in Indonesian Twitter focuses on developing better hate speech detection models. However, there is limited study on the explainability aspects of hate speech detection. The research aims to explain issues that previous researchers have not detailed and attempt to answer the shortcomings of previous researchers. There are 13,169 tweets in the dataset with labels like “hate speech” and “abusive language”. The dataset also provides binary labels on whether hate speech is directed to individual, group, religion, race, physical disability, and gender. In the research, classification is performed by using traditional machine learning models, and the predictions are evaluated using an Explainable AI model, such as Local Interpretable Model-Agnostic Explanations (LIME), to allow users to comprehend why a tweet is regarded as a hateful message. Moreover, models that perform well in classification perceive incorrect words as contributing to hate speech. As a result, such models are unsuitable for deployment in the real world. In the investigation, the combination of XGBoost and logical LIME explanations produces the most logical results. The use of the Explainable AI model highlights the importance of choosing the ideal model while maintaining users’ trust in the deployed model.
APA, Harvard, Vancouver, ISO, and other styles
33

Manikis, Georgios C., Georgios S. Ioannidis, Loizos Siakallis, Katerina Nikiforaki, Michael Iv, Diana Vozlic, Katarina Surlan-Popovic, Max Wintermark, Sotirios Bisdas, and Kostas Marias. "Multicenter DSC–MRI-Based Radiomics Predict IDH Mutation in Gliomas." Cancers 13, no. 16 (August 5, 2021): 3965. http://dx.doi.org/10.3390/cancers13163965.

Full text
Abstract:
To address the current lack of dynamic susceptibility contrast magnetic resonance imaging (DSC–MRI)-based radiomics to predict isocitrate dehydrogenase (IDH) mutations in gliomas, we present a multicenter study that featured an independent exploratory set for radiomics model development and external validation using two independent cohorts. The maximum performance of the IDH mutation status prediction on the validation set had an accuracy of 0.544 (Cohen’s kappa: 0.145, F1-score: 0.415, area under the curve-AUC: 0.639, sensitivity: 0.733, specificity: 0.491), which significantly improved to an accuracy of 0.706 (Cohen’s kappa: 0.282, F1-score: 0.474, AUC: 0.667, sensitivity: 0.6, specificity: 0.736) when dynamic-based standardization of the images was performed prior to the radiomics. Model explainability using local interpretable model-agnostic explanations (LIME) and Shapley additive explanations (SHAP) revealed potential intuitive correlations between the IDH–wildtype increased heterogeneity and the texture complexity. These results strengthened our hypothesis that DSC–MRI radiogenomics in gliomas hold the potential to provide increased predictive performance from models that generalize well and provide understandable patterns between IDH mutation status and the extracted features toward enabling the clinical translation of radiogenomics in neuro-oncology.
APA, Harvard, Vancouver, ISO, and other styles
34

Lee, Won-Yung, Youngseop Lee, Siwoo Lee, Young Woo Kim, and Ji-Hwan Kim. "A Machine Learning Approach for Recommending Herbal Formulae with Enhanced Interpretability and Applicability." Biomolecules 12, no. 11 (October 31, 2022): 1604. http://dx.doi.org/10.3390/biom12111604.

Full text
Abstract:
Herbal formulae (HFs) are representative interventions in Korean medicine (KM) for the prevention and treatment of various diseases. Here, we proposed a machine learning-based approach for HF recommendation with enhanced interpretability and applicability. A dataset consisting of clinical symptoms, Sasang constitution (SC) types, and prescribed HFs was derived from a multicenter study. Case studies published over 10 years were collected and curated by experts. Various classifiers, oversampling methods, and data imputation techniques were comprehensively considered. The local interpretable model-agnostic explanation (LIME) technique was applied to identify the clinical symptoms that led to the recommendation of specific HFs. We found that the cascaded deep forest (CDF) model with data imputation and oversampling yielded the best performance on the training set and holdout test set. Our model also achieved top-1 and top-3 accuracies of 0.35 and 0.89, respectively, on case study datasets in which clinical symptoms were only partially recorded. We performed an expert evaluation on the reliability of interpretation results using case studies and achieved a score close to normal. Taken together, our model will contribute to the modernization of KM and the identification of an HF selection process through the development of a practically useful HF recommendation model.
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, Yunsheng, Dionne M. Aleman, Thomas G. Purdie, and Chris McIntosh. "Understanding machine learning classifier decisions in automated radiotherapy quality assurance." Physics in Medicine & Biology 67, no. 2 (January 17, 2022): 025001. http://dx.doi.org/10.1088/1361-6560/ac3e0e.

Full text
Abstract:
Abstract The complexity of generating radiotherapy treatments demands a rigorous quality assurance (QA) process to ensure patient safety and to avoid clinically significant errors. Machine learning classifiers have been explored to augment the scope and efficiency of the traditional radiotherapy treatment planning QA process. However, one important gap in relying on classifiers for QA of radiotherapy treatment plans is the lack of understanding behind a specific classifier prediction. We develop explanation methods to understand the decisions of two automated QA classifiers: (1) a region of interest (ROI) segmentation/labeling classifier, and (2) a treatment plan acceptance classifier. For each classifier, a local interpretable model-agnostic explanation (LIME) framework and a novel adaption of team-based Shapley values framework are constructed. We test these methods in datasets for two radiotherapy treatment sites (prostate and breast), and demonstrate the importance of evaluating QA classifiers using interpretable machine learning approaches. We additionally develop a notion of explanation consistency to assess classifier performance. Our explanation method allows for easy visualization and human expert assessment of classifier decisions in radiotherapy QA. Notably, we find that our team-based Shapley approach is more consistent than LIME. The ability to explain and validate automated decision-making is critical in medical treatments. This analysis allows us to conclude that both QA classifiers are moderately trustworthy and can be used to confirm expert decisions, though the current QA classifiers should not be viewed as a replacement for the human QA process.
APA, Harvard, Vancouver, ISO, and other styles
36

Shamsara, Jamal. "A Random Forest Model to Predict the Activity of a Large Set of Soluble Epoxide Hydrolase Inhibitors Solely Based on a Set of Simple Fragmental Descriptors." Combinatorial Chemistry & High Throughput Screening 22, no. 8 (December 19, 2019): 555–69. http://dx.doi.org/10.2174/1386207322666191016110232.

Full text
Abstract:
Background: The Soluble Epoxide Hydrolase (sEH) is a ubiquitously expressed enzyme in various tissues. The inhibition of the sEH has shown promising results to treat hypertension, alleviate pain and inflammation. Objective: In this study, the power of machine learning has been employed to develop a predictive QSAR model for a large set of sEH inhibitors. Methods: In this study, the random forest method was employed to make a valid model for the prediction of sEH inhibition. Besides, two new methods (Treeinterpreter python package and LIME, Local Interpretable Model-agnostic Explanations) have been exploited to explain and interpret the model. Results: The performance metrics of the model were as follows: R2=0.831, Q2=0.565, RMSE=0.552 and R2 pred=0.595. The model also demonstrated good predictability on the two extra external test sets at least in terms of ranking. The Spearman’s rank correlation coefficients for external test set 1 and 2 were 0.872 and 0.673, respectively. The external test set 2 was a diverse one compared to the training set. Therefore, the model could be used for virtual screening to enrich potential sEH inhibitors among a diverse compound library. Conclusion: As the model was solely developed based on a set of simple fragmental descriptors, the model was explained by two local interpretation algorithms, and this could guide medicinal chemists to design new sEH inhibitors. Moreover, the most important general descriptors (fragments) suggested by the model were consistent with the available crystallographic data. The model is available as an executable binary at http://www.pharm-sbg.com and https://github.com/shamsaraj.
APA, Harvard, Vancouver, ISO, and other styles
37

Nguyen, Xuan V., Engin Dikici, Sema Candemir, Robyn L. Ball, and Luciano M. Prevedello. "Mortality Prediction Analysis among COVID-19 Inpatients Using Clinical Variables and Deep Learning Chest Radiography Imaging Features." Tomography 8, no. 4 (July 13, 2022): 1791–803. http://dx.doi.org/10.3390/tomography8040151.

Full text
Abstract:
The emergence of the COVID-19 pandemic over a relatively brief interval illustrates the need for rapid data-driven approaches to facilitate clinical decision making. We examined a machine learning process to predict inpatient mortality among COVID-19 patients using clinical and chest radiographic data. Modeling was performed with a de-identified dataset of encounters prior to widespread vaccine availability. Non-imaging predictors included demographics, pre-admission clinical history, and past medical history variables. Imaging features were extracted from chest radiographs by applying a deep convolutional neural network with transfer learning. A multi-layer perceptron combining 64 deep learning features from chest radiographs with 98 patient clinical features was trained to predict mortality. The Local Interpretable Model-Agnostic Explanations (LIME) method was used to explain model predictions. Non-imaging data alone predicted mortality with an ROC-AUC of 0.87 ± 0.03 (mean ± SD), while the addition of imaging data improved prediction slightly (ROC-AUC: 0.91 ± 0.02). The application of LIME to the combined imaging and clinical model found HbA1c values to contribute the most to model prediction (17.1 ± 1.7%), while imaging contributed 8.8 ± 2.8%. Age, gender, and BMI contributed 8.7%, 8.2%, and 7.1%, respectively. Our findings demonstrate a viable explainable AI approach to quantify the contributions of imaging and clinical data to COVID mortality predictions.
APA, Harvard, Vancouver, ISO, and other styles
38

Elliott, Shiloh N., Ashley J. B. Shields, Elizabeth M. Klaehn, and Iris Tien. "Identifying Critical Infrastructure in Imagery Data Using Explainable Convolutional Neural Networks." Remote Sensing 14, no. 21 (October 25, 2022): 5331. http://dx.doi.org/10.3390/rs14215331.

Full text
Abstract:
To date, no method utilizing satellite imagery exists for detailing the locations and functions of critical infrastructure across the United States, making response to natural disasters and other events challenging due to complex infrastructural interdependencies. This paper presents a repeatable, transferable, and explainable method for critical infrastructure analysis and implementation of a robust model for critical infrastructure detection in satellite imagery. This model consists of a DenseNet-161 convolutional neural network, pretrained with the ImageNet database. The model was provided additional training with a custom dataset, containing nine infrastructure classes. The resultant analysis achieved an overall accuracy of 90%, with the highest accuracy for airports (97%), hydroelectric dams (96%), solar farms (94%), substations (91%), potable water tanks (93%), and hospitals (93%). Critical infrastructure types with relatively low accuracy are likely influenced by data commonality between similar infrastructure components for petroleum terminals (86%), water treatment plants (78%), and natural gas generation (78%). Local interpretable model-agnostic explanations (LIME) was integrated into the overall modeling pipeline to establish trust for users in critical infrastructure applications. The results demonstrate the effectiveness of a convolutional neural network approach for critical infrastructure identification, with higher than 90% accuracy in identifying six of the critical infrastructure facility types.
APA, Harvard, Vancouver, ISO, and other styles
39

Yu, Chenyan, Yao Li, Minyue Yin, Jingwen Gao, Liting Xi, Jiaxi Lin, Lu Liu, et al. "Automated Machine Learning in Predicting 30-Day Mortality in Patients with Non-Cholestatic Cirrhosis." Journal of Personalized Medicine 12, no. 11 (November 19, 2022): 1930. http://dx.doi.org/10.3390/jpm12111930.

Full text
Abstract:
Objective: To evaluate the feasibility of automated machine learning (AutoML) in predicting 30-day mortality in non-cholestatic cirrhosis. Methods: A total of 932 cirrhotic patients were included from the First Affiliated Hospital of Soochow University between 2014 and 2020. Participants were divided into training and validation datasets at a ratio of 8.5:1.5. Models were developed on the H2O AutoML platform in the training dataset, and then were evaluated in the validation dataset by area under receiver operating characteristic curves (AUC). The best AutoML model was interpreted by SHapley Additive exPlanation (SHAP) Plot, Partial Dependence Plots (PDP), and Local Interpretable Model Agnostic Explanation (LIME). Results: The model, based on the extreme gradient boosting (XGBoost) algorithm, performed better (AUC 0.888) than the other AutoML models (logistic regression 0.673, gradient boost machine 0.886, random forest 0.866, deep learning 0.830, stacking 0.850), as well as the existing scorings (the model of end-stage liver disease [MELD] score 0.778, MELD-Na score 0.782, and albumin-bilirubin [ALBI] score 0.662). The most key variable in the XGBoost model was high-density lipoprotein cholesterol, followed by creatinine, white blood cell count, international normalized ratio, etc. Conclusion: The AutoML model based on the XGBoost algorithm presented better performance than the existing scoring systems for predicting 30-day mortality in patients with non-cholestatic cirrhosis. It shows the promise of AutoML in its future medical application.
APA, Harvard, Vancouver, ISO, and other styles
40

Ahmed, Md Sabbir, Md Tasin Tazwar, Haseen Khan, Swadhin Roy, Junaed Iqbal, Md Golam Rabiul Alam, Md Rafiul Hassan, and Mohammad Mehedi Hassan. "Yield Response of Different Rice Ecotypes to Meteorological, Agro-Chemical, and Soil Physiographic Factors for Interpretable Precision Agriculture Using Extreme Gradient Boosting and Support Vector Regression." Complexity 2022 (September 19, 2022): 1–20. http://dx.doi.org/10.1155/2022/5305353.

Full text
Abstract:
The food security of more than half of the world’s population depends on rice production which is one of the key objectives of precision agriculture. The traditional rice almanac used astronomical and climate factors to estimate yield response. However, this research integrated meteorological, agro-chemical, and soil physiographic factors for yield response prediction. Besides, the impact of those factors on the production of three major rice ecotypes has also been studied in this research. Moreover, this study found a different set of those factors with respect to the yield response of different rice ecotypes. Machine learning algorithms named Extreme Gradient Boosting (XGBoost) and Support Vector Regression (SVR) have been used for predicting the yield response. The SVR shows better results than XGBoost for predicting the yield of the Aus rice ecotype, whereas XGBoost performs better for forecasting the yield of the Aman and Boro rice ecotypes. The result shows that the root mean squared error (RMSE) of three different ecotypes are in between 9.38% and 24.37% and that of R-squared values are between 89.74% and 99.13% on two different machine learning algorithms. Moreover, the explainability of the models is also shown in this study with the help of the explainable artificial intelligence (XAI) model called Local Interpretable Model-Agnostic Explanations (LIME).
APA, Harvard, Vancouver, ISO, and other styles
41

Dindorf, Carlo, Wolfgang Teufl, Bertram Taetz, Gabriele Bleser, and Michael Fröhlich. "Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty." Sensors 20, no. 16 (August 6, 2020): 4385. http://dx.doi.org/10.3390/s20164385.

Full text
Abstract:
Many machine learning models show black box characteristics and, therefore, a lack of transparency, interpretability, and trustworthiness. This strongly limits their practical application in clinical contexts. For overcoming these limitations, Explainable Artificial Intelligence (XAI) has shown promising results. The current study examined the influence of different input representations on a trained model’s accuracy, interpretability, as well as clinical relevancy using XAI methods. The gait of 27 healthy subjects and 20 subjects after total hip arthroplasty (THA) was recorded with an inertial measurement unit (IMU)-based system. Three different input representations were used for classification. Local Interpretable Model-Agnostic Explanations (LIME) was used for model interpretation. The best accuracy was achieved with automatically extracted features (mean accuracy Macc = 100%), followed by features based on simple descriptive statistics (Macc = 97.38%) and waveform data (Macc = 95.88%). Globally seen, sagittal movement of the hip, knee, and pelvis as well as transversal movement of the ankle were especially important for this specific classification task. The current work shows that the type of input representation crucially determines interpretability as well as clinical relevance. A combined approach using different forms of representations seems advantageous. The results might assist physicians and therapists finding and addressing individual pathologic gait patterns.
APA, Harvard, Vancouver, ISO, and other styles
42

Petrescu, Livia, Cătălin Petrescu, Ana Oprea, Oana Mitruț, Gabriela Moise, Alin Moldoveanu, and Florica Moldoveanu. "Machine Learning Methods for Fear Classification Based on Physiological Features." Sensors 21, no. 13 (July 1, 2021): 4519. http://dx.doi.org/10.3390/s21134519.

Full text
Abstract:
This paper focuses on the binary classification of the emotion of fear, based on the physiological data and subjective responses stored in the DEAP dataset. We performed a mapping between the discrete and dimensional emotional information considering the participants’ ratings and extracted a substantial set of 40 types of features from the physiological data, which represented the input to various machine learning algorithms—Decision Trees, k-Nearest Neighbors, Support Vector Machine and artificial networks—accompanied by dimensionality reduction, feature selection and the tuning of the most relevant hyperparameters, boosting classification accuracy. The methodology we approached included tackling different situations, such as resolving the problem of having an imbalanced dataset through data augmentation, reducing overfitting, computing various metrics in order to obtain the most reliable classification scores and applying the Local Interpretable Model-Agnostic Explanations method for interpretation and for explaining predictions in a human-understandable manner. The results show that fear can be predicted very well (accuracies ranging from 91.7% using Gradient Boosting Trees to 93.5% using dimensionality reduction and Support Vector Machine) by extracting the most relevant features from the physiological data and by searching for the best parameters which maximize the machine learning algorithms’ classification scores.
APA, Harvard, Vancouver, ISO, and other styles
43

Kitamura, Shinji, Kensaku Takahashi, Yizhen Sang, Kazuhiko Fukushima, Kenji Tsuji, and Jun Wada. "Deep Learning Could Diagnose Diabetic Nephropathy with Renal Pathological Immunofluorescent Images." Diagnostics 10, no. 7 (July 9, 2020): 466. http://dx.doi.org/10.3390/diagnostics10070466.

Full text
Abstract:
Artificial Intelligence (AI) imaging diagnosis is developing, making enormous steps forward in medical fields. Regarding diabetic nephropathy (DN), medical doctors diagnose them with clinical course, clinical laboratory data and renal pathology, mainly evaluate with light microscopy images rather than immunofluorescent images because there are no characteristic findings in immunofluorescent images for DN diagnosis. Here, we examined the possibility of whether AI could diagnose DN from immunofluorescent images. We collected renal immunofluorescent images from 885 renal biopsy patients in our hospital, and we created a dataset that contains six types of immunofluorescent images of IgG, IgA, IgM, C3, C1q and Fibrinogen for each patient. Using the dataset, 39 programs worked without errors (Area under the curve (AUC): 0.93). Five programs diagnosed DN completely with immunofluorescent images (AUC: 1.00). By analyzing with Local interpretable model-agnostic explanations (Lime), the AI focused on the peripheral lesion of DN glomeruli. On the other hand, the nephrologist diagnostic ratio (AUC: 0.75833) was slightly inferior to AI diagnosis. These findings suggest that DN could be diagnosed only by immunofluorescent images by deep learning. AI could diagnose DN and identify classified unknown parts with the immunofluorescent images that nephrologists usually do not use for DN diagnosis.
APA, Harvard, Vancouver, ISO, and other styles
44

Steed, Ryan, and Aylin Caliskan. "A set of distinct facial traits learned by machines is not predictive of appearance bias in the wild." AI and Ethics 1, no. 3 (January 12, 2021): 249–60. http://dx.doi.org/10.1007/s43681-020-00035-y.

Full text
Abstract:
AbstractResearch in social psychology has shown that people’s biased, subjective judgments about another’s personality based solely on their appearance are not predictive of their actual personality traits. But researchers and companies often utilize computer vision models to predict similarly subjective personality attributes such as “employability”. We seek to determine whether state-of-the-art, black box face processing technology can learn human-like appearance biases. With features extracted with FaceNet, a widely used face recognition framework, we train a transfer learning model on human subjects’ first impressions of personality traits in other faces as measured by social psychologists. We find that features extracted with FaceNet can be used to predict human appearance bias scores for deliberately manipulated faces but not for randomly generated faces scored by humans. Additionally, in contrast to work with human biases in social psychology, the model does not find a significant signal correlating politicians’ vote shares with perceived competence bias. With Local Interpretable Model-Agnostic Explanations (LIME), we provide several explanations for this discrepancy. Our results suggest that some signals of appearance bias documented in social psychology are not embedded by the machine learning techniques we investigate. We shed light on the ways in which appearance bias could be embedded in face processing technology and cast further doubt on the practice of predicting subjective traits based on appearances.
APA, Harvard, Vancouver, ISO, and other styles
45

Mehta, Harshkumar, and Kalpdrum Passi. "Social Media Hate Speech Detection Using Explainable Artificial Intelligence (XAI)." Algorithms 15, no. 8 (August 17, 2022): 291. http://dx.doi.org/10.3390/a15080291.

Full text
Abstract:
Explainable artificial intelligence (XAI) characteristics have flexible and multifaceted potential in hate speech detection by deep learning models. Interpreting and explaining decisions made by complex artificial intelligence (AI) models to understand the decision-making process of these model were the aims of this research. As a part of this research study, two datasets were taken to demonstrate hate speech detection using XAI. Data preprocessing was performed to clean data of any inconsistencies, clean the text of the tweets, tokenize and lemmatize the text, etc. Categorical variables were also simplified in order to generate a clean dataset for training purposes. Exploratory data analysis was performed on the datasets to uncover various patterns and insights. Various pre-existing models were applied to the Google Jigsaw dataset such as decision trees, k-nearest neighbors, multinomial naïve Bayes, random forest, logistic regression, and long short-term memory (LSTM), among which LSTM achieved an accuracy of 97.6%. Explainable methods such as LIME (local interpretable model—agnostic explanations) were applied to the HateXplain dataset. Variants of BERT (bidirectional encoder representations from transformers) model such as BERT + ANN (artificial neural network) with an accuracy of 93.55% and BERT + MLP (multilayer perceptron) with an accuracy of 93.67% were created to achieve a good performance in terms of explainability using the ERASER (evaluating rationales and simple English reasoning) benchmark.
APA, Harvard, Vancouver, ISO, and other styles
46

Knapič, Samanta, Avleen Malhi, Rohit Saluja, and Kary Främling. "Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain." Machine Learning and Knowledge Extraction 3, no. 3 (September 19, 2021): 740–70. http://dx.doi.org/10.3390/make3030037.

Full text
Abstract:
In this paper, we present the potential of Explainable Artificial Intelligence methods for decision support in medical image analysis scenarios. Using three types of explainable methods applied to the same medical image data set, we aimed to improve the comprehensibility of the decisions provided by the Convolutional Neural Network (CNN). In vivo gastral images obtained by a video capsule endoscopy (VCE) were the subject of visual explanations, with the goal of increasing health professionals’ trust in black-box predictions. We implemented two post hoc interpretable machine learning methods, called Local Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP), and an alternative explanation approach, the Contextual Importance and Utility (CIU) method. The produced explanations were assessed by human evaluation. We conducted three user studies based on explanations provided by LIME, SHAP and CIU. Users from different non-medical backgrounds carried out a series of tests in a web-based survey setting and stated their experience and understanding of the given explanations. Three user groups (n = 20, 20, 20) with three distinct forms of explanations were quantitatively analyzed. We found that, as hypothesized, the CIU-explainable method performed better than both LIME and SHAP methods in terms of improving support for human decision-making and being more transparent and thus understandable to users. Additionally, CIU outperformed LIME and SHAP by generating explanations more rapidly. Our findings suggest that there are notable differences in human decision-making between various explanation support settings. In line with that, we present three potential explainable methods that, with future improvements in implementation, can be generalized to different medical data sets and can provide effective decision support to medical experts.
APA, Harvard, Vancouver, ISO, and other styles
47

Deng, Shangkun, Yingke Zhu, Xiaoru Huang, Shuangyang Duan, and Zhe Fu. "High-Frequency Direction Forecasting of the Futures Market Using a Machine-Learning-Based Method." Future Internet 14, no. 6 (June 9, 2022): 180. http://dx.doi.org/10.3390/fi14060180.

Full text
Abstract:
Futures price-movement-direction forecasting has always been a significant and challenging subject in the financial market. In this paper, we propose a combination approach that integrates the XGBoost (eXtreme Gradient Boosting), SMOTE (Synthetic Minority Oversampling Technique), and NSGA-II (Non-dominated Sorting Genetic Algorithm-II) methods. We applied the proposed approach on the direction prediction and simulation trading of rebar futures, which are traded on the Shanghai Futures Exchange. Firstly, the minority classes of the high-frequency rebar futures price change magnitudes are oversampled using the SMOTE algorithm to overcome the imbalance problem of the class data. Then, XGBoost is adopted to construct a multiclassification model for the price-movement-direction prediction. Next, the proposed approach employs NSGA-II to optimize the parameters of the pre-designed trading rule for trading simulation. Finally, the price-movement direction is predicted, and we conducted the high-frequency trading based on the optimized XGBoost model and the trading rule, with the classification and trading performances empirically evaluated by four metrics over four testing periods. Meanwhile, the LIME (Local Interpretable Model-agnostic Explanations) is applied as a model explanation approach to quantify the prediction contributions of features to the forecasting samples. From the experimental results, we found that the proposed approach performed best in terms of direction prediction accuracy, profitability, and return–risk ratio. The proposed approach could be beneficial for decision-making of the rebar traders and related companies engaged in rebar futures trading.
APA, Harvard, Vancouver, ISO, and other styles
48

Kikutsuji, Takuma, Yusuke Mori, Kei-ichi Okazaki, Toshifumi Mori, Kang Kim, and Nobuyuki Matubayasi. "Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI)." Journal of Chemical Physics 156, no. 15 (April 21, 2022): 154108. http://dx.doi.org/10.1063/5.0087310.

Full text
Abstract:
A method for obtaining appropriate reaction coordinates is required to identify transition states distinguishing the product and reactant in complex molecular systems. Recently, abundant research has been devoted to obtaining reaction coordinates using artificial neural networks from deep learning literature, where many collective variables are typically utilized in the input layer. However, it is difficult to explain the details of which collective variables contribute to the predicted reaction coordinates owing to the complexity of the nonlinear functions in deep neural networks. To overcome this limitation, we used Explainable Artificial Intelligence (XAI) methods of the Local Interpretable Model-agnostic Explanation (LIME) and the game theory-based framework known as Shapley Additive exPlanations (SHAP). We demonstrated that XAI enables us to obtain the degree of contribution of each collective variable to reaction coordinates that is determined by nonlinear regressions with deep learning for the committor of the alanine dipeptide isomerization in vacuum. In particular, both LIME and SHAP provide important features to the predicted reaction coordinates, which are characterized by appropriate dihedral angles consistent with those previously reported from the committor test analysis. The present study offers an AI-aided framework to explain the appropriate reaction coordinates, which acquires considerable significance when the number of degrees of freedom increases.
APA, Harvard, Vancouver, ISO, and other styles
49

Dindorf, Carlo, Jürgen Konradi, Claudia Wolf, Bertram Taetz, Gabriele Bleser, Janine Huthwelker, Friederike Werthmann, et al. "Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI)." Sensors 21, no. 18 (September 21, 2021): 6323. http://dx.doi.org/10.3390/s21186323.

Full text
Abstract:
Clinical classification models are mostly pathology-dependent and, thus, are only able to detect pathologies they have been trained for. Research is needed regarding pathology-independent classifiers and their interpretation. Hence, our aim is to develop a pathology-independent classifier that provides prediction probabilities and explanations of the classification decisions. Spinal posture data of healthy subjects and various pathologies (back pain, spinal fusion, osteoarthritis), as well as synthetic data, were used for modeling. A one-class support vector machine was used as a pathology-independent classifier. The outputs were transformed into a probability distribution according to Platt’s method. Interpretation was performed using the explainable artificial intelligence tool Local Interpretable Model-Agnostic Explanations. The results were compared with those obtained by commonly used binary classification approaches. The best classification results were obtained for subjects with a spinal fusion. Subjects with back pain were especially challenging to distinguish from the healthy reference group. The proposed method proved useful for the interpretation of the predictions. No clear inferiority of the proposed approach compared to commonly used binary classifiers was demonstrated. The application of dynamic spinal data seems important for future works. The proposed approach could be useful to provide an objective orientation and to individually adapt and monitor therapy measures pre- and post-operatively.
APA, Harvard, Vancouver, ISO, and other styles
50

Zhu, Mingzhe, Bo Zang, Linlin Ding, Tao Lei, Zhenpeng Feng, and Jingyuan Fan. "LIME-Based Data Selection Method for SAR Images Generation Using GAN." Remote Sensing 14, no. 1 (January 3, 2022): 204. http://dx.doi.org/10.3390/rs14010204.

Full text
Abstract:
Deep learning has obtained remarkable achievements in computer vision, especially image and video processing. However, in synthetic aperture radar (SAR) image recognition, the application of DNNs is usually restricted due to data insufficiency. To augment datasets, generative adversarial networks (GANs) are usually used to generate numerous photo-realistic SAR images. Although there are many pixel-level metrics to measure GAN’s performance from the quality of generated SAR images, there are few measurements to evaluate whether the generated SAR images include the most representative features of the target. In this case, the classifier probably categorizes a SAR image into the corresponding class based on “wrong” criterion, i.e., “Clever Hans”. In this paper, local interpretable model-agnostic explanation (LIME) is innovatively utilized to evaluate whether a generated SAR image possessed the most representative features of a specific kind of target. Firstly, LIME is used to visualize positive contributions of the input SAR image to the correct prediction of the classifier. Subsequently, these representative SAR images can be selected handily by evaluating how much the positive contribution region matches the target. Experimental results demonstrate that the proposed method can ally “Clever Hans” phenomenon greatly caused by the spurious relationship between generated SAR images and the corresponding classes.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography