Academic literature on the topic 'Load sensors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Load sensors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Load sensors"
Narumi, Keisuke, Toshio Fukuda, and Fumihito Arai. "Design and Characterization of Load Sensor with AT-Cut QCR for Miniaturization and Resolution Improvement." Journal of Robotics and Mechatronics 22, no. 3 (June 20, 2010): 286–92. http://dx.doi.org/10.20965/jrm.2010.p0286.
Full textGuo, Jingjing, Tiesuo Geng, Huaizhi Yan, Lize Du, Zhe Zhang, and Changsen Sun. "Implementation of a Load Sensitizing Bridge Spherical Bearing Based on Low-Coherent Fiber-Optic Sensors Combined with Neural Network Algorithms." Sensors 21, no. 1 (December 23, 2020): 37. http://dx.doi.org/10.3390/s21010037.
Full textGattringer, Hubert, Andreas Müller, and Philip Hoermandinger. "Design and Calibration of Robot Base Force/Torque Sensors and Their Application to Non-Collocated Admittance Control for Automated Tool Changing." Sensors 21, no. 9 (April 21, 2021): 2895. http://dx.doi.org/10.3390/s21092895.
Full textHujer, Jan, Menghuot Phan, Tomáš Kořínek, Petra Dančová, and Miloš Müller. "Photolithographically Home-Made PVDF Sensor for Cavitation Impact Load Measurement." MATEC Web of Conferences 328 (2020): 01004. http://dx.doi.org/10.1051/matecconf/202032801004.
Full textLee, Woojin, Won-Je Lee, Sang-Bae Lee, and Rodrigo Salgado. "Measurement of pile load transfer using the Fiber Bragg Grating sensor system." Canadian Geotechnical Journal 41, no. 6 (December 1, 2004): 1222–32. http://dx.doi.org/10.1139/t04-059.
Full textSamuelsson, Oscar, Gustaf Olsson, Erik Lindblom, Anders Björk, and Bengt Carlsson. "Sensor bias impact on efficient aeration control during diurnal load variations." Water Science and Technology 83, no. 6 (January 25, 2021): 1335–46. http://dx.doi.org/10.2166/wst.2021.031.
Full textDarade, Santosh Ashokrao, and M. Akkalakshmi. "Extensive Literature Survey on Load Balancing in Software-Defined Networking." International Journal of Business Data Communications and Networking 16, no. 2 (July 2020): 1–19. http://dx.doi.org/10.4018/ijbdcn.2020070101.
Full textZhao, Yi Ding, and Xiao Li Liu. "The Study of Vehicle Load Monitoring System." Applied Mechanics and Materials 505-506 (January 2014): 384–87. http://dx.doi.org/10.4028/www.scientific.net/amm.505-506.384.
Full textBrunetti, Luciano, Luca Oberto, and Emil T. Vremera. "Thermoelectric Sensors as Microcalorimeter Load." IEEE Transactions on Instrumentation and Measurement 56, no. 6 (December 2007): 2220–24. http://dx.doi.org/10.1109/tim.2007.908135.
Full textPark, Dong Jin, Min Kyu Kang, Jong Hyun Lee, Seok Soon Lee, and Hyo Seok Jung. "LOAD CELL DESIGN USING FIBER BRAGG GRATING SENSORS." International Journal of Modern Physics: Conference Series 06 (January 2012): 203–8. http://dx.doi.org/10.1142/s2010194512003182.
Full textDissertations / Theses on the topic "Load sensors"
Loday, Sylvie (Sylvie Johanna) 1977. "Electronic architecture and technoogy development of astronaut spaceflight load sensors." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/83679.
Full textEstrelinha, Emílio Gerardo. "Tele-operation of a humanoid robot using haptics and load sensors." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11986.
Full textO principal objetivo desta tese é criar uma plataforma eficaz e modular para preparar o Projeto Humanoide da Universidade de Aveiro (PHUA) para o ensino tele-cinestésico. Este novo conceito de aprendizagem robótica por demonstração é neste momento a base deste projeto, onde um usuário humano tele-opera o robô em vários movimentos e tarefas de equilíbrio. Os dados recolhidos durante estas demonstrações podem ser usados em algoritmos de aprendizagem de modo a que o robô se possa mover, equilibrar e caminhar sozinho. O robô utilizado neste trabalho é uma plataforma humanoide proprietária com 27 GDL desenvolvida completamente na Universidade de Aveiro. Várias demonstrações são realizadas neste trabalho usando dados sensoriais das células de carga instaladas nos pés do robô e um dispositivo háptico para interface com o utilizador. Quatro células são colocadas em cada um dos pés dando ao robô a capacidade para sentir o chão e estimar o centro de pressão. Uma unidade de aquisição de dados foi desenvolvida para obter os sinais das células de carga. Esta unidade é capaz de ler das células e transmitir essa informação a uma frequência superior a 1000 Hz permitindo um fluxo de informação praticamente contínuo. A informação de força dos pés é então usada para gerar a realimentação de força do dispositivo que é sentida pelo utilizador como o desequilíbrio do robô. A plataforma ROS é usada para controlar os diferentes módulos de software, utilizando o próprio sistema de mensagem para comunicar entre estes, dando a este projeto várias ferramentas para posterior desenvolvimento.
The main objective of this thesis is to create an effective and modular platform to prepare the Humanoid Project of the University of Aveiro (PHUA) for tele-kinesthethic teaching. This new concept of robot learning from demonstration is now the base of this project, where a human user tele-operates the robot in various motion and balance tasks. The data gathered during this demonstrations can be used in learning algorithms so the robot can move, balance and walk on it’s own. The robot used in this work is a 27-DOF proprietary humanoid platform developed completely at the University of Aveiro. Several demonstrations are carried out using sensory data from the load cells installed in the robot’s feet and an haptic device for user interface. Four cells are placed in each foot giving the robot the ability to sense the floor and to estimate the center of pressure. A unit for data acquisition was developed to measure the load cells signals. This unit is capable of reading the cells and transmitting that information at a frequency over 1000 Hz allowing for a nearly continuous stream of information. The force information from the feet is then used to generate the force feedback in the haptic device which is felt by the human as the robot’s sense of balance. The ROS platform is used to control the different modules of software using it’s message system to communicate among them, giving this project several tools for further development.
Amir, Amir R. (Amir Riyadh). "Design and development of advanced load sensors for the International Space Station." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/46257.
Full textIncludes bibliographical references (p. 137-142).
In preparation for the construction of the International Space Station (ISS) a risk mitigation experiment was conducted to quantify the crew-induced disturbances to the microgravity environment on board a spacecraft during a long duration space flight. Achieving a microgravity environment for scientific experiments is one of the primary objectives of the ISS. While numerous measurements have been made to characterize the overall acceleratory environment on the Space Shuttle and on Mir, the contribution of astronaut motion to the disturbances was little understood. During the first phase of the ISS Program, the stay of U.S. astronauts on the Russian Orbital Complex Mir, the Enhanced Dynamic Load Sensors (EDLS) Spaceflight Experiment measured from May 1996 to May 1997 the forces and moments that astronaut exerted on the space station. Using four instrumented crew restraining and mobility devices, a handhold, two foot loops, and a touchpad, 133 hours of data was recorded during nominal crew activities and scientific experiments. The thesis gives a historical overview of the research that has been conducted to quantify the crew spacecraft interaction. A description of the EDLS experiment set-up and timeline as well as the custom-designed experiment hardware and software is provided. Due to an on-orbit failure of the original data acquisition system, a replacement computer was used to continue the experiment. The post-flight efforts to calibrate the replacement hardware, catalog the data files, and the tests to determine the condition of the sensors are presented. A cross-platform EDLS-specific software package was developed to aid in the analysis of the spaceflight data. The requirements, underlying signal processing equations, and the implementation in MATLAB are discussed. A preliminary design of advanced sensors for the ISS is developed in the thesis. While, retaining the proven strain-gage based method of sensing forces and moments, the restraining portion of the sensors was redesigned to aid astronauts better and can be easily exchanged for a different functionality. While having a volume of only 5800 cubic centimeters, the sensor electronics unit (SEU) incorporates most of the features of the original computer eight times its size. The SEU features an advanced embedded computer system and a Java-based operating system. Feedback on the loads applied can be provided in near real-time to the crew to aid the astronauts in maintaining a quiescent environment on the station during critical microgravity experiments.
by Amir R. Amir.
E.A.A.
Sole, C. J., Caleb D. Bazyler, Ashley A. Kavanaugh, Satoshi Mizuguchi, and Michael H. Stone. "Relationship between Internal and External Estimates of Training Load Using Wearable Inertial Sensors." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/3837.
Full textLu, Donghang [Verfasser], Rolf [Akademischer Betreuer] Jakoby, and Mario [Akademischer Betreuer] Kupnik. "Dual-load Hybrid Detection of Water Content Using Electromagnetic and Surface Acoustic Wave Sensors / Donghang Lu ; Rolf Jakoby, Mario Kupnik." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2016. http://d-nb.info/1121206972/34.
Full textGonzález, Andrea Veronica. "Redes de sensores com nodos móveis: investigando efeitos da mobilidade na cobertura de sensoriamento e no balanceamento de carga." Universidade Federal de Pelotas, 2016. http://repositorio.ufpel.edu.br:8080/handle/prefix/3295.
Full textApproved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2017-04-05T19:13:02Z (GMT) No. of bitstreams: 2 Redes de sensores com nodos móveis.pdf: 6727540 bytes, checksum: 3de001c9a299b0722e7e13bd8cafbb33 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-04-05T19:13:10Z (GMT). No. of bitstreams: 2 Redes de sensores com nodos móveis.pdf: 6727540 bytes, checksum: 3de001c9a299b0722e7e13bd8cafbb33 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-11-23
Sem bolsa
A mobilidade de nodos em redes de sensores sem fio tem sido empregada para resolver problemas de comunicação através de nodos coletores de dados ou estações base móveis, ou ainda para melhorar a cobertura empregando nodos sensores móveis, que se movem para sensoriar áreas descobertas. No entanto, um dos principais desafios em redes de sensores sem fio é o consumo de energia, visto que o tempo de vida da rede depende da carga da bateria de seus nodos. Visando aumentar o tempo de vida das redes orientadas a eventos, estratégias dinâmicas de balanceamento de carga exploram a redundância nas áreas de sensoriamento dos nodos e evitam que mais de um nodo processe um mesmo evento. A mobilidade bem como o balanceamento de carga são importantes adaptações dinâmicas que podem ser empregadas para melhorar a eficiência de redes de sensores, mas o emprego integrado destas duas adaptações precisa ser investigado. Este trabalho avalia os efeitos da mobilidade de nodos sensores tanto na cobertura da rede quanto na eficiência das técnicas de balanceamento de carga empregadas em redes de sensores orientadas a eventos. No contexto deste trabalho, uma estratégia é implementada, a qual move nodos baseada na ação de forças de repulsão, visando espalhar nodos sobre a área de interesse e melhorar a cobertura da rede. O seu impacto na cobertura foi avaliado em diferentes cenários de implantação e em redes com diferentes densidades. Primeiramente, quando nodos são implantados de forma aleatória, e então, a mobilidade permite redistribuí-los e maximizar a cobertura da rede. Em um segundo momento, a estratégia é aplicada quando nodos começam a ser desativados pela descarga de suas baterias, onde a mobilidade pode minimizar o efeito da desativação de um nodo da rede. Além disso, experimentos foram realizados de forma a observar o impacto do emprego desta estratégia de mobilidade no desempenho de duas técnicas de balanceamento de carga consideradas estado-da-arte em redes de sensores sem fio orientadas a eventos. Neste trabalho foi considerado o consumo de energia que o nodo gasta com o sensoriamento, mas o consumo energético gasto com o movimento está fora do escopo.
The nodes mobility in wireless sensor networks has been employed to solve communication problems through mobile data mulling or base stations, or yet to improve coverage using mobile sensor nodes, which move to sensing uncovered areas. However, one of the main challenges in wireless sensor networks is the energy consumption, since the network lifetime depends on the node battery charge. In order to increase the lifetime of the event-oriented networks, dynamic load balancing strategies exploit redundancy in the nodes sensing areas and avoid that more than one node process the same event. Mobility as well as the load balancing are important dynamic adaptations that can be employed to improve the ef?ciency of sensor networks, but the integrated use of these two adaptations needs to be investigated. This work evaluates the effects of the sensor nodes mobility both on network coverage and on the ef?ciency of load balancing techniques used in event-oriented sensor networks. In the context of this work, an strategy has implemented, which moves nodes based on the action of repulsion forces, aiming to spread nodes over the area of interest and improve network coverage. Its impact on coverage has assessed in different deployment scenarios and networks with different densities. First, when nodes are deployed at random, then mobility allows them to redistribute and maximize the network coverage. In a second moment, the strategy is applied when nodes begin to be deactivated by the discharge of their batteries, where the mobility can minimize the effect of the deactivation of a node of the network. In addition, experiments have carried out in order to observe the impact of the use of this mobility strategy on the ef?ciency of two load balancing techniques considered state-of-the-art in event-oriented wireless sensor networks. In this work we considered the energy consumption that the node spends with the sensing, but the energy consumption spent with the movement is out of scope.
Rodriguez, Alexander John, and alex73@bigpond net au. "Experimental Analysis of Disc Thickness Variation Development in Motor Vehicle Brakes." RMIT University. Aerospace, Mechanical and Manufacturing Engineering, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070209.123739.
Full textLu, Kan. "Dynamics Based Damage Detection of Plate-Type Structures." University of Akron / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=akron1133818717.
Full textLi, Jing. "Inverse Problems in Structural Mechanics." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/30075.
Full textPh. D.
Chen, Amy. "Oceanographic Instrument Simulator." DigitalCommons@CalPoly, 2016. https://digitalcommons.calpoly.edu/theses/1585.
Full textBooks on the topic "Load sensors"
Moshasrov, V. Luminescent pressure sensors in aerodynamic experiments. Zhukovsky, Russia : Central Aerohydrodynamic Institute (TsAGI): CWA 22 Corporation, 1998.
Find full textToo loud, too bright, too fast, too tight: What to do if you are sensory defensive in an overstimulating world. New York: Quill, 2003.
Find full textLibra, Anna. Why does loud music hurt my ears?: An inside look at the ear. Sioux Falls, SD: Lake Street Publishers, 2003.
Find full textM, Bahm Catherine, Heinle Robert A, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Determination of stores pointing error due to wing flexibility under flight load. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1995.
Find full textEncyclopedia of Electronic Components Volume 3: Sensors for Location, Presence, Proximity, Orientation, Oscillation, Force, Load, Human Input, Liquid ... Light, Heat, Sound, and Electricity. Maker Media, Inc, 2016.
Find full textCenter, Langley Research, ed. Analysis and testing of plates with piezoelectric sensors and actuators. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textCenter, Langley Research, ed. Analysis and testing of plates with piezoelectric sensors and actuators. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.
Find full textSperlich, Billy, Hans-Christer Holmberg, and Kamiar Aminian, eds. Wearable Sensor Technology for Monitoring Training Load and Health in the Athletic Population. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-462-0.
Full textHeller, Sharon. Too Loud, Too Bright, Too Fast, Too Tight: What to Do If You Are Sensory Defensive in an Overstimulating World. Harper Paperbacks, 2003.
Find full textHeller, Sharon. Too Loud, Too Bright, Too Fast, Too Tight: What to Do If You Are Sensory Defensive in an Overstimulating World. HarperCollins Publishers, 2002.
Find full textBook chapters on the topic "Load sensors"
Penella-López, María Teresa, and Manuel Gasulla-Forner. "Load and Power Conditioning." In Powering Autonomous Sensors, 9–28. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1573-8_2.
Full textMitchell, R. A., R. L. Seifarth, and C. P. Reeve. "Eccentric Load Sensitivity of Force Sensors." In Mechanical Problems in Measuring Force and Mass, 275–81. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4414-5_32.
Full textMirfakhrai, Tissaphern, Ji Young Oh, Mikhail Kozlov, Shao Li Fang, Mei Zhang, Ray H. Baughman, and John D. Madden. "Carbon Nanotube Yarns as High Load Actuators and Sensors." In Artificial Muscle Actuators using Electroactive Polymers, 65–74. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908158-18-4.65.
Full textLiu, Bideng, Ali Ozdagli, and Fernando Moreu. "Direct Reference-Free Dynamic Deflection Measurement of Railroad Bridge under Service Load." In Sensors and Instrumentation, Aircraft/Aerospace and Energy Harvesting , Volume 8, 83–91. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74642-5_10.
Full textChou, Chia Pei, and Chung Yue Wang. "Identification of equivalent traffic load on bridge using optical fiber strain sensors." In International Conference on Heavy Vehicles HVParis 2008, 475–84. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2013. http://dx.doi.org/10.1002/9781118623305.ch38.
Full textDeepshikha and Siddhartha Chauhan. "Load Adaptive and Priority Based MAC Protocol for Body Sensors and Consumer Electronic (CE) Devices." In Communications in Computer and Information Science, 88–97. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1813-9_9.
Full textJavadinasab Hormozabad, Sajad, and Mariantonieta Gutierrez Soto. "Optimal Replicator Dynamic Controller via Load Balancing and Neural Dynamics for Semi-Active Vibration Control of Isolated Highway Bridge Structures." In Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7, 241–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47713-4_23.
Full textSimelane, N., M. Ferentinou, and M. Grobler. "Experimental Investigation of Reinforced Slopes’ Response, to Increased Surcharge Load, with the Use of Optic Fibre Sensors." In Information Technology in Geo-Engineering, 662–73. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32029-4_56.
Full textWiegerink, Remco J., Robert A. F. Zwijze, Gijs J. M. Krijnen, and Miko C. Elwenspoek. "High Capacity Silicon Load Cells." In Sensor Technology 2001, 71–76. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0840-2_13.
Full textSharif Khodaei, Zahra, and Stephen Grigg. "Aerospace Requirements." In Structural Health Monitoring Damage Detection Systems for Aerospace, 73–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-72192-3_4.
Full textConference papers on the topic "Load sensors"
Cole, Garrett D., Jack Kotovsky, Kevin L. Lin, and Holly E. Petersen. "Microfabricated Optical Compressive Load Sensors." In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388432.
Full textXiaojing Wang, Dongmei Lei, Jing Yong, Liqiang Zeng, and S. West. "An online load identification algorithm for non-intrusive load monitoring in homes." In 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE, 2013. http://dx.doi.org/10.1109/issnip.2013.6529753.
Full textGlavind, Lars, Stephen Buggy, Ib S. Olesen, Bjarne F. Skipper, John Canning, Kevin Cook, and Martin Kristensen. "Direct Embedding of Fiber-Optical Load Sensors into Wind Turbine Blades." In Optical Sensors. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/sensors.2013.sm3c.6.
Full textChang, Chia-Chen, and Alan Kersey. "Development of Fiber Bragg Grating Sensor Based Load Transducers." In Optical Fiber Sensors. Washington, D.C.: OSA, 1997. http://dx.doi.org/10.1364/ofs.1997.owc8.
Full textLorek, Michael C., Fabien Chraim, and Kristofer S. J. Pister. "Plug-through energy monitor for plug load electrical devices." In 2015 IEEE Sensors. IEEE, 2015. http://dx.doi.org/10.1109/icsens.2015.7370666.
Full textChanak, Prasenjit, Tuhina Samanta, and Indrajit Banerjee. "Cluster head load distribution scheme for wireless sensor networks." In 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688564.
Full textWen, Chih-Chieh, Yu-Tao Lee, Shih-Rung Yeh, and Weileun Fang. "A Novel Neural Recording Probe with Built-in Load Sensors." In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388605.
Full textTrujillo-Leon, Andres, Cristina Sanchez-Sanchez, Julian Castellanos-Rarnos, and Fernando Vidal-Verdu. "Assistive Handlebar Based on Load Cells as Attendant Steering Device." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589918.
Full textBarsocchi, Paolo, Erina Ferro, Filippo Palumbo, and Francesco Potorti. "Smart meter led probe for real-time appliance load monitoring." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985287.
Full textSchenato, Luca, Alessandro Pasuto, Andrea Galtarossa, and Luca Palmieri. "Semi-auxetic optical fibre distributed load sensor." In Asia-Pacific Optical Sensors Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/apos.2016.tu3a.2.
Full textReports on the topic "Load sensors"
Green, Andre. LUNA Condition Based Monitoring Update: Reducing the number of Sensors for Excess Load and External Leak. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1787265.
Full textTodd, Michael, Lex Malsawma, C. C. Chang, and Gregg Johnson. The Use of Fiber Bragg Grating Strain Sensors in Laboratory and Field Load Tests: Comparison to Conventional Resistive Strain Gages. Fort Belvoir, VA: Defense Technical Information Center, November 1999. http://dx.doi.org/10.21236/ada370789.
Full textQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), July 2021. http://dx.doi.org/10.21079/11681/41325.
Full textCAE Correlation of Sealing Pressure of a Press-in-Place Gasket. SAE Imposter, April 2021. http://dx.doi.org/10.4271/2021-01-0299.
Full text