Dissertations / Theses on the topic 'Load-matching'

To see the other types of publications on this topic, follow the link: Load-matching.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 27 dissertations / theses for your research on the topic 'Load-matching.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Welton, Sean P. "Load Modulation Through Varactor Tunable Matching Networks." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306865537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, Jaeseok. "Automated matching control system using load estimation and microwave characterization." [Gainesville, Fla.] : University of Florida, 2008. http://purl.fcla.edu/fcla/etd/UFE0022883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sriramagiri, Gowri Manasa. "Solar Electrolyzer Coupling via Load-Matching and Doping in Cadmium Telluride Solar Cells to Overcome Voltage Limitations." Thesis, University of Delaware, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13428221.

Full text
Abstract:

This dissertation comprises two distinct topics concerning photovoltaics: studying solar electrolyzer performance with a practical consideration of their design and operation, and extrinsic p-type doping in thin-film CdTe solar cells using Sb for improved voltage output.

Solar fuel generation via water and CO2 reduction using photovoltaics has witnessed considerable growth since the identification of photocatalysis four decades ago. Numerous photovoltaic-driven electrochemical cells (PV-ECs) and photoelectrochemical cells (PECs) with efficiencies reaching 30% for H 2O reduction and 10% for CO2 reduction have been reported. We will discuss the many benefits of a PV-EC system over the PEC approach. This dissertation discusses the implementation of a high-efficiency PV-EC using silicon solar cells and a flow-cell CO2 electrolyzer (in collaboration with Prof. Feng Jiao group from UDel’s Center for Catalytic Science and Technology). With 25 cm² electrode area, this is the largest CO2 electrolysis device yet reported that exhibited > 6.5% efficiency at operating currents in excess of 1A. The development of a model to optimize the coupling of such devices and to simulate annual field performance will be presented. Improvement in fuel generation by > 20% is demonstrated by employing power electronic devices to continuously optimize the PV-EC operating point for maximum power coupling despite variable sunlight and temperature.

Polycrystalline thin-film CdTe/CdS heterojunction solar cells are the leading commercial competitor to c-Si solar modules. While having demonstrated good performance at low cost and large scale, the potential to exceed 25% efficiency by enhancing open circuit voltage (Voc), from present ~0.9V to the near-ideal 1.1 V, is possible with carrier concentrations exceeding 5 × 1016 cm–3 while retaining bulk minority carrier lifetime > 10 ns. State-of-the-art intrinsic CdTe solar cells, wherein n- or p-type doping is achieved through native point defect (V Cd) control during film growth, are limited to acceptor concentration levels of < 1015 cm–3. Bridging the Voc gap through extrinsic doping of polycrystalline CdTe films with Sb during film growth using vapor transport deposition technique is examined. Applying device characterization and analysis techniques to cells processed with different post-growth device treatments for dopant activation shows where optimization effort is needed. Admittance and current-voltage measurements indicate that despite significant improvement in acceptor density (up to 3 × 10 15 cm–3), Voc is limited to < 600 mV due to increased defect density and thus reduced minority carrier lifetime.

APA, Harvard, Vancouver, ISO, and other styles
4

Yang, Chun-Ju. "The Design Methodology and Optimization of Varactors Based Tunable Matching Network for Power Amplifiers with Load Adaptation Technique." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1308320281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

ARAÚJO, Tiago Brasileiro. "Uma abordagem em paralelo para matching de grandes ontologias com balanceamento de carga." Universidade Federal de Campina Grande, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1316.

Full text
Abstract:
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-01T19:28:54Z No. of bitstreams: 1 TIAGO BRASILEIRO ARAÚJO - DISSERTAÇÃO PPGCC 2016..pdf: 18742851 bytes, checksum: 92b3eefe5e78ab27784255e850871df9 (MD5)
Made available in DSpace on 2018-08-01T19:28:54Z (GMT). No. of bitstreams: 1 TIAGO BRASILEIRO ARAÚJO - DISSERTAÇÃO PPGCC 2016..pdf: 18742851 bytes, checksum: 92b3eefe5e78ab27784255e850871df9 (MD5) Previous issue date: 2016-03-07
Atualmente, o uso de grandes ontologias em diversos domínios do conhecimento está aumentando. Uma vez que estas ontologias podem apresentar sobreposição de conteúdo, a identificação de correspondências entre seus conceitos se torna necessária. Esse processo é chamado de Matching de Ontologias (MO). Um dos maiores desafios do matching de grandes ontologias é o elevado tempo de execução e o excessivo consumo de recursos de computacionais. Assim, para melhorar a eficiência, técnicas de particionamento de ontologias e paralelismo podem ser empregadas no processo de MO. Este trabalho apresenta uma abordagem para o Matching de Ontologias baseado em Particionamento e Paralelismo (MOPP) que particiona as ontologias de entrada em subontologias e executa as comparações entre conceitos em paralelo, usando o framework MapReduce como solução programável. Embora as técnicas de paralelização possam melhorar a eficiência do processo de MO, essas técnicas apresentam problemas referentes ao desbalanceamento de carga. Por essa razão, o presente trabalho propõe ainda duas técnicas para balanceamento de carga (básica e refinada) para serem aplicadas junto à abordagem MOPP, a fim de orientar a distribuição uniforme das comparações (carga de trabalho) entre os nós de uma infraestrutura computacional. O desempenho da abordagem proposta é avaliado em diferentes cenários (diferentes tamanhos de ontologias e graus de desbalanceamento de carga) utilizando uma infraestrutura computacional e ontologias reais e sintéticas. Os resultados experimentais indicam que a abordagem MOPP é escalável e capaz de reduzir o tempo de execução do processo de MO. No que diz respeito às técnicas de balanceamento de carga, os resultados obtidos mostram que a abordagem MOPP é robusta, mesmo em cenários com elevado grau de desbalanceamento de carga, com a utilização da técnica refinada de balanceamento de carga.
Currently, the use of large ontologies in various áreas of knowledge is increasing. Since, these ontologies can present contents overlap, the identification of correspondences among their concepts is necessary. This process is called Ontologies Matching (OM). One of the major challenges of the large ontologies matching is the high execution time and the computational resources consumption. Therefore, to get the efficiency better, partition and parallel techniques can be employed in the MO process. This work presents a Partition-Parallelbased Ontology Matching (PPOM) approach which partitions the input ontologies in subontologies and executes the comparisons between concepts in parallel, using the framework MapReduce as a programmable solution. Although the parallel techniques can get the MO efficiency process better, these techniques present problems concerning to the load imbalancing. For that reason, our work has proposed two techniques to the load balancing - the basic and the fine-grained one - which are supposed to be applied together with the PPOM approach, in order to orientate the uniform distribution of the comparisons (workload) between the nodes of a computing infrastructure. The performance of the proposed approach is assessed in different settings (different sizes of ontologies and degrees of load imbalancing) using a computing infrastructure and real and synthetic ontologies. The experimental results have indicated that the PPOM approach is scalable and able to reduce the OM process execution time. Referring to the load balancing techniques, the obtained results have shown that the PPOM approach is robust, even in settings with a high load imbalancing, with the fine-grained load balancing technique.
APA, Harvard, Vancouver, ISO, and other styles
6

Danilovic, Milisav. "Active Source Management to Maintain High Efficiency in Resonant Conversion over Wide Load Range." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/76618.

Full text
Abstract:
High-frequency and large amplitude current is a driving requirement for applications such as induction heating, wireless power transfer, power amplifier for magnetic resonant imaging, electronic ballasts, and ozone generators. Voltage-fed resonant inverters are normally employed, however, current-fed (CF) resonant inverters are a competitive alternative when the quality factor of the load is significantly high. The input current of a CF resonant inverter is considerably smaller than the output current, which benefits efficiency. A simple, parallel resonant tank is sufficient to create a high-power sinusoidal signal at the output. Additionally, input current is limited at the no-load condition, providing safe operation of the system. Drawbacks of the CF resonant inverter are associated with the implementation of the equivalent current source. A large input inductor is required to create an equivalent dc current source, to reduce power density and the bandwidth of the system. For safety, a switching stage is implemented using bidirectional voltage-blocking switches, which consist of a series connection of a diode and a transistor. The series diode experiences significant conduction loss because of large on-state voltage. The control of the output current amplitude for constant-frequency inverters requires a pre-regulation stage, typically implemented as a cascaded hard-switched dc/dc buck converter. The pre-regulation also reduces the efficiency. In this dissertation, a variety of CF resonant inverters with two input inductors and two grounded switches are investigated for an inductive-load driver with loaded quality factor larger than ten, constant and high-frequency (~500 kHz) operation, high reactive output power (~14 kVA), high bandwidth (~100 kHz), and high efficiency (over 95 %). The implementation of such system required to question the fundamental operation of the CF resonant inverter. The input inductance is reduced by around an order of magnitude, ensuring sufficient bandwidth, and allowing rich harmonic content in the input current. Of particular importance are fundamental and second harmonic components since they influence synchronization of the zero-crossing of the output voltage and the turn-on of the switches. The synchronization occurs at a particular frequency, termed synchronous frequency, and it allows for zero switching loss in the switches, which greatly boosts efficiency. The synchronous conditions were not know prior this work, and the dependence among circuit parameters, input current harmonics, and synchronous frequency are derived for the first time. The series diode of the bidirectional switch can reduce the efficiency of the system to below 90 %, and has to be removed from the system. The detrimental current-spikes can occur if the inverter is not operated in synchronous condition, such as in transients, or during parametric variations of the load coil. The resistance of the load coil has a wide variance, five times or more, while the inductance changes as well by a few percent. To accommodate for non-synchronous conditions, a low-loss current snubber is proposed as a safety measure to replace lossy diodes. The center-piece of the dissertation is the proposal of a two-phase zero-voltage switching buck pre-regulator, as it enables fixed frequency and synchronous operation of the inverter under wide parametric variations of the load. The synchronous operation is controlled by phase-shifting the switching functions of the pre-regulator and inverter. The pre-regulator reduces the dc current in the input inductors, which is a main contributor to current stress and conduction losses in the inverter switches. Total loss of the inverter switches is minimized since no switching loss is present and minimal conduction losses are allowed. The dc current in the input inductors, once seen as a means to transfer power to load, is now contradictory perceived as parasitic, and the power is transferred to the load using a fundamental frequency harmonic! The input current to the resonant tank, previously designed to be a square-wave, now resembles a sine-wave with very rich harmonic content. Additionally, the efficiency of the pre-regulator at heavy-load condition is improved by ensuring ZVS for with an additional inductive tank. The dissertation includes five chapters. The first chapter is an introduction to current-fed resonant inverters, applications, and state-of-the-art means to ensure constant frequency operation under load's parametric variations. The second chapter is dedicated to the optimization of the CF resonant inverter topology with a dc input voltage, two input inductors, and two MOSFETs. The topology is termed as a boost amplifier. If the amplifier operates away from the synchronous frequency, detrimental current spikes will flow though the switches since the series diodes are eliminated. Current spikes reduce the efficiency up to few percent and can create false functioning of the system. Operation at the synchronous frequency is achieved with large, bulky, input inductors, typically around 1-2 mH or higher, when the synchronous frequency follows the resonant frequency of the tank at 500 kHz. The input inductance cannot be reduced arbitrarily to meet the system bandwidth requirement, since the synchronous frequency is increased based on the inductance value. The relationship between the two (input inductance and the synchronous frequency) was unknown prior this work. The synchronous frequency is determined to be a complicated mathematical function of harmonic currents through the input inductors, and it is found using the harmonic decomposition method. As a safety feature, a current snubber is implemented in series with the resonant tank. Snubber utilizes a series inductance of cable connection between the tank and the switching stage, and it is more efficient than the previously employed series diodes. Topology optimization and detailed design procedure are provided with respect to efficiency and system dynamics. The mathematics is verified by a prototype rated at 14 kVA and 1.25 kW. The input inductance is reduced by around an order of magnitude, with the synchronous frequency increase of 2 %. The efficiency of the power amplifier reached 98.5 % and might be improved further with additional optimization. Silicon carbide MOSFETs are employed for their capability to operate efficiently at high frequency, and high temperature. The third chapter is dedicated to the development of the boost amplifier's large signal model using the Generalized State-space Averaging (GSSA) method. The model accurately predicts amplifier's transient and steady-state operation for any type of input voltage source (dc, dc with sinusoidal ripple, pulse-width modulated), and for either synchronous or non-synchronous operating frequency. It overcomes the limitation of the low-frequency model, which works well only for dc voltage-source input and at synchronous frequency. As the measure of accuracy, the zero-crossing of the resonant voltage is predicted with an error less than 2° over a period of synchronous operation, and for a range of interest for input inductance (25 μH – 1000 μH) and loaded-quality factor (10 – 50). The model is validated both in simulation and hardware for start-up transient and steady-state operation. It is then used in the synthesis of modulated output waveforms, including Hann-function and trapezoidal-function envelopes of the output voltage/current. In the fourth chapter, the GSSA model is employed in development of the PWM compensation method that ensures synchronous operation at constant frequency for the wide variation of the load. The boost amplifier is extended with a cascaded pre-regulator whose main purpose is to control the output resonant voltage. The pre-regulator is implemented as two switching half-bridges with same duty-cycle and phase-shift of 180°. The behavior of the cascaded structure is the same as of the buck converter, so the half-bridges are named buck pre-regulators. ZVS operation is ensured by putting an inductive tank between the half-bridges. Each output of half-bridges is connected to each of input inductors of the boost to provide the PWM excitation. Using the GSSA model, the synchronous condition and control laws are derived for the amplifier. Properties of the current harmonics in the input inductors are well examined. It is discovered that the dc harmonic, once used to transfer power, is unwanted (parasitic) since it increases conduction loss in switches of the boost. A better idea is to use the fundamental harmonic for power transfer, since it does not create loss in the switches. Complete elimination of the dc current is not feasible for constant frequency operation of the amplifier since the dc current depends on the load coil's resistance. However, significant mitigation of around 55 % is easily achievable. The proposed method improves significantly the efficiency of both the buck pre-regulator and the boost. Synchronous operation is demonstrated in hardware for fixed switching frequency of 480 kHz, power level up to 750 W, input voltage change from 300 V to 600 V, load coil's resistance change of three times, and load coil's inductance change of 3.5 %. Measured efficiency is around 95 %, with a great room for improvements. Chapter five summarizes key contributions and concludes the dissertation.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
7

Alam, Mohammad Saad. "Real-time maximum power tracking and robust load matching of a stand-alone photovoltaic system a dissertation presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2009. http://proquest.umi.com/pqdweb?index=0&did=1756844361&SrchMode=1&sid=2&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1280170042&clientId=28564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Acimovic, Igor. "Contributions to the Design of RF Power Amplifiers." Thesis, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24406.

Full text
Abstract:
In this thesis we introduce a two-way Doherty amplifier architecture with multiple feedbacks for digital predistortion based on impedance-inverting directional coupler (transcoupler). The tunable two-way Doherty amplifier with a tuned circulator-based impedance inverter is presented. Compact N-way Doherty architectures that subsume impedance inverter and offset line functionality into output matching networks are derived. Comprehensive N-way Doherty amplifier design and analysis techniques based on load-pull characterization of active devices and impedance modulation effects are developed. These techniques were then applied to the design of a two-way Doherty amplifier and a three-way Doherty amplifier which were manufactured and their performance measured and compared to the amplifier performance specifications and simulated results.
APA, Harvard, Vancouver, ISO, and other styles
9

Smith, Nathanael J. "Novel Closed-Loop Matching Network Topology for Reconfigurable Antenna Applications." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1387733249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Amrhein, Andrew Aloysius. "Induction Heating of Aluminum Cookware." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/77400.

Full text
Abstract:
Induction heating has become a popular alternative to other heat sources for stovetop cooking applications due to performance, efficiency, control response, and safety. The main drawback is that extreme difficulty is encountered when trying to head low-resistivity, non-ferromagnetic metals such as aluminum and copper, which are commonly used for cookware in several societies. The lack of ferromagnetic properties, resulting in no hysteresis dissipation, and low resistivity of such metals results in an impractically low resistance reflected through the work coil. The resultant impedance complicates inverter design, as it is too low to be efficiently driven with conventional inverter topologies. The magnitudes of current involved in exciting this impedance also severely impact the efficiency of the coil and resonant components, requiring extreme care in coil design. This work explores various techniques that have been proposed and/or applied to efficiently heat low-resistivity cookware and the associated limitations. A transformer-coupled series-load-resonant topology driven by a full-bridge inverter is proposed as a means of efficiently heating aluminum cookware within practical design constraints. The experimental circuit is built and successfully tested at an output power of 1.66kW. The procedure of optimizing the work coil for improved efficiency is also presented along with the procedure of measuring coil efficiency. An improved circuit incorporating switch voltage detection to guarantee zero-voltage switching is then built in order to overcome limitations of this design.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
11

Connor, Mark Anthony. "Design of Power-Scalable Gallium Nitride Class E Power Amplifiers." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1405437893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Mastrocinque, Morgan M. "Epitope-based Re-matching of Donor-Recipient Pairs for Kidney Graft Allocation." Bowling Green State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu16171080745974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Liut, Daniel Armando. "Neural-Network and Fuzzy-Logic Learning and Control of Linear and Nonlinear Dynamic Systems." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/29163.

Full text
Abstract:
The goal of this thesis is to develop nontraditional strategies to provide motion control for different engineering applications. We focus our attention on three topics: 1) roll reduction of ships in a seaway; 2) response reduction of buildings under seismic excitations; 3) new training strategies and neural-network configurations. The first topic of this research is based on a multidisciplinary simulation, which includes ship-motion simulation by means of a numerical model called LAMP, the modeling of fins and computation of the hydrodynamic forces produced by them, and a neural-network/fuzzy-logic controller. LAMP is based on a source-panel method to model the flowfield around the ship, whereas the fins are modeled by a general unsteady vortex-lattice method. The ship is considered to be a rigid body and the complete equations of motion are integrated numerically in the time domain. The motion of the ship and the complete flowfield are calculated simultaneously and interactively. The neural-network/fuzzy-logic controller can be progressively trained. The second topic is the development of a neural-network-based approach for the control of seismic structural response. To this end, a two-dimensional linear model and a hysteretic model of a multistory building are used. To control the response of the structure a tuned mass damper is located on the roof of the building. Such devices provide a good passive reduction. Once the mass damper is properly tuned, active control is added to improve the already efficient passive controller. This is achieved by means of a neural network. As part of the last topic, two new flexible and expeditious training strategies are developed to train the neural-network and fuzzy-logic controllers for both naval and civil engineering applications. The first strategy is based on a load-matching procedure, which seeks to adjust the controller in order to counteract the loads (forces and moments) which generate the motion that is to be reduced. A second training strategy provides training by means of an adaptive gradient search. This technique provides a wide flexibility in defining the parameters to be optimized. Also a novel neural-network approach called modal neural network is designed as a suitable controller for multiple-input multiple output control systems (MIMO).
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
14

Abu-Aisheh, Zeina. "Approches anytime et distribuées pour l'appariment de graphes." Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4024/document.

Full text
Abstract:
En raison de la capacité et de l'amélioration des performances informatiques, les représentations structurelles sont devenues de plus en plus populaires dans le domaine de la reconnaissance de formes (RF). Quand les objets sont structurés à base de graphes, le problme de la comparaison d'objets revient à un problme d'appariement de graphes (Graph Matching). Au cours de la dernière décennie, les chercheurs travaillant dans le domaine de l'appariement de graphes ont porté une attention particulière à la distance d'édition entre graphes (GED), notamment pour sa capacité à traiter différent types de graphes. GED a été ainsi appliquée sur des problématiques spécifiques qui varient de la reconnaissance de molécules à la classi fication d'images
Due to the inherent genericity of graph-based representations, and thanks to the improvement of computer capacities, structural representations have become more and more popular in the field of Pattern Recognition (PR). In a graph-based representation, vertices and their attributes describe objects (or part of them) while edges represent interrelationships between the objects. Representing objects by graphs turns the problem of object comparison into graph matching (GM) where correspondences between vertices and edges of two graphs have to be found
APA, Harvard, Vancouver, ISO, and other styles
15

Bolton, Amy. "IMMEDIATE VERSUS DELAYED FEEDBACK IN SIMULATION BASED TRAINING: MATCHING FEEDBACK DELIVERY TIMING TO THE COGNITIVE DEMANDS OF TH." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3240.

Full text
Abstract:
Optimal delivery of instruction is both critical and challenging in dynamic, scenario-based training (SBT) computer simulations such as those used by the military. Tasks that human instructors must perform during these sorts of simulated training exercises can impose a heavy burden on them. Partially due to advances in the state-of-the-art in training technology and partially due to the military's desire to reduce the number of personnel required, it may be possible to support functions that overburdened instructors perform by automating much of the SBT process in a computer simulation. Unfortunately though, after more than 50 years of literature documenting research conducted in the area of training interventions, few empirically-supported guidelines have emerged to direct the choice and implementation of effective, automated training interventions. The current study sought to provide empirical guidance for the optimal timing of feedback delivery (i.e., immediate vs. delayed) in a dynamic, SBT computer simulation. The premise of the investigation was that the demand for overall cognitive resources during the training exercise would prescribe the proper timing of feedback delivery. To test the hypotheses, 120 volunteers were randomly assigned to 10 experimental conditions. After familiarization on the experimental testbed, participants completed a total of seven, 10-minute scenarios, which were divided across two training phases. During each training phase participants would receive either immediate or delayed feedback and would perform either high or low cognitive load scenarios. Four subtask measures were recorded during test scenarios as well as subjective reports of mental demand, temporal demand and frustration. Instructional efficiency ratios were computed using both objective performance data and subjective reports of mental demand. A series of planned comparisons were conducted to investigate the training effectiveness of differing scenario cognitive loads (low vs. high), timing of feedback delivery (immediate vs. delayed), and sequencing the timing of feedback delivery and the cognitive load of the scenario. In fact, the data did not support the hypotheses. Therefore, post hoc, exploratory data analyses were performed to determine if there were trends in the data that would inform future investigations. The results for these analyses are discussed with suggested directions for future research.
Ph.D.
Department of Psychology
Sciences
Psychology
APA, Harvard, Vancouver, ISO, and other styles
16

Ronaghzadeh, Amin. "Improving The Efficiency Of Microwave Power Amplifiers Without Linearity Degradation Using Load And Bias Tuning In A New Configuration." Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615730/index.pdf.

Full text
Abstract:
Advanced digital modulation schemes used in the wireless applications, result in the modulated RF signals with high peak to average power ratio which requires linear amplification. On the other hand, the demand for a longer talk time with less battery volume and weight, especially in hand-held radio units, necessitate more power efficient methods to be utilized in power amplifier design. But improved linearity and efficiency have always been contradicting requirements demanding innovative power amplifier and linearizer design techniques. Dynamically varying the load impedance and bias point of a transistor according to the varying envelope of the incoming RF signal also known as Dynamic Load Modulation (DLM) and Dynamic Supply Modulation (DSM), respectively, are two separate methods for improving the efficiency in power amplifier design. In this dissertation, a combination of both variable gate bias and tunable load concepts is applied in an amplifier structure consisting of two transistors in parallel. A novel computer aided design methodology is proposed for careful selection of the load and biasing points of the individual transistors. The method which is based on load-pull analysis performs sweeps on the gate bias voltages of the active devices and input drive level of the amplifier in order to obtain ranges of biases that result in the generation of IMD sweet spots. Following that, the amplifier is designed employing the load line theory and bias switching at the same time in order to enhance the efficiency in reduced drive levels while extending the output 1 dB compression point to higher values at higher drives. Tunable matching networks are implemented utilizing varactor stacks in a &Pi
con
APA, Harvard, Vancouver, ISO, and other styles
17

Šmarda, Marek. "Miniaturní anténa pro mobilní aplikace." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219975.

Full text
Abstract:
This work deals with the most famous constructions of planar antennas. The work analyses selected methods of connecting planar antennas' charging with the possibility of impedance adaptation. An important part of the work consists of description of techniques for increasing bandwidth and conversely techniques for reducing the dimensions which are important for the design of planar antennas for mobile devices. The antennas were designed by means of theoretical basis and their properties were examined in the electromagnetic field simulator. The selected antenna model was constructed and its parameters were measured experimentally. The matching circuit for the antenna to tune it to different resonant frequencies was designed and constructed.
APA, Harvard, Vancouver, ISO, and other styles
18

Tseng, Yu-Chiung, and 曾玉瓊. "Routing-Based LTL Load Matching E-Marketplace with Web-GIS." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/64764508401922948429.

Full text
Abstract:
碩士
龍華科技大學
商學與管理研究所碩士班
94
There are many road freight-matching web sites in several countries nowadays. Most of them serve as B2B e-marketplace or exchange and make revenue from membership or transaction fee. The matching procedures start with both sides of the shipper and carriers keying in the service options and customers’ requirement. However, in most cases, only one-to-one matching pairs are provides on these sites. Nevertheless, the customers make their decision from the word-written data displayed in the web pages and matched results were chose by users themselves. From the above points, the whole decision process is obviously simplified and only information querying but not decision supporting. Then, the purpose of this research is to provide a more efficient load matching platform for specified freighter, especially Less-than-Truckload (LTL) truckers and the house-moving vendors which have serious problems of dead loads.This research develops an improvement procedure on the web site technique and the algorithm to match the actual requirement. For web site technique improvement, not only include general functions like data addition, data deletion, and data modification, we also use Web-Geographical Information System(Web-GIS) to perform spatial querying among options and as the user-interface to present the matching results based on the spatial-matching rules. The major functions of Web-GIS are spatial data input, data management, data analysis, and data output. Besides, easy accessibility, platform independency, cost-effectiveness, and user-friendly are all its advantages. We will use all of the above functions and properties in this research by utilizing the spatial analysis to reinforce the routing-based matching results. They would be much easier using through the interactive graphical user interface. As to the algorithm, since this research focuses on LTL operation and real customers’ requirements are dynamical, we adopt a heuristic approach to develop solution algorithm for quick computing and solving such a pickup-and-delivery problem with ILOG OPL and Visual C++ on PC.The sample questions are based on Taipei city e-map. We transfer the actual road network to the logical format that computers can identify and compute, and, will design several customer posting loads and some empty trucks information to simulate the real situation. Finally, the modified processes and empirical testing results would be logged and compared to evaluate the performance of these two load-matching methods.
APA, Harvard, Vancouver, ISO, and other styles
19

Pei-YiCai and 蔡沛屹. "Axial Flow Fan Motor Design with Load Analysis and Matching." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/xrk59m.

Full text
Abstract:
碩士
國立成功大學
電機工程學系
105
At the moment, the general motor design methods usually adopt the long operation at the using point as the design criterion. This research is targeted at the motor used in axial-flow fan and the general cooling system that required long operation time, and thus the permanent magnet brushless DC motor is utilized. According to the performance characteristics of the fan and also the influence factors in practical applications, such as air temperature, humidity, pressure and density, the using point of the practical application actually will not be a fixed one. Therefore, this paper firstly analysed the performance characteristics of the axial-flow fan by load analysis, and then the analysed result is adopted in motor matching design to further realize the motor matching design and improve motor efficiency. The finite element simulation software is conducted in the design and analysis, the prototype is established, and finally the results of axial-flow fan of practical applications is compared and verified to be in line with the expected target. Motor design of simulation results, accord the load analysis results of axial-flow fan. And the results of the measured, the high efficiency range matched the characteristic speed range of the axial-flow fan, speed at 5600 rpm to 7200 rpm, and the highest efficiency point raised by 9%. Establish process matching design of permanent magnet brushless DC motor design and load analysis results, matching design of motor and improve the efficiency of motor applications. Key words: Axial flow fan, fan motor, load analysis, BLDC motor, matching design.
APA, Harvard, Vancouver, ISO, and other styles
20

Lopes, Rui Miguel Amaral. "Extending nearly Zero-Energy Buildings Load Matching Improvement to Community-Level." Doctoral thesis, 2017. http://hdl.handle.net/10362/29113.

Full text
Abstract:
The nearly Zero-Energy Building (nZEB) concept is foreseen as a reference for the future of the European building stock. While several factors contribute to the introduction of legal instruments that promote a fast adoption of these buildings (e.g. energy efficiency), their relationship with Low Voltage distribution Grids (LVGs) is far more complex than the one of the regular buildings. In order to improve the grid interaction of nZEBs in particular, and of regular buildings equipped with distributed generation systems in general, Load Matching (LM) improvement incentives are being promoted worldwide. The literature shows that the existing LM improvement measures, that use the Energy Flexibility offered by controllable electricity demand devices, are only conducted at individual buildings (i.e. Building-Level) without taking into consideration the demand and on-site generation profiles of other buildings. Therefore, the first main objective of this research work refers to the assessment of impacts introduced by Building-Level LM improvement measures on existing LVGs. In order to improve the benefits offered to LVG operators and building owners (when compared to the existing Building-Level LM improvement measures), the second main objective concerns the development of a new LM improvement approach. For this purpose, the Cooperative Net-Zero Energy Community concept is introduced, extending the LM improvement to the Community- Level. A neighborhood made up of 33 buildings is considered to conduct the necessary experiments, where the benefits offered to LVG operators are quantified by three important Performance Indictors and the benefits offered to building owners are quantified by the respective electricity bills. The obtained results show that Building-Level LM improvement measures can be harmful to LVG operators when large amounts of controllable electricity demand are shifted to coincident periods. The conducted experiments also show that the proposed Cooperative Net-Zero Energy Community concept improves the benefits offered to LVG operators and building owners.
APA, Harvard, Vancouver, ISO, and other styles
21

Sidhu, Manitpal S. "A PSO based load-rebalance algorithm for task-matching in large scale heterogeneous computing systems." 2013. http://hdl.handle.net/1993/21692.

Full text
Abstract:
The idea of utilizing nature inspired algorithms to find near optimal solutions to various real world NP complete optimization problems has been extensively explored by researchers. One such problem is the task matching problem in large heterogeneous distributed computing environments like Grids and Clouds. Researchers have explored Particle Swarm Optimization(PSO), which is branch of swarm intelligence, to find a near optimal solution for the task matching problem. In this work, I investigated the effectiveness of the smallest position value (SPV) technique in mapping the continuous version of the PSO algorithm to the task matching problem in a heterogeneous computing environment. The experimental evaluation demonstrated that the task matching generated by this technique will result in an imbalanced load distribution. In this work, I have therefore also designed a load-rebalance PSO heuristic (PSO-LR) that results in minimization of makespan and balanced utilization of the available compute nodes even in heterogeneous computing environments.
APA, Harvard, Vancouver, ISO, and other styles
22

Wang, Yunfei. "Advanced load shedding scheme for voltage collapse prevention." Phd thesis, 2011. http://hdl.handle.net/10048/1945.

Full text
Abstract:
Present-day economic and environmental constraints push power systems to be operated closer to their limits. A common limiting factor for power transmission is the risk of voltage instability in recent years. As the ultimate countermeasure to voltage collapse, load shedding is normally considered the last resort, when there are no other alternatives to stop an approaching voltage collapse. The requirements of a practical load shedding scheme are to prevent a power system from voltage collapse and to maximize its reliability. In order to design such a scheme, the following tasks are equally important: 1. Recognizing the approaching voltage collapse. 2. Determining the best load shedding locations. 3. Minimizing the amount of load shedding. This thesis firstly investigates the widely used undervoltage load shedding schemes (UVLS) and the single-port impedance match (SPIM) based schemes. The findings explain the difficulties faced by them. An original load shedding oriented voltage stability monitoring scheme, which involves developing a new multi-port network equivalent, is then developed. With the help of the multi-port network equivalent, the monitoring scheme can not only recognize the approaching voltage collapse in time, but also can easily rank the load buses based on their weakness. The results of ranking are consistent with those obtained from modal analysis method. This thesis then proposes a practical event-driven load shedding scheme based on the experiences learned from the schemes implemented by various utilities. The scheme involves developing a multistage method, which is to optimize the amount of load shedding. A general design procedure for the scheme is presented in the thesis. Using a real 2038 bus system as an example, the design methodology is described in detail. The methodology is expected to help power system engineers develop their own load shedding schemes. A practical emergency demand response scheme is also developed and presented in the appendix. It is aimed at choosing the proper demand response participants and minimizing the total cost while achieving a certain level of operation reserves.
Power Engineering and Power Electronics
APA, Harvard, Vancouver, ISO, and other styles
23

Liaw, Chong-Zhi. "A high power interior permanent magnet alternator for automotive applications." Thesis, 2013. http://hdl.handle.net/2440/83587.

Full text
Abstract:
This thesis examines the operation of a 6 kW interior permanent magnet machine as a generator and its use in conjunction with a switched-mode rectifier as a controllable current source. The interior permanent magnet machine was designed for optimum field-weakening performance which allows it to achieve a wide constant-power speed range. This configuration has possible applications in power generation, e.g. as an alternator in automotive electrical systems and in renewable energy systems such as small-scale wind turbines. The thesis starts from a study of the behaviour of the interior PM machine while generating into a three-phase resistive load and also through a rectifier into a voltage source load. Steady-state and dynamic d-q models are developed which describe the machine generation characteristics. The concept of the VI locus is introduced which provides insights into the generating performance of interior PM machines. In particular, the phenomenon of hysteresis in the current versus speed characteristic of highly salient interior PM machines is explained using the VI locus and for the first time is experimentally demonstrated. The steady-state and transient response of the 6 kW interior PM machine while operating with a switched-mode rectifier is modeled and experimentally measured, forming the basis for the design of a closed-loop controller to regulate the output voltage. The experimental performance and stability of the closed-loop system is examined and evaluated. Further improvements to the output power of the system at low speed using a switched-mode rectifier modulation scheme are investigated and a 66% improvement in output power from 2.8 kW to 4.7 kW is experimentally demonstrated.
Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering, 2013
APA, Harvard, Vancouver, ISO, and other styles
24

González, García José Luis. "Graph Partitioning for the Finite Element Method: Reducing Communication Volume with the Directed Sorted Heavy Edge Matching." Doctoral thesis, 2019. http://hdl.handle.net/11858/00-1735-0000-002E-E625-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ravindra, Kumudhini. "Community Microgrids for Decentralized Energy Demand-Supply Matching : An Inregrated Decision Framework." Thesis, 2011. http://etd.iisc.ernet.in/2005/3911.

Full text
Abstract:
Energy forms a vital input and critical infrastructure for the economic development of countries and for improving the quality of life of people. Energy is utilized in society through the operation of large socio-technical systems called energy systems. In a growing world, as the focus shifts to better access and use of modern energy sources, there is a rising demand for energy. However, certain externalities result in this demand not being met adequately, especially in developing countries. This constitutes the energy demand – supply matching problem. Load shedding is a response used by distribution utilities in developing countries, to deal with the energy demand – supply problem in the short term and to secure the grid. This response impacts the activities of consumers and entails economic losses. Given this scenario, demand – supply matching becomes a crucial decision making activity. Traditionally demand – supply matching has been carried out by increasing supply centrally in the long term or reducing demand centrally in the short term. Literature shows that these options have not been very effective in solving the demand-supply problem. Gaps in literature also show that the need of the hour is the design of alternate solutions which are tailored to a nation's specific energy service needs in a sustainable way. Microgrids using renewable and clean energy resources and demand side management can be suitable decentralized alternatives to augment the centralized grid based systems and enable demand – supply matching at a local community level. The central research question posed by this thesis is: “How can we reduce the demand – supply gap existing in a community, due to grid insufficiency, using locally available resources and the grid in an optimal way; and thereby facilitate microgrid implementation?” The overall aim of this dissertation is to solve the energy demand – supply matching problem at the community level. It is known that decisions for the creation of energy systems are influenced by several factors. This study focuses on those factors which policy-makers and stakeholders can influence. It proposes an integrated decision framework for the creation of community microgrids. The study looks at several different dimensions of the existing demand – supply problem in a holistic way. The research objectives of this study are: 1. To develop an integrated decision framework that solves the demand – supply matching problem at a community level. 2. To decompose the consumption patterns of the community into end-uses. solar thermal, solar lighting and solar pumps and a combination of these at different capacities. The options feasible for medium income consumers are solar thermal, solar pumps, municipal waste based systems and a combination of these. The options for high income consumers are municipal waste based CHP systems, solar thermal and solar pumps. Residential consumers living in multi-storied buildings also have the options of CHP, micro wind and solar. For cooking, LPG is the single most effective alternative. 3. To identify the ‗best fitting‘ distributed energy system (microgrid), based on the end-use consumption patterns of the community and locally available clean and renewable energy resources, for matching demand – supply at the community level. 4. To facilitate the implementation of microgrids by * Contextualizing the demand – supply matching problem to consider the local social and political environment or landscape, * Studying the economic impact of load shedding and incorporating it into the demand-supply matching problem, and * Presenting multiple decision scenarios, addressing the needs of different stakeholders, to enable dialogue and participative decision making. A multi-stage Integrated Decision Framework (IDF) is developed to solve the demand - supply matching problem in a sequential manner. The first stage in the IDF towards solving the problem is the identification and estimation of the energy needs / end-uses of consumers in a community. This process is called End-use Demand Decomposition (EUDD) and is accomplished by an empirical estimation of consumer electricity demand based on structural and socio-economic factors. An algorithm/ heuristic is also presented to decompose this demand into its constituent end-uses at the community level for the purpose of identifying suitable and optimal alternatives/ augments to grid based electricity. The second stage in the framework is Best Fit DES. This stage involves identifying the “best-fit‘ distributed energy system (microgrid) for the community that optimally matches the energy demand with available forms of supply and provides a schedule for the operation of these various supply options to maximize stakeholder utility. It provides the decision makers with a methodology for identifying the optimal distributed energy resource (DER) mix, capacity and annual operational schedule that “best fits” the given end-use demand profile of consumers in a community and under the constraints of that community such that it meets the needs of the stakeholders. The optimization technique developed is a Mixed Integer Linear Program and is a modification of the DER-CAM™ (Distributed Energy Resources Customer Adoption Model), which is developed by the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory using the GAMS platform. The third stage is the Community Microgrid Implementation (CMI) stage. The CMI stage of IDF includes three steps. The first one is to contextualize the energy demand and supply for a specific region and the communities within it. This is done by the Energy Landscape Analysis (ELA). The energy landscape analysis attempts to understand the current scenario and develop a baseline for the study. It identifies the potential solutions for the demand - supply problem from a stakeholder perspective. The next step provides a rationale for the creation of community level decentralized energy systems and microgrids from a sustainability perspective. This is done by presenting a theoretical model for outage costs (or load shedding), empirically substantiating it and providing a simulation model to demonstrate the viability for distributed energy systems. Outage cost or the cost of non supply is a variable that can be used to determine the need for alternate systems in the absence/ unavailability of the grid. The final step in the CMI stage is to provide a scenario analysis for the implementation of community microgrids. The scenario analysis step in the framework enlightens decision makers about the baselines and thresholds for the solutions obtained in the “best fit‘ analysis. The first two stages of IDF, EUDD and Best Fit DES, address the problem from a bottom-up perspective. The solution obtained from these stages constitutes the optimal solution from a technical perspective. The third stage CMI is a top-down approach to the problem, which assesses the social and policy parameters. This stage provides a set of satisficing solutions/ scenarios to enable a dialogue between stakeholders to facilitate implementation of microgrids. Thus, IDF follows a hybrid approach to problem solving. The proposed IDF is then used to demonstrate the choice of microgrids for residential communities. In particular, the framework is demonstrated for a typical residential community, Vijayanagar, situated in Bangalore and the findings presented. The End-use Demand Decomposition (EUDD) stage provides the decision makers with a methodology for estimating consumer demand given their socio-economic status, fuel choice and appliance profiles. This is done by the means of a statistical analysis. For this a primary survey of 375 residential households belonging to the LT2a category of BESCOM (Bangalore Electricity Supply Company) was conducted in the Bangalore metropolitan area. The results of the current study show that consumer demand is a function of the variables family income, refrigeration, entertainment, water heating, family size, space cooling, gas use, wood use, kerosene use and space heating. The final regression model (with these variables) can effectively predict up to 60% of the variation in the electricity consumption of a household ln(ElecConsumption) = 0.2880.396*ln(Income)+0.2 66*Refri geration+ 0.708*Entertainment+0.334*WaterHeating+0.047*FamSize+ 0243*SpaceCooling.+580*GasUse+0.421*WoodUse–0.159*KeroseneUse+ 0.568*SpaceHeating ln(ElecConsumption) = 0.406*ln(Income)0.168*Ref rigeration+0.139*Entertainment+ 0.213*WaterHeating+0.114*FamSize+0.121*SpacCooling+0.171*GasUse+ 0.115*WoodUse–0.094*KeroseneUse+0.075*SpaceHeating   The next step of EUDD is to break up the demand into its constituent end-uses. The third step involves aggregating the end-uses at the community level. These two steps are to be performed using a heuristic. The Best Fit DES stage of IDF is demonstrated with data from an urban community in Bangalore. This community is located in an area called Vijayanagar in Bangalore city. Vijayanagar is a mainly a residential area with some pockets of mixed use. Since grid availability is the constraining parameter that yields varying energy availability, this constraint is taken as the criteria for evaluation of the model. The Best Fit DES model is run for different values of the grid availability parameter to study the changes in outputs obtained in DER mix, schedules and overall cost of the system and the results are tabulated. Sensitivity analysis is also performed to study the effect of changing load, price options, fuel costs and technology parameters. The results obtained from the BEST Fit DES model for Vijayanagar illustrate that microgrids and DERs can be a suitable alternative for meeting the demand – supply gap locally. The cost of implementing DERs is the optimal solution. The savings obtained from this option however is less than 1% than the base case due to the subsidized price of grid based electricity. The corresponding costs for different hours of grid availability are higher than the base case, but this is offset by the increased efficiency of the overall system and improved reliability that is obtained in the community due to availability of power 24/7 regardless of the availability of grid based power. If the price of grid power is changed to reflect the true price of electricity, it is shown that DERs continue to be the optimal solution. Also the combination of DERs chosen change with the different levels of non-supply from the grid. For the study community, Vijayanagar, Bangalore, the DERs chosen on the basis of resource availability are mainly discrete DERs. The DERs chosen are the LPG based CHP systems which run as base and intermediate generating systems. The capacity of the discrete DERs selected, depend on the end-use load of the community. Biomass based CHP systems are not chosen by the model as this technology has not reached maturity in an urban setup. Wind and hydro based systems are not selected as these resources are not available in Vijayanagar. The CMI stage of IDF demonstrates the top-down approach to the demand-supply matching problem. For the Energy Landscape Analysis (ELA), Bangalore metropolis was chosen in the study for the purpose of demonstration of the IDF framework. Bangalore consumes 25% of the state electricity supply and its per capita consumption at 1560kWh is higher than the state average of 1230kWh and is 250% more than the Indian average of 612kWh. A stakeholder workshop was conducted to ascertain the business value for clean and renewable energy technologies. From the workshop it was established that significant peak power savings could be obtained with even low penetrations of distributed energy technologies in Bangalore. The feasible options chosen by stakeholders for low income consumers are The second step of CMI is finding an economic rationale for the implementation of community microgrids. It is hypothesized that the ‘The cost of non-supply follows an s-shaped curve similar to a growth curve.’ It is moderated by the consumer income, consumer utility, and time duration of the load shedding. A pre and post event primary survey was conducted to analyze the difference in the pattern of consumer behaviour before and after the implementation of a severe load shedding program by BESCOM during 2009-10. Data was collected from 113 households during February 2009 and July 2010. The analysis proves that there is indeed a significant difference in the number of uninterrupted power systems (inverters) possessed by households. This could be attributed mainly to the power situation in Karnataka during the same period. The data also confirms the nature of the cost of non-supply curve. The third step in CMI is scenario analysis. Four categories of scenarios are developed based on potential interventions. These are business-as-usual, demand side, supply side and demand-supply side. About 21 scenarios are identified and their results compared. Comparing the four categories of scenarios, it is shown that business-as-usual scenarios may result in exacerbation of the demand-supply gap. Demand side interventions result in savings in the total costs for the community, but cannot aid communities with load shedding. Supply side interventions increase the reliability of the energy system for a small additional cost and communities have the opportunity to even meet their energy needs independent of the grid. The combination of both demand and supply side interventions are the best solution alternative for communities, as they enable communities to meet their energy needs 24/7 in a reliable manner and also do it at a lower cost. With an interactive microgrid implementation, communities have the added opportunity to sell back power to the grid for a profit. The thesis concludes with a discussion of the potential use of IDF in policy making, the potential barriers to implementation and minimization strategies. It presents policy recommendations based on the framework developed and the results obtained.
APA, Harvard, Vancouver, ISO, and other styles
26

Hsu, Chia-Hsin, and 徐嘉欣. "High Efficiency Buck Converter with Wide Load Current Range Using Dual-mode of PWM and PSM and A 12-bit 100 MS/s Current Steering DAC Using Dynamic Element Matching and Return to Zero Techniques." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/d652de.

Full text
Abstract:
碩士
國立中山大學
電機工程學系研究所
107
The Implementation of Signal Processing Chips”. Particularly, these topics applied the photonic gyro system are high-efficiency buck converter with wide load current range using dual-mode of PWM and PSM and 12-bit 100 MS/s current steering DAC using dynamic element matching and return to zero techniques. They are implemented using TSMC 0.35 um Mixed-Signal 2P4M Polycide 3.3/5 V and TSMC 45 nm CMOS LOGIC General Purpose Superb (40G) ELK Cu 1P10M 0.9/2.5 V processes, respectively. The proposed high efficiency buck converter is featured with integration of PWM and PSM modes to increase the efficiency given a wide load current range. The peak efficiency is 96.76 % when the load current is 1000 mA, while the efficiency in the load current range from 10 mA to 1000 mA is over 94.80 %. In addition, the proposed design accurately switches between heavy load current and light load current by a well-designed logic decoder circuit. A dynamic element matching and return to zero techniques are used to realize a 12- bit 100 MS/s current steering DAC with a precision of 1 to 10◦/h for the Heterogeneous Silicon Photonics Gyroscope. A pseudo-random number generator carries out the random selection of current sources to reduce the mismatch among these current sources caused by layout issues and also reduce the delay by using compact return to zero technique. Not only is the circuit area greatly reduced, the SFDR is also enhanced to 61 dB at 100 MS/s.
APA, Harvard, Vancouver, ISO, and other styles
27

Gonçalves, Cristiano Ferreira. "Load insensitive radio frequency power amplifiers." Doctoral thesis, 2021. http://hdl.handle.net/10773/33222.

Full text
Abstract:
Solid state power amplifiers (SSPAs) evolved significantly over the last few decades, mainly, due to the use of new transistor technologies, such as gallium nitride (GaN) high-electron-mobility transistors (HEMTs), very advanced computer-aided design (CAD) software, and very effective digital pre-distortion (DPD) algorithms. This led to a considerable performance improvement, in terms of energy efficiency, output power, and linearity. To achieve this performance, power amplifier (PA) designers normally push the used transistors very close to their physical safe operating limits, and consider them to operate for a fixed output load. However, the designed PAs are used for many different industrial and/or telecommunication applications, and, in some cases, such as, for example, microwave cooking or massive multiple-input multiple-output (MIMO) fifth generation (5G) base stations (BSs), the output load of these amplifiers can change. Under this nonoptimal scenario, the used transistors will operate for non-nominal loads, and the PAs performance can be severely degraded. Moreover, in highly optimized designs, where the transistors are operated close to their safe limits, their reliability can be reduced or, in extreme cases, they can even be permanently damaged. Therefore, load insensitive PA architectures, and/or techniques that aim at reducing the load variation seen by the PA, are necessary to improve the performance under load varying scenarios. This thesis presents various strategies to improve load insensitiveness of PAs. The presented techniques are based on tunable matching networks (TMNs) and on the amplifiers’ drain supply voltage (VDS) variation. The developed TMNs successfully reduced the load variation seen by the PA, and its performance was greatly improved, for non-optimal loading, by also using the derived load dependent VDS variation. These different approaches were tested and validated on single-ended PAs and then, based on their advantages and disadvantages, the most promising technique – the supply voltage modulation – was selected for the design of a Doherty power amplifier (DPA), which is of paramount importance for telecommunication applications. Moreover, since in some applications the output load variation can be unpredictable, we also developed a complete quasi-load insensitive (QLI) PA system that includes an impedance tracking circuit and an automatic real-time compensation of the amplifier performance.
Os amplificadores de potência de estado sólido (SSPAs) evoluíram significativamente nas últimas décadas, principalmente devido à utilização de novas tecnologias de transístores, como os transístores de alta mobilidade (HEMTs) de nitreto de gálio (GaN), de ferramentas muito avançadas de projeto assistido por computador (CAD) e de algoritmos de pré-distorção digital (DPD) muito evoluídos. Isto levou a uma melhoria de desempenho considerável, em termos de eficiência energética, potência de saída e linearidade. Normalmente, para obter estes níveis de desempenho, os engenheiros projetam os amplificadores permitindo que os transístores utilizados operem muito perto do seu limite físico de funcionamento seguro e considerando que vão operar para uma carga fixa. No entanto, os amplificadores projetados são utilizados em diversas aplicações industriais e/ou telecomunicações e, em alguns casos, como por exemplo fornos micro-ondas ou estações base 5G, a sua carga de saída pode variar devido a várias causas, que podem ser previsíveis ou imprevisíveis. Neste cenário não ideal, os transístores utilizados operam para cargas não ótimas e o desempenho dos amplificadores pode ser muito degradado. Além disso, em projetos muito otimizados, onde os transístores são operados perto do seu limite de funcionamento seguro, a sua durabilidade pode ser reduzida ou, em casos extremos, podem até ser permanentemente danificados. Portanto, para melhorar o desempenho dos amplificadores em cenários de carga variável, são necessárias novas arquiteturas e/ou técnicas que visam reduzir a variação da carga vista pelos transístores utilizados. Esta tese apresenta várias estratégias para melhorar a insensibilidade dos amplificadores em relação à variação de carga. As técnicas apresentadas são baseadas em malhas de adaptação dinâmicas (TMNs) e na variação da tensão de alimentação dos amplificadores. As malhas de adaptação desenvolvidas permitiram reduzir a variação de carga vista pelo amplificador e a variação da sua tensão de alimentação permitiu melhorar o desempenho para operação com cargas não ótimas. Estas abordagens foram testadas e validadas em amplificadores baseados num só transístor, e, posteriormente, com base nas suas vantagens e desvantagens, a técnica mais promissora – a modulação da tensão de alimentação – foi selecionada para o projeto de um amplificador Doherty, que é imprescindível para telecomunicações. Além disso, como em algumas aplicações a variação da carga de saída pode ser imprevisível, também desenvolvemos um sistema completo que inclui um circuito de medida de impedância e compensação do desempenho do amplificador em tempo real.
Programa Doutoral em Engenharia Eletrotécnica
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography