Academic literature on the topic 'LOAD DEFORMATION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LOAD DEFORMATION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LOAD DEFORMATION"
Aleksandrov, A. S., T. V. Semenova, and N. P. Aleksandrova. "MATERIALS USED IN THE ROAD BASES: METHOD OF THE RESIDUAL DEFORMATIONS’ CALCULATION." Russian Automobile and Highway Industry Journal 16, no. 4 (September 8, 2019): 456–71. http://dx.doi.org/10.26518/2071-7296-2019-4-456-471.
Full textDa, Kang, Wang Yongliang, Zhong Jingjun, and Liu Zihao. "Pre-Deformation Method for Manufactured Compressor Blade Based on Load Incremental Approach." International Journal of Turbo & Jet-Engines 37, no. 3 (August 27, 2020): 259–65. http://dx.doi.org/10.1515/tjj-2017-0024.
Full textAnderson, William D., Sydney L. M. Wilson, and David W. Holdsworth. "Development of a Wireless Telemetry Sensor Device to Measure Load and Deformation in Orthopaedic Applications." Sensors 20, no. 23 (November 27, 2020): 6772. http://dx.doi.org/10.3390/s20236772.
Full textWilliamson, M., and A. Majumdar. "Effect of Surface Deformations on Contact Conductance." Journal of Heat Transfer 114, no. 4 (November 1, 1992): 802–10. http://dx.doi.org/10.1115/1.2911886.
Full textBarchukova, Tetіana. "Work piles - columns with soil under constant influence of vertical and cyclically approximated horizontal loads." ACADEMIC JOURNAL Series: Industrial Machine Building, Civil Engineering 2, no. 51 (October 12, 2018): 19–23. http://dx.doi.org/10.26906/znp.2018.51.1283.
Full textCELMS, A., I. TREVOHO, V. CELMINA, and M. BRINKMANIS-BRIMANIS. "Technologies of building deformation monitoring in Latvia." Modern achievements of geodesic science and industry 2, no. 44 (September 1, 2022): 53–59. http://dx.doi.org/10.33841/1819-1339-2-44-53-59.
Full textTateyama, Kohei, and Hiroyuki Yamada. "Nonuniform Deformation of Cell Structures Owing to Plastic Stress Wave Propagation." Applied Mechanics 2, no. 4 (November 5, 2021): 911–31. http://dx.doi.org/10.3390/applmech2040053.
Full textAleksandrov, A. S., T. V. Semenova, and N. P. Aleksandrova. "Calculation of Residual Deformations of Granulated Materials from Exposure to Repeated Loads." Materials Science Forum 992 (May 2020): 828–35. http://dx.doi.org/10.4028/www.scientific.net/msf.992.828.
Full textTodic, M., V. Golubović-Bugarski, M. Merdanić, and T. Latinović. "Deformation state of the load-bearing structure of a four-column the press." Journal of Physics: Conference Series 2540, no. 1 (July 1, 2023): 012030. http://dx.doi.org/10.1088/1742-6596/2540/1/012030.
Full textKondrashin, K. G., R. A. Petrov, and N. A. Raktovich. "Accumulation of irreversible deformation of soils as a result of repeated loading." Herald of Dagestan State Technical University. Technical Sciences 49, no. 2 (August 17, 2022): 143–49. http://dx.doi.org/10.21822/2073-6185-2022-49-2-143-149.
Full textDissertations / Theses on the topic "LOAD DEFORMATION"
Karsu, Burak. "The load deformation response of single bolt connections." Thesis, This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-01242009-063304/.
Full textMolloy, Patrick Donal. "The load-deformation characteristics of steel-concrete sandwich construction." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317463.
Full textMOROTE, CARLOS HUGO SOTO. "STABILITY AND DEFORMATION OF SOIL SLOPES UNDER SEISMIC LOAD." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9532@1.
Full textO comportamento sísmico de taludes tem sido um tópico de grande interesse da engenharia geotécnica nos últimos 40 anos. Durante este período, a prática da engenharia nesta área evoluiu do emprego de técnicas elementares para procedimentos numéricos bastante complexos. A abordagem mais simples é a análise pseudo-estática na qual o carregamento do terremoto é simulado por uma aceleração horizontal estática equivalente atuando na massa de solo deslizante, utilizando-se um procedimento de equilíbrio limite (método das fatias), geralmente conservativo. O parâmetro que descreve o comportamento dinâmico do solo é referido como coeficiente sísmico k, e sua seleção depende fortemente da experiência e normas técnicas locais, porque não há maneira simples e segura de se escolher um valor adequado. O segundo procedimento é conhecido como método de Newmark, que envolve o cálculo de uma aceleração de escoamento, definida como a força inercial necessária para o fator de segurança atingir 1 em uma análise pseudo-estática pelo método de equilíbrio limite. O procedimento então usa os registros de aceleração do terremoto de projeto e o integra duplamente no tempo para calcular os deslocamentos permanentes acumulados. O terceiro método é referido como análise de Makdisi- Seed, que procura definir a estabilidade sísmica do talude em termos de deslocamentos aceitáveis em vez de um fator de segurança tradicional através de uma versão modificada do método de Newmark. Esta técnica apresenta uma maneira racional de calcular uma aceleração de escoamento média, necessária para produzir um valor do coeficiente de segurança do talude igual a 1. Gráficos específicos foram também desenvolvidos para estimativa dos deslocamentos permanentes, tendo sido bastante aplicados em aterros rodoviários, barragens e aterros sanitários. Finalmente, o mais sofisticado método para análise de estabilidade sísmica de taludes é conhecido como análise dinâmica, que normalmente incorpora modelos de elementos finitos e relações tensão x deformação complexas numa tentativa de obter melhores representações para o comportamento mecânico de taludes sob cargas cíclicas Os resultados destas análises podem incluir a história no tempo dos deslocamentos e tensões, bem como das freqüências naturais, efeitos de amortecimento, etc. Este trabalho apresenta uma comparação entre os métodos mencionados anteriormente, analisando o comportamento sísmico dos taludes da estrutura de contenção dos resíduos de lixiviação de minério de urânio, na Bahia, e dos taludes do bota-fora sul da mina de cobre Toquepala, situada no Peru.
The seismic stability of slopes has been a topic of considerable interest in geotechnical engineering for the past 40 years. During that period, the state of practice has moved from simples techniques to more complicated numerical procedures. The simplest approach is the pseudo-static analysis in which the earthquake load is simulated by an equivalent static horizontal acceleration acting on the mass of the landslide, according to a generally conservative limit equilibrium analysis. The ground motion parameter used in a pseudo-static analysis is referred to as the seismic coefficient k, and its selection has relied heavily on engineering judgment and local code requirements because there is no simple method for determining an appropriate value. The second main procedure is known as the Newmark displacement analysis which involves the calculation of the yield acceleration, defined as the inertial force required to cause the static factor of safety to reach 1 from the traditional limit equilibrium slope stability analysis. The procedure then uses a design earthquake strong-motion record which is numerically integrated twice for the amplitude of the acceleration above the yield acceleration to calculate the cumulative displacements. These displacements are then evaluated in light of the slope material properties and the requirements of the proposed development. The third method is referred to as the Makdisi-Seed analysis sought to define seismic embankment stability in terms of acceptable deformation instead of conventional factors of safety, using a modified Newmark analysis. Their method presents a rational means to determine yield acceleration, or the average acceleration required to produce a factor of safety of unity. Design curves were developed to estimate the permanent earthquake- induced deformations of embankments, which have since been applied to sanitary landfill and highway embankments. Finally, the most sophisticated method for seismic slope stability calculations is known as the dynamic analysis, which normally incorporates a finite element model and a rather complex stress-strain behavior for geological materials in an attempt to obtain a better representation of the behavior of soils under cyclic loading. The results of the analysis can include a time history of displacements and stresses, as well as natural frequencies, effects of damping, etc. This work presents a comparison of the results obtained by the aforementioned approaches, considering the seismic behavior of the slopes of an uranium lixiviation pad situated in Bahia, Brazil, and the South embankment of the waste landfill of the Toquepala Mine, Peru.
Jakobsen, Bo. "In-situ studies of bulk deformation structures : static properties under load and dynamics during deformation /." Roskilde : Roskilde University, Department of Science, Systems and Models & Center for Fundamental Research, Metal Structures in Four Dimensions Materials Research Department, Risø National Laboratory, 2006. http://hdl.handle.net/1800/3059.
Full textMcLaughlin, Kirsten Kathleen. "TEM diffraction analysis of the deformation underneath low load indentations." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613392.
Full textGoudie, K. "Experimental study of the gross deformation of tubular beams." Thesis, University of Manchester, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380143.
Full textMcMahon, Brendan. "Deformation mechanisms beneath shallow foundations." Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244367.
Full textFriedman, Ross Aaron. "The dehydration of pharmaceutical hydrates under mechanical load." Diss., University of Iowa, 2014. https://ir.uiowa.edu/etd/3224.
Full textO'Brien, Patrick Emmet. "Characterizing the Load-Deformation Behavior of Steel Deck Diaphragms using Past Test Data." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78679.
Full textMaster of Science
Colin, Julie Anne. "Deformation History and Load Sequence Effects on Cumulative Fatigue Damage and Life Predictions." University of Toledo / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1260390033.
Full textBooks on the topic "LOAD DEFORMATION"
M, Bahm Catherine, Heinle Robert A, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Determination of stores pointing error due to wing flexibility under flight load. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1995.
Find full textMoskalenko, Vladislav, Ivan Druz', Lev Leont'ev, and Valenin Tarasov. Features of the influence of the connection points of the set on the bearing capacity of the side floors of ice navigation vessels. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1870592.
Full textS, Majumdar Bhaskar, and United States. National Aeronautics and Space Administration., eds. In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textS, Majumdar Bhaskar, and United States. National Aeronautics and Space Administration., eds. In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textS, Majumdar Bhaskar, and United States. National Aeronautics and Space Administration., eds. In-phase thermomechanical fatigue mechanisms in an unidirectional SCS-6/Ti 15-3 MMC. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textSreeramesh, Kalluri, Bonacuse Peter J. 1960-, and Symposium on Multiaxial Fatigue and Deformation: Testing and Prediction (1999 : Seattle, Wash.), eds. Multiaxial fatigue and deformation: Testing and prediction. W. Conshohocken, PA: ASTM, 2000.
Find full textEberhardshtayner, Yozef, Sergey Leonovich, and Valentin Dorkin. Design models of structural building materials under multiaxial stress. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1082947.
Full textUnited States. National Aeronautics and Space Administration., ed. Axisymmetric deformations and stresses of unsymmetrically laminated composite cylinders in axial compression with thermally-induced preloading effects. Bethesda, MD: Carderock Division, Naval Surface Warfare Center, 1993.
Find full textHyer, M. W. Innovative design of composite structures: Axisymmetric deformations of unsymmetrically laminated cylinders loaded in axial compression : semiannual status report. Blacksburg, Va: College of Engineering, Virginia Polytechnic Institute and State University, 1990.
Find full textMadenci, Erdogan. Implementation of free-formulation-based flat shell elements into NASA comet code and development of nonlinear shallow shell element: Grant NAG1-1626. [Hampton, Va.]: NASA Langley Research Center, 1997.
Find full textBook chapters on the topic "LOAD DEFORMATION"
Yoshida, S., H. Ono, T. Sasaki, and M. Usui. "Dynamic Deformation with Static Load." In Advancement of Optical Methods in Experimental Mechanics, Volume 3, 35–40. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41600-7_3.
Full textLopetegui, J., and G. Sedlacek. "Some Applications of Load-Deformation States." In Numerical Techniques for Engineering Analysis and Design, 363–75. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3653-9_42.
Full textVarsha, T. S. Amritha, J. Jayamohan, and P. R. Anila Angel. "Horizontal Load—Deformation Behaviour of Shallow Circular Footing." In Lecture Notes in Civil Engineering, 505–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3383-6_45.
Full textDaub, Dennis, Sebastian Willems, Burkard Esser, and Ali Gülhan. "Experiments on Aerothermal Supersonic Fluid-Structure Interaction." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 323–39. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_21.
Full textHeinze, Tassilo, Hans-Joachim Koriath, and Alexander Pavlovich Kuznetsov. "Thermal Growth of Motor Spindle Units." In Lecture Notes in Production Engineering, 219–39. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-34486-2_17.
Full textLi, Bin, Jiaying Zhang, Xuelei Zhang, and Zhongke Tian. "Research on Deformation Characteristics of SCP Foundation for HKZM Bridge." In Advances in Frontier Research on Engineering Structures, 435–43. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_39.
Full textBeerbaum, H., W. Grellmann, and S. Seidler. "Correlation Between Structure and Toughness Behaviour of High-Density Polyethylene under Impact Load." In Deformation and Fracture Behaviour of Polymers, 161–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04556-5_12.
Full textZhu, Weidong, Xiwen Zhang, and Liangliang Zhang. "Analysis of Deformation Characteristics of Large Diameter Shield Tunnel with Construction Load." In Lecture Notes in Civil Engineering, 455–61. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1260-3_41.
Full textSteiner, R., and W. Grellmann. "Calculation of J—R Curves Based on Load—Deflection Diagrams Using the Hinge Model Test Specimen." In Deformation and Fracture Behaviour of Polymers, 133–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04556-5_9.
Full textLu, Qingyuan, and Qiang Luo. "A Load Transfer Approach for Studying the Load-Deformation Response of Vertically Loaded Single Pile." In Springer Series in Geomechanics and Geoengineering, 369–84. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6632-0_29.
Full textConference papers on the topic "LOAD DEFORMATION"
Milne, Douglas. "Relating measured deformation to support load." In Ninth International Symposium on Ground Support in Mining and Underground Construction. Australian Centre for Geomechanics, Perth, 2019. http://dx.doi.org/10.36487/acg_rep/1925_05_milne.
Full textGeorge, Shiju V. P., Trevor G. Seipp, and Shawn W. Morrison. "Classification of Thermal Piping Loads Using Limit Load Analysis." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2613.
Full textRamgulam, Rajcoomar, and Prasad Potluri. "Tensile Load Deformation Behaviour of Woven Fabrics." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61589.
Full textLiu, Longbin, Yuan Wei, Hao Wang, Yicong Jia, and Weihua Zhang. "Load and Deformation Characteristics of Flexible Inflatable Wing Films Considering the Deformation Compensation." In 2017 5th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icmmct-17.2017.218.
Full textQingya, Zhang, Yan Guangsong, Sun Dong, and Wang Liang. "The Load-Deformation Analysis of Flanged Connection System Subjected to External Loads." In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1880.
Davids, William, and Joshua Clapp. "Load-Deformation Response of Pressurized Tubular Fabric Arches." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2632.
Full textHála, Petr, Radoslav Sovják, Markéta Munduchová, Vít Majer, and Tomáš Mičunek. "High-Load Bearing Deformation Block Made of UHPC." In Second International Interactive Symposium on UHPC. Iowa State University Digital Press, 2019. http://dx.doi.org/10.21838/uhpc.9657.
Full textShankar, A. U. Ravi, Shivashankar R, and N. Sachith Pai. "Load Deformation Behavior of Coir Mat Treated Soil." In International Conference on Ground Improvement & Ground Control. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-3560-9_09-0908.
Full textKai, Satoru, and Akihito Otani. "Effect of Static Load Components in Seismic Loading on Gross Plastic Deformation on Structure." In ASME 2018 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/pvp2018-84415.
Full textChou, Z. L., L. J. Wittenberg, S. Adeeb, and J. J. R. Cheng. "Buried Steel Pipeline Design: External Load Methodologies and Strain Limits." In 2014 10th International Pipeline Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/ipc2014-33295.
Full textReports on the topic "LOAD DEFORMATION"
Al-Qadi, Imad, Hasan Ozer, Aravind Ramakrishnan, and Ashraf Alrajhi. Pavement Distresses Due to Truck Platoons: A Holistic Analysis. Illinois Center for Transportation, August 2023. http://dx.doi.org/10.36501/0197-9191/23-015.
Full textMurphy, L. M. Variational Approach for Predicting the Load Deformation Response of a Double Stretched Membrane Reflector Module. Office of Scientific and Technical Information (OSTI), October 1985. http://dx.doi.org/10.2172/909987.
Full textMessner, M. C., and T. L. Sham. Development of a multiaxial deformation measure and creep-fatigue damage summation for multiple load cycle types in support of an improved creep-fatigue design method. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1601810.
Full textWada, Y., R. Ishigaki, Y. Tanaka, and K. Ohnishi. DTRS-3878-HEELAS Hydrogen Environment Embrittlement of Low Alloy Steel at Room Temperature. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1998. http://dx.doi.org/10.55274/r0011860.
Full textRamakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer, and Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-038.
Full textHart and Zulfiqar. L52324 Characterization of Anisotropic Pipe Steel Stress-Strain Relationships Influence On Strain Demand. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2011. http://dx.doi.org/10.55274/r0010014.
Full textAl-Qadi, Imad, Jaime Hernandez, Angeli Jayme, Mojtaba Ziyadi, Erman Gungor, Seunggu Kang, John Harvey, et al. The Impact of Wide-Base Tires on Pavement—A National Study. Illinois Center for Transportation, October 2021. http://dx.doi.org/10.36501/0197-9191/21-035.
Full textMeyer and Carson. PR-415-124508-R01 Strain-Based Design and Assessment State-of-Art Review. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2012. http://dx.doi.org/10.55274/r0010796.
Full textDenys, R. M. L51712 Fracture Behavior of Large-Diameter Girth Welds - Effect of Weld Metal Yield Strength Part II. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), May 1994. http://dx.doi.org/10.55274/r0010121.
Full textSchiller, Brandon, Tara Hutchinson, and Kelly Cobeen. Comparison of the Response of Small- and Large-Component Cripple Wall Specimens Tested under Simulated Seismic Loading (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/iyca1674.
Full text