Books on the topic 'Lland surface - atmosphere interactions'

To see the other types of publications on this topic, follow the link: Lland surface - atmosphere interactions.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 22 books for your research on the topic 'Lland surface - atmosphere interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Wood, Eric F., ed. Land Surface — Atmosphere Interactions for Climate Modeling. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-009-2155-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Garstang, Michael. Observations of surface to atmosphere interactions in the tropics. New York: Oxford University Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Workshop, on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars (1992 Mainz Rhineland-Palatinate Germany). Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars: Held at Mainz, Germany, October 8-9, 1992. Houston, TX: The Institute, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Labgaa, Rachid R. A model of the CO2 exchanges between biosphere and atmosphere in the tundra. Santa Barbara, CA: Earth-Space Research Group, CRSEO -- Ellison Hall, University of California Santa Barbara, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wood, E. F. Land Surface -- Atmosphere Interactions for Climate Modeling: Observations, Models and Analysis. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

F, Wood Eric, ed. Land surface, atmosphere interactions for climate modeling: Observations, models, and analysis. Dordrecht: Kluwer Academic Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wood, E. F. Land Surface -- Atmosphere Interactions for Climate Modeling: Observations, Models and Analysis. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marine Surface Films: Chemical Characteristics, Influence on Air-Sea Interactions and Remote Sensing. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

(Editor), Martin Gade, Heinrich Hühnerfuss (Editor), and Gerald M. Korenowski (Editor), eds. Marine Surface Films: Chemical Characteristics, Influence on Air-Sea Interactions and Remote Sensing. Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Korenowski, Gerald M., Martin Gade, and Heinrich Hühnerfuss. Marine Surface Films: Chemical Characteristics, Influence on Air-Sea Interactions and Remote Sensing. Springer Berlin / Heidelberg, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Interactions of Earth’s Magnetotail Plasma with the Surface, Plasma, and Magnetic Anomalies of the Moon. Yuki Harada, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Harada, Yuki. Interactions of Earth’s Magnetotail Plasma with the Surface, Plasma, and Magnetic Anomalies of the Moon. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wood, E. F. Land Surface-Atmosphere Interactions for Climate Modeling: Observations, Models and Analysis (Reprinted from Surveys in Geophysics, Vol 12, Nos 1-3). Springer, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
14

1952-, Clifford Stephen Mark, Haberele Robert M, and Lunar and Planetary Institute, eds. MECA Workshop on Atmospheric H₂O Observations of Earth and Mars: Physical processes, measurements, and interpretations. Houston, Tex: The Institute ; [Springfield, Va., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vaughan, David. 4. Earth’s surface and the cycling of minerals. Oxford University Press, 2014. http://dx.doi.org/10.1093/actrade/9780199682843.003.0004.

Full text
Abstract:
‘Earth’s surface and the cycling of minerals’ considers the rock cycle, which has two parts. The first is driven by the heat coming from the Earth’s interior and involves interactions between the mantle and crust. The second is driven primarily by heat from the Sun and involves interactions between exposed crust and the waters of the hydrosphere or gases of the atmosphere. Minerals in these exposed rocks may be dissolved during weathering, or be transported in the flowing water of streams and rivers, by glaciers, or as fine mineral dusts in the atmosphere, eventually being deposited elsewhere as sediments. The rock cycle also impacts on pollution and global warming.
APA, Harvard, Vancouver, ISO, and other styles
16

Palmer, Paul I. The Atmosphere: A Very Short Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/actrade/9780198722038.001.0001.

Full text
Abstract:
The atmosphere is the thin, diffuse fluid that envelops the Earth’s surface. Despite its apparent fragility, the existence of this fluid is vital for human and other life on Earth. The Atmosphere: A Very Short Introduction describes the physical and chemical characteristics of different layers in the atmosphere, and shows how the atmosphere’s interactions with land, ocean, and ice affect these properties. It also looks at how movement in the atmosphere, driven by heat from the Sun, transports heat from lower latitudes to higher latitudes. Finally, it presents an overview of the types of measurements used to understand different parts of the atmosphere, and identifies future challenges in the light of climate change.
APA, Harvard, Vancouver, ISO, and other styles
17

Ghassem, Asrar, United States. National Aeronautics and Space Administration., and International Satellite Land-Surface Climatology Project., eds. Land surface-atmosphere interactions: Research results from selected studies initiated through a NASA Research Announcement in 1985 for interdiscip linary studies and as part of NASA's program in the International Satellite LandSurface Climatology project initiative. Amsterdam: Elsevier, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xue, Yongkang, Yaoming Ma, and Qian Li. Land–Climate Interaction Over the Tibetan Plateau. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.592.

Full text
Abstract:
The Tibetan Plateau (TP) is the largest and highest plateau on Earth. Due to its elevation, it receives much more downward shortwave radiation than other areas, which results in very strong diurnal and seasonal changes of the surface energy components and other meteorological variables, such as surface temperature and the convective atmospheric boundary layer. With such unique land process conditions on a distinct geomorphic unit, the TP has been identified as having the strongest land/atmosphere interactions in the mid-latitudes.Three major TP land/atmosphere interaction issues are presented in this article: (1) Scientists have long been aware of the role of the TP in atmospheric circulation. The view that the TP’s thermal and dynamic forcing drives the Asian monsoon has been prevalent in the literature for decades. In addition to the TP’s topographic effect, diagnostic and modeling studies have shown that the TP provides a huge, elevated heat source to the middle troposphere, and that the sensible heat pump plays a major role in the regional climate and in the formation of the Asian monsoon. Recent modeling studies, however, suggest that the south and west slopes of the Himalayas produce a strong monsoon by insulating warm and moist tropical air from the cold and dry extratropics, so the TP heat source cannot be considered as a factor for driving the Indian monsoon. The climate models’ shortcomings have been speculated to cause the discrepancies/controversies in the modeling results in this aspect. (2) The TP snow cover and Asian monsoon relationship is considered as another hot topic in TP land/atmosphere interaction studies and was proposed as early as 1884. Using ground measurements and remote sensing data available since the 1970s, a number of studies have confirmed the empirical relationship between TP snow cover and the Asian monsoon, albeit sometimes with different signs. Sensitivity studies using numerical modeling have also demonstrated the effects of snow on the monsoon but were normally tested with specified extreme snow cover conditions. There are also controversies regarding the possible mechanisms through which snow affects the monsoon. Currently, snow is no longer a factor in the statistic prediction model for the Indian monsoon prediction in the Indian Meteorological Department. These controversial issues indicate the necessity of having measurements that are more comprehensive over the TP to better understand the nature of the TP land/atmosphere interactions and evaluate the model-produced results. (3) The TP is one of the major areas in China greatly affected by land degradation due to both natural processes and anthropogenic activities. Preliminary modeling studies have been conducted to assess its possible impact on climate and regional hydrology. Assessments using global and regional models with more realistic TP land degradation data are imperative.Due to high elevation and harsh climate conditions, measurements over the TP used to be sparse. Fortunately, since the 1990s, state-of-the-art observational long-term station networks in the TP and neighboring regions have been established. Four large field experiments since 1996, among many observational activities, are presented in this article. These experiments should greatly help further research on TP land/atmosphere interactions.
APA, Harvard, Vancouver, ISO, and other styles
19

Hameed, Saji N. The Indian Ocean Dipole. Oxford University Press, 2018. http://dx.doi.org/10.1093/acrefore/9780190228620.013.619.

Full text
Abstract:
Discovered at the very end of the 20th century, the Indian Ocean Dipole (IOD) is a mode of natural climate variability that arises out of coupled ocean–atmosphere interaction in the Indian Ocean. It is associated with some of the largest changes of ocean–atmosphere state over the equatorial Indian Ocean on interannual time scales. IOD variability is prominent during the boreal summer and fall seasons, with its maximum intensity developing at the end of the boreal-fall season. Between the peaks of its negative and positive phases, IOD manifests a markedly zonal see-saw in anomalous sea surface temperature (SST) and rainfall—leading, in its positive phase, to a pronounced cooling of the eastern equatorial Indian Ocean, and a moderate warming of the western and central equatorial Indian Ocean; this is accompanied by deficit rainfall over the eastern Indian Ocean and surplus rainfall over the western Indian Ocean. Changes in midtropospheric heating accompanying the rainfall anomalies drive wind anomalies that anomalously lift the thermocline in the equatorial eastern Indian Ocean and anomalously deepen them in the central Indian Ocean. The thermocline anomalies further modulate coastal and open-ocean upwelling, thereby influencing biological productivity and fish catches across the Indian Ocean. The hydrometeorological anomalies that accompany IOD exacerbate forest fires in Indonesia and Australia and bring floods and infectious diseases to equatorial East Africa. The coupled ocean–atmosphere instability that is responsible for generating and sustaining IOD develops on a mean state that is strongly modulated by the seasonal cycle of the Austral-Asian monsoon; this setting gives the IOD its unique character and dynamics, including a strong phase-lock to the seasonal cycle. While IOD operates independently of the El Niño and Southern Oscillation (ENSO), the proximity between the Indian and Pacific Oceans, and the existence of oceanic and atmospheric pathways, facilitate mutual interactions between these tropical climate modes.
APA, Harvard, Vancouver, ISO, and other styles
20

Netzer, Falko P., and Claudine Noguera. Oxide Thin Films and Nanostructures. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198834618.001.0001.

Full text
Abstract:
Nanostructured oxide materials ultra-thin films, nanoparticles and other nanometer-scale objects play prominent roles in many aspects of our every-day life, in nature and in technological applications, among which is the all-oxide electronics of tomorrow. Due to their reduced dimensions and dimensionality, they strongly interact with their environment gaseous atmosphere, water or support. Their novel physical and chemical properties are the subject of this book from both a fundamental and an applied perspective. It reviews and illustrates the various methodologies for their growth, fabrication, experimental and theoretical characterization. The role of key parameters such as film thickness, nanoparticle size and support interactions in driving their fundamental properties is underlined. At the ultimate thickness limit, two-dimensional oxide materials are generated, whose functionalities and potential applications are described. The emerging field of cation mixing is mentioned, which opens new avenues for engineering many oxide properties, as witnessed by natural oxide nanomaterials such as clay minerals, which, beyond their role at the Earth surface, are now widely used in a whole range of human activities. Oxide nanomaterials are involved in many interdisciplinary fields of advanced nanotechnologies: catalysis, photocatalysis, solar energy materials, fuel cells, corrosion protection, and biotechnological applications are amongst the areas where they are making an impact; prototypical examples are outlined. A cautious glimpse into future developments of scientific activity is finally ventured to round off the treatise.
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Kun. Observed Regional Climate Change in Tibet over the Last Decades. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.587.

Full text
Abstract:
The Tibetan Plateau (TP) is subjected to strong interactions among the atmosphere, hydrosphere, cryosphere, and biosphere. The Plateau exerts huge thermal forcing on the mid-troposphere over the mid-latitude of the Northern Hemisphere during spring and summer. This region also contains the headwaters of major rivers in Asia and provides a large portion of the water resources used for economic activities in adjacent regions. Since the beginning of the 1980s, the TP has undergone evident climate changes, with overall surface air warming and moistening, solar dimming, and decrease in wind speed. Surface warming, which depends on elevation and its horizontal pattern (warming in most of the TP but cooling in the westernmost TP), was consistent with glacial changes. Accompanying the warming was air moistening, with a sudden increase in precipitable water in 1998. Both triggered more deep clouds, which resulted in solar dimming. Surface wind speed declined from the 1970s and started to recover in 2002, as a result of atmospheric circulation adjustment caused by the differential surface warming between Asian high latitudes and low latitudes.The climate changes over the TP have changed energy and water cycles and has thus reshaped the local environment. Thermal forcing over the TP has weakened. The warming and decrease in wind speed lowered the Bowen ratio and has led to less surface sensible heating. Atmospheric radiative cooling has been enhanced, mainly through outgoing longwave emission from the warming planetary system and slightly enhanced solar radiation reflection. The trend in both energy terms has contributed to the weakening of thermal forcing over the Plateau. The water cycle has been significantly altered by the climate changes. The monsoon-impacted region (i.e., the southern and eastern regions of the TP) has received less precipitation, more evaporation, less soil moisture and less runoff, which has resulted in the general shrinkage of lakes and pools in this region, although glacier melt has increased. The region dominated by westerlies (i.e., central, northern and western regions of the TP) received more precipitation, more evaporation, more soil moisture and more runoff, which together with more glacier melt resulted in the general expansion of lakes in this region. The overall wetting in the TP is due to both the warmer and moister conditions at the surface, which increased convective available potential energy and may eventually depend on decadal variability of atmospheric circulations such as Atlantic Multi-decadal Oscillation and an intensified Siberian High. The drying process in the southern region is perhaps related to the expansion of Hadley circulation. All these processes have not been well understood.
APA, Harvard, Vancouver, ISO, and other styles
22

Goswami, B. N., and Soumi Chakravorty. Dynamics of the Indian Summer Monsoon Climate. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.613.

Full text
Abstract:
Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography