Academic literature on the topic 'Living Cells - Fluorescence Correlation Spectroscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Living Cells - Fluorescence Correlation Spectroscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Living Cells - Fluorescence Correlation Spectroscopy"
Kim, Sally A., Katrin G. Heinze, and Petra Schwille. "Fluorescence correlation spectroscopy in living cells." Nature Methods 4, no. 11 (October 30, 2007): 963–73. http://dx.doi.org/10.1038/nmeth1104.
Full textBacia, Kirsten, Sally A. Kim, and Petra Schwille. "Fluorescence cross-correlation spectroscopy in living cells." Nature Methods 3, no. 2 (January 23, 2006): 83–89. http://dx.doi.org/10.1038/nmeth822.
Full textKinjo, M., H. Sakata, and S. Mikuni. "First Steps for Fluorescence Correlation Spectroscopy of Living Cells." Cold Spring Harbor Protocols 2011, no. 10 (October 1, 2011): pdb.top065920. http://dx.doi.org/10.1101/pdb.top065920.
Full textUnsay, Joseph D., and Ana J. Garcia-Saez. "Scanning Fluorescence Correlation Spectroscopy in Mitochondria of Living Cells." Biophysical Journal 106, no. 2 (January 2014): 196a. http://dx.doi.org/10.1016/j.bpj.2013.11.1160.
Full textHo Hur, Kwang, John Kohler, and Joachim D. Mueller. "Unbiased Fluorescence Correlation Spectroscopy of Diffusive Processes in Living Cells." Biophysical Journal 120, no. 3 (February 2021): 357a. http://dx.doi.org/10.1016/j.bpj.2020.11.2210.
Full textWeiss, Matthias. "Probing the Interior of Living Cells with Fluorescence Correlation Spectroscopy." Annals of the New York Academy of Sciences 1130, no. 1 (May 2008): 21–27. http://dx.doi.org/10.1196/annals.1430.002.
Full textMarkiewicz, Roksana, Jagoda Litowczenko, Jacek Gapiński, Anna Woźniak, Stefan Jurga, and Adam Patkowski. "Nanomolar Nitric Oxide Concentrations in Living Cells Measured by Means of Fluorescence Correlation Spectroscopy." Molecules 27, no. 3 (February 2, 2022): 1010. http://dx.doi.org/10.3390/molecules27031010.
Full textEngelke, Hanna, Doris Heinrich, and Joachim O. Rädler. "Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy." Physical Biology 7, no. 4 (December 1, 2010): 046014. http://dx.doi.org/10.1088/1478-3975/7/4/046014.
Full textMartinez, Michelle M., Randall D. Reif, and Dimitri Pappas. "Early detection of apoptosis in living cells by fluorescence correlation spectroscopy." Analytical and Bioanalytical Chemistry 396, no. 3 (November 25, 2009): 1177–85. http://dx.doi.org/10.1007/s00216-009-3298-3.
Full textGao, Xinwei, Yanfeng Liu, Jia Zhang, Luwei Wang, Yong Guo, Yinru Zhu, Zhigang Yang, Wei Yan, and Junle Qu. "Nanodrug Transmembrane Transport Research Based on Fluorescence Correlation Spectroscopy." Membranes 11, no. 11 (November 19, 2021): 891. http://dx.doi.org/10.3390/membranes11110891.
Full textDissertations / Theses on the topic "Living Cells - Fluorescence Correlation Spectroscopy"
Jebreiil, Khadem Seyed Mohsen. "Fluorescence Correlation Spectroscopy (FCS) analysis of probe transport in cells From measurements to models." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19218.
Full textThe objective of this thesis is to provide a toolbox for characterization of anomalous diffusion of tracer particle in crowded systems using fluorescence correlation spectroscopy (FCS). We discuss that the robust information about the probability density function (PDF) of the particle’s displacement is contained in the asymptotic behaviour of the FCS curves at long and short times. Thus, analysis of the short-time behaviour provides reliable values of exponent of anomalous, diffusion coefficient and lower moments of the PDF. This allows one to to confirm or reject its Gaussian nature. The Gaussianity test could be then used to guess the correct form of the PDF from a set of competing models. We show the applicability of the proposed analysis protocol in artificially crowded systems and in living cell experiments. Furthermore, we investigate the consequence of non-scaling PDF on the possible results of the FCS data. As an example of such processes, we calculate the FCS curve for a continues time random walk model with waiting times delivered from Lévy-stable distribution with an exponential cut-off in equilibrium. The results indicate that, although the deviations from Gaussian behaviour may be detected when analyzing the short- and long-time asymptotic of the corresponding curves, their bodies are still perfectly fitted by the fit form used for normal diffusion. Finally, we propose an alternative approach for performing spot variation FCS using an ordinary FCS set-up. We introduce a non-linear transformation which applies on the smoothed intensity profile of the detected fluorescence photons with binning or smoothing kernel method. Autocorrelation of the generated intensity profiles mimic the FCS curves for the sizes of laser spots which are effectively smaller than the initial one in the experiment. The obtained FCS curves are used to investigate the presence of nano-domains or barriers in artificially crowded systems and in living cells.
Regmi, Raju. "Nanophotonic antennas for enhanced single-molecule fluorescence detection and nanospectroscopy in living cell membranes." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0523/document.
Full textSingle-molecule fluorescence spectroscopy has revolutionized the field of biophysical sciences by enabling visualization of dynamic molecular interactions and nanoscopic features with high spatiotemporal resolution. Monitoring enzymatic reactions and studying diffusion dynamics of individual molecules help us understand how these nanoscopic entities influence and control various biochemical processes. Nanophotonic antennas can efficiently localize electromagnetic radiation into nanoscale spatial dimensions comparable to single bio-molecules. These confined illumination hotspots there by offer the opportunity to follow single-molecule events at physiological expression levels. In this thesis, we explore various photonic nanoantenna platforms and demonstrate their application in enhanced single-molecule fluorescence detection. Using fluorescence burst analysis, fluorescence correlation spectroscopy (FCS), time-correlated TCSPC measurements, and near field simulations, we quantify nanoantenna detection volumes, fluorescence enhancement factors and discuss the fluorescence photodynamic accelerations mediated by optical antennas. Further, using resonant planar antenna-in-box devices we investigate the diffusion dynamics of phosphoethanolamine and sphingomyelin on the plasma membrane of living cells and discuss the results in the context of lipid rafts. Together with cholesterol depletion experiments, we provide evidence of cholesterol-induced nanodomain partitioning within less than 10~nm diameters and characteristic times being ~100 microseconds
Baum, Michael [Verfasser], and Karsten [Akademischer Betreuer] Rippe. "Protein Mobility and Interaction Measurements in Living Cells by Dual-Color Multi-Focus Fluorescence Cross-Correlation Spectroscopy / Michael Baum ; Betreuer: Karsten Rippe." Heidelberg : Universitätsbibliothek Heidelberg, 2014. http://d-nb.info/1179925017/34.
Full textRegmi, Raju. "Nanophotonic antennas for enhanced single-molecule fluorescence detection and nanospectroscopy in living cells membranes." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461707.
Full textLa espectroscopia de fluorescencia de una sola molecula ha revolucionado el campo de las ciencias biofisicas, permitiendo la visualizacion de interacciones moleculares dinamicas y caracteristicas nanoscopicas con alta resolucion espaciotemporal. La monitorizacion de las reacciones enzimaticas y el analisis de la dinamica de difusion de moleculas individuales (como lipidos y proteinas) nos ayudan a comprender como estas entidades nanoscopicas influyen y controlan diversos procesos bioquimicos. Las antenas nanofotonicas pueden localizar eficientemente la radiacion electromagnetica en dimensiones espaciales en nanoescala, comparables a biomoleculas unicas (<10 nm). Estos hotspots de iluminacion ultra configurados ofrecen de este modo la oportunidad de monitorizar eventos de molecula unica a niveles de expresion fisiologica. En esta tesis, exploramos varias plataformas fotonicas de nanoantenas (double nanohole aperture, dimero nanogap antenas y "antenna-in-box" planares) y demostramos su aplicacion en la mejora de la deteccion una sola molecula de fluorescencia. Utilizando el analisis por explosion de fluorescencia, espectroscopia de correlacion de fluorescencia (FCS), medidas TCSPC correlacionadas en el tiempo y simulaciones de campo cercano, cuantificamos volumenes de deteccion de nanoantenas, factores de mejora de fluorescencia y discutimos las aceleraciones fotodinámicas de fluorescencia mediada por nanoantennas opticas. Las nanoantennas dielectricas basadas en nanogaps de silico se han propuesto como una alternativa en el realce de la deteccion de fluorescencia de difusion de moleculas unicas en soluciones concentradas. Ademas, utilizando dispositivos resonantes planares de "antenna-in-box", investigamos la dinamica de difusion de la fosfoetanolamina y la esfingomielina en la membrana plasmatica de las celulas vivas y discutimos los resultados en el contexto de las balsas lipidicas. Junto con experimentos de dismincion de colesterol, proporcionamos pruebas de division inducida por colesterol en el nanodominio dentro de diametros menors de 10 nm y con tiempos caracteristicos de ~100 microsegundos.
La spectroscopie de fluorescence d'une seule molécule a révolutionné le domaine des sciences biophysiques, permettant la visualisation d'interactions moléculaires dynamiques et de caractéristiques nanoscopiques à haute résolution spatio-temporelle. Le suivi des réactions enzymatiques et l'analyse de la dynamique de diffusion des molécules individuelles (telles que les lipides et les protéines) nous aident à comprendre comment ces entités nanoscopiques influencent et contrôlent divers processus biochimiques. Les antennes nanophotoniques peuvent localiser efficacement le rayonnement électromagnétique à des dimensions spatiales nanométriques, comparables à des biomolécules uniques (<10 nm). Ces hotspots d'éclairage ultra-configurés offrent la possibilité de surveiller les événements de molécules uniques à des niveaux d'expression physiologiques. Dans ce mémoire, nous examinons plusieurs plates-formes photoniques nanoantennas (nanotrou à double ouverture, I antennes Dimer nanoespace et plane « antenne-in-box ») et de démontrer son application dans l'amélioration de la détection d'une fluorescence seule molécule. Utilisation de l'analyse par spectroscopie de fluorescence d'explosion corrélation de fluorescence (FCS), les mesures TCSPC corrélées dans le temps et proches des simulations champ quantifier les volumes de détection de nanoantennas, les facteurs d'amélioration fluorescence et discuter des accélérations photodynamiques fluorescence médiée nanoantennas opticas. Des nanoantennas diélectriques à base de nanogap silico ont été proposées comme alternative dans l'amélioration de la détection par fluorescence de la diffusion de molécules uniques dans des solutions concentrées. En outre, l'utilisation de "plan d'antenne-in-box" dispositifs de résonance, nous étudions la dynamique de diffusion de phosphoéthanolamine et sphingomyéline dans la membrane plasmique des cellules vivantes et de discuter des résultats dans le contexte des radeaux lipidiques. Conjointement avec des expériences de réduction du cholestérol, nous fournissons des tests de division induits par le cholestérol dans le nanodomaine dans des diamètres plus petits de 10 nm et avec des temps caractéristiques de ~ 100 microsecondes.
Yokozeki, Tomoichi. "Meltrin β/ADAM19 mediates ectodomain shedding of Neuregulin β1 in the Golgi apparatus : fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells." Kyoto University, 2007. http://hdl.handle.net/2433/135688.
Full textHébert, Benedict. "Spatio-temporal image correlation spectroscopy : development and implementation in living cells." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102507.
Full textSrivastava, Mamta. "Image cross-correlation spectroscopy, development and applications on living and fixed cells." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0014/NQ40290.pdf.
Full textBurkhardt, Markus. "Electron multiplying CCD – based detection in Fluorescence Correlation Spectroscopy and measurements in living zebrafish embryos." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61021.
Full textFluoreszenz-Korrelations-Spektroskopie (FCS) ist eine hochempfindliche optische Methode, um die dynamischen Eigenschaften eines Ensembles von einzelnen, fluoreszierenden Molekülen in Lösung zu erforschen. Sie ist insbesondere geeignet für Messungen in biologischen Proben. Die hohe Empfindlichkeit wird erreicht durch Verwendung konfokaler Mikroskop-Aufbauten mit beugungsbegrenztem Detektionsvolumen, und durch Messung der Fluoreszenz mit Einzelphotonen-empfindlichen Detektoren, zum Beispiel Avalanche-Photodioden (APD). Dadurch wird das Fluoreszenzsignal allerdings nur von einer einzelnen Fokusposition in der Probe eingesammelt, und mehrfache Messungen an verschiedenen Positionen in der Probe müssen nacheinander durchgeführt werden. Um die zeitaufwendigen, aufeinanderfolgenden FCS-Einzelmessungen zu überwinden, entwickeln wir in dieser Arbeit Elektronenvervielfachungs-CCD (EMCCD) Kamera-basierte räumlich aufgelöste Detektion für FCS. Mit dieser neuartigen Detektionsmethode werden Multiplex-FCS Messungen möglich. Darauf abzielend führen wir FCS Messungen mit zwei Detektionsvolumina durch. Als Anwendung nutzen wir die räumliche Kreuzkorrelation zwischen dem Signal beider Fokalvolumina. Sie ermöglicht die kalibrationsfreie Bestimmung von Diffusionskoeffizienten und die Messung von gerichteter Bewegung, wie zum Beispiel laminarem Fluss in mikrostrukturierten Kanälen. FCS wird darüber hinaus angewendet auf Messungen in lebenden Zebrafischembryonen, um den Konzentrationsgradienten des Morphogens Fibroblasten-Wachstumsfaktor 8 (Fgf8) zu untersuchen. Mit Hilfe von APD-basierter ein-Fokus FCS und EMCCD-basierter zwei-Fokus FCS zeigen wir, dass Fgf8 hauptsächlich frei diffffundiert im extrazellulären Raum des sich entwickelnden Embryos. Der stabile Konzentrationsgradient entsteht durch ein Gleichgewicht von lokaler Morphogenproduktion und globalem Morphogenabbau durch Rezeptor vermittelte Entfernung aus dem extrazellulären Raum. Die Studie zeigt die Anwendbarkeit von FCS in ganzen Modell-Organismen. Gerade in diesen sich dynamisch ändernden Systemen in vivo ist die Perspektive schneller, paralleler FCS-Messungen von großer Bedeutung. In dieser Arbeit wird räumlich aufgelöste FCS am Beispiel einer EMCCD Kamera durchgeführt. Die Herangehensweise ist jedoch einfach übertragbar auf jede andere Art von zwei-dimensionalem Flächendetektor. Neuartige Flächendetektoren könnten in naher Zukunft verfügbar sein. Dann könnte räumlich aufgelöste Multiplex-FCS eine standardisierte Erweiterung zur klassischen ein-Fokus FCS werden
Ma, Qijun [Verfasser]. "Protein interactions in living cells studied by multiparameter fluorescence imaging spectroscopy (MFIS) / Qijun Ma." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2016. http://d-nb.info/108283713X/34.
Full textKlufas, Megan J. "Resolving Membrane Receptor Multimerization in Live Cells using Time Resolved Fluorescence Methods." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron151017994353956.
Full textBooks on the topic "Living Cells - Fluorescence Correlation Spectroscopy"
Taylor, D. Lansing, and Yu-li Wang. Fluorescence Microscopy of Living Cells in Culture, Part B: Quantitative Fluorescence Microscopy-Imaging and Spectroscopy. Elsevier Science & Technology Books, 1989.
Find full textFluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence Microscopy—Imaging and Spectroscopy. Elsevier, 1989. http://dx.doi.org/10.1016/s0091-679x(08)x6031-5.
Full text(Editor), Duncan P. Taylor, Yu-Li Wang (Editor), Leslie Wilson (Series Editor), and Paul T. Matsudaira (Series Editor), eds. Flourescence Microscopy of Living Cells in Culture, Part B: Quantitaive Flourescence Microscopy-Imaging and Spectroscopy, Volume 30 (Methods in Cell Biology). Academic Press, 1990.
Find full text(Editor), Yu-Li Wang, ed. Methods in Cell Biology: Fluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence Microscopy-Imaging and Spectroscopy (Methods in Cell Biology, 30). Academic Press, 1989.
Find full textSPIE. Fluorescence in Vivo Imaging Based on Genetically Engineered Probes: From Living Cells to Whole Body Imaging IV - 25-26 January 2009, San Jose, California, United States. SPIE, 2009.
Find full textBook chapters on the topic "Living Cells - Fluorescence Correlation Spectroscopy"
Weidemann, Thomas, and Petra Schwille. "Fluorescence Correlation Spectroscopy in Living Cells." In Handbook of Single-Molecule Biophysics, 217–41. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76497-9_8.
Full textMa, Xiaoxiao, Yong Hwee Foo, and Thorsten Wohland. "Fluorescence Cross-Correlation Spectroscopy (FCCS) in Living Cells." In Methods in Molecular Biology, 557–73. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-649-8_25.
Full textHodges, Cameron, and Jens-Christian Meiners. "Fluorescence Correlation Spectroscopy on Genomic DNA in Living Cells." In Methods in Molecular Biology, 415–24. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8591-3_25.
Full textWachsmuth, Malte, and Klaus Weisshart. "Fluorescence Photobleaching and Fluorescence Correlation Spectroscopy: Two Complementary Technologies To Study Molecular Dynamics in Living Cells." In Imaging Cellular and Molecular Biological Functions, 183–233. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71331-9_7.
Full textWeidemann, Thomas. "Application of Fluorescence Correlation Spectroscopy (FCS) to Measure the Dynamics of Fluorescent Proteins in Living Cells." In Methods in Molecular Biology, 539–55. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-649-8_24.
Full textSadamoto, Hisayo, and Hideki Muto. "Fluorescence Cross-correlation Spectroscopy (FCCS) to Observe Dimerization of Transcription Factors in Living Cells." In Methods in Molecular Biology, 229–41. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-284-1_18.
Full textVercammen, Jo, Goedele Maertens, and Yves Engelborghs. "Measuring Diffusion in a Living Cell Using Fluorescence Correlation Spectroscopy. A Closer Look at Anomalous Diffusion Using HIV-1 Integrase and its Interactions as a Probe." In Springer Series on Fluorescence, 323–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/4243_2007_009.
Full textTiwari, Manisha, and Masataka Kinjo. "Determination of the Dissociation Constant of the NFκB p50/p65 Heterodimer in Living Cells Using Fluorescence Cross-Correlation Spectroscopy." In The Nucleus, 173–86. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1680-1_14.
Full textPramanik, Aladdin. "Ligand–Macromolecule Interactions in Live Cells by Fluorescence Correlation Spectroscopy." In Ligand-Macromolecular Interactions in Drug Discovery, 279–90. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-244-5_18.
Full textKemnitz, K. "Picosecond Fluorescence Lifetime Imaging Spectroscopy as a New Tool for 3D Structure Determination of Macromolecules in Living Cells." In New Trends in Fluorescence Spectroscopy, 381–410. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56853-4_18.
Full textConference papers on the topic "Living Cells - Fluorescence Correlation Spectroscopy"
Hodges, Cameron, Rudra P. Kafle, and Jens-Christian Meiners. "Quantitative fluorescence correlation spectroscopy on DNA in living cells." In SPIE BiOS, edited by Jörg Enderlein, Ingo Gregor, Zygmunt K. Gryczynski, Rainer Erdmann, and Felix Koberling. SPIE, 2017. http://dx.doi.org/10.1117/12.2251409.
Full textLiang, Lifang, Da Xing, Tongshen Chen, and Yihui Pei. "Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy." In Photonics Asia 2007, edited by Xingde Li, Qingming Luo, and Ying Gu. SPIE, 2007. http://dx.doi.org/10.1117/12.760226.
Full textWebb, Watt W. "Multiphoton Microscopy MPM: Imaging Spectra and Dynamics of Molecular Function Deep in Living Tissues." In In Vivo optical Imaging at the NIH. Washington, D.C.: Optica Publishing Group, 1999. http://dx.doi.org/10.1364/ivoi.1999.msi3.
Full textDoglia, Silvia M., L. Bianchi, Roberto Colombo, N. Allam, Hamid Morjani, Michel Manfait, and A. M. Villa. "Confocal fluorescence microscopy of living cells." In Laser Spectroscopy of Biomolecules: 4th International Conference on Laser Applications in Life Sciences, edited by Jouko E. Korppi-Tommola. SPIE, 1993. http://dx.doi.org/10.1117/12.146189.
Full textWang, Xiaojing. "FLUORESCENCE SWITCH FOR SELECTIVELY SENSING COPPER AND HISTIDINE IN BOTH VITRO AND LIVING CELLS." In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.td12.
Full text"Multi-color fluorescence fluctuation spectroscopy detects higher-order molecular interactions in living cells." In Microscience Microscopy Congress 2023 incorporating EMAG 2023. Royal Microscopical Society, 2023. http://dx.doi.org/10.22443/rms.mmc2023.268.
Full textCardoso Dos Santos, Marcelina, Cyrille Vézy, and Rodolphe Jaffiol. "Adhesion of living cells revealed by variable-angle total internal reflection fluorescence microscopy (Conference Presentation)." In Single Molecule Spectroscopy and Superresolution Imaging IX, edited by Jörg Enderlein, Ingo Gregor, Zygmunt K. Gryczynski, Rainer Erdmann, and Felix Koberling. SPIE, 2016. http://dx.doi.org/10.1117/12.2208672.
Full textSiegberg, Daniel, Christian Michael Roth, and Dirk-Peter Herten. "Single molecule fluorescence spectroscopy: approaches toward quantitative investigations of structure and dynamics in living cells." In Biomedical Optics 2006, edited by Jörg Enderlein and Zygmunt K. Gryczynski. SPIE, 2006. http://dx.doi.org/10.1117/12.646407.
Full textChorvat, D., F. Elzwiei, V. Bassien-Capsa, A. Mateasik, and A. Chorvatova. "Assessment of low-intensity fluorescence signals in living cardiac cells using time-resolved laser spectroscopy." In 2007 34th Annual Computers in Cardiology Conference. IEEE, 2007. http://dx.doi.org/10.1109/cic.2007.4745494.
Full textWiseman, P. W., K. R. Wilson, and J. A. Squier. "Two-photon image correlation spectroscopy: dynamic measurements of molecular aggregation and transport on living cells." In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907433.
Full text