Academic literature on the topic 'Living Cells - Fluorescence Correlation Spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Living Cells - Fluorescence Correlation Spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Living Cells - Fluorescence Correlation Spectroscopy"

1

Kim, Sally A., Katrin G. Heinze, and Petra Schwille. "Fluorescence correlation spectroscopy in living cells." Nature Methods 4, no. 11 (October 30, 2007): 963–73. http://dx.doi.org/10.1038/nmeth1104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bacia, Kirsten, Sally A. Kim, and Petra Schwille. "Fluorescence cross-correlation spectroscopy in living cells." Nature Methods 3, no. 2 (January 23, 2006): 83–89. http://dx.doi.org/10.1038/nmeth822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kinjo, M., H. Sakata, and S. Mikuni. "First Steps for Fluorescence Correlation Spectroscopy of Living Cells." Cold Spring Harbor Protocols 2011, no. 10 (October 1, 2011): pdb.top065920. http://dx.doi.org/10.1101/pdb.top065920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Unsay, Joseph D., and Ana J. Garcia-Saez. "Scanning Fluorescence Correlation Spectroscopy in Mitochondria of Living Cells." Biophysical Journal 106, no. 2 (January 2014): 196a. http://dx.doi.org/10.1016/j.bpj.2013.11.1160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ho Hur, Kwang, John Kohler, and Joachim D. Mueller. "Unbiased Fluorescence Correlation Spectroscopy of Diffusive Processes in Living Cells." Biophysical Journal 120, no. 3 (February 2021): 357a. http://dx.doi.org/10.1016/j.bpj.2020.11.2210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Weiss, Matthias. "Probing the Interior of Living Cells with Fluorescence Correlation Spectroscopy." Annals of the New York Academy of Sciences 1130, no. 1 (May 2008): 21–27. http://dx.doi.org/10.1196/annals.1430.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Markiewicz, Roksana, Jagoda Litowczenko, Jacek Gapiński, Anna Woźniak, Stefan Jurga, and Adam Patkowski. "Nanomolar Nitric Oxide Concentrations in Living Cells Measured by Means of Fluorescence Correlation Spectroscopy." Molecules 27, no. 3 (February 2, 2022): 1010. http://dx.doi.org/10.3390/molecules27031010.

Full text
Abstract:
Measurement of the nitric oxide (NO) concentration in living cells in the physiological nanomolar range is crucial in understanding NO biochemical functions, as well as in characterizing the efficiency and kinetics of NO delivery by NO-releasing drugs. Here, we show that fluorescence correlation spectroscopy (FCS) is perfectly suited for these purposes, due to its sensitivity, selectivity, and spatial resolution. Using the fluorescent indicators, diaminofluoresceins (DAFs), and FCS, we measured the NO concentrations in NO-producing living human primary endothelial cells, as well as NO delivery kinetics, by an external NO donor to the immortal human epithelial living cells. Due to the high spatial resolution of FCS, the NO concentration in different parts of the cells were also measured. The detection of nitric oxide by means of diaminofluoresceins is much more efficient and faster in living cells than in PBS solutions, even though the conversion to the fluorescent form is a multi-step reaction.
APA, Harvard, Vancouver, ISO, and other styles
8

Engelke, Hanna, Doris Heinrich, and Joachim O. Rädler. "Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy." Physical Biology 7, no. 4 (December 1, 2010): 046014. http://dx.doi.org/10.1088/1478-3975/7/4/046014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martinez, Michelle M., Randall D. Reif, and Dimitri Pappas. "Early detection of apoptosis in living cells by fluorescence correlation spectroscopy." Analytical and Bioanalytical Chemistry 396, no. 3 (November 25, 2009): 1177–85. http://dx.doi.org/10.1007/s00216-009-3298-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gao, Xinwei, Yanfeng Liu, Jia Zhang, Luwei Wang, Yong Guo, Yinru Zhu, Zhigang Yang, Wei Yan, and Junle Qu. "Nanodrug Transmembrane Transport Research Based on Fluorescence Correlation Spectroscopy." Membranes 11, no. 11 (November 19, 2021): 891. http://dx.doi.org/10.3390/membranes11110891.

Full text
Abstract:
Although conventional fluorescence intensity imaging can be used to qualitatively study the drug toxicity of nanodrug carrier systems at the single-cell level, it has limitations for studying nanodrug transport across membranes. Fluorescence correlation spectroscopy (FCS) can provide quantitative information on nanodrug concentration and diffusion in a small area of the cell membrane; thus, it is an ideal tool for studying drug transport across the membrane. In this paper, the FCS method was used to measure the diffusion coefficients and concentrations of carbon dots (CDs), doxorubicin (DOX) and CDs-DOX composites in living cells (COS7 and U2OS) for the first time. The drug concentration and diffusion coefficient in living cells determined by FCS measurements indicated that the CDs-DOX composite distinctively improved the transmembrane efficiency and rate of drug molecules, in accordance with the conclusions drawn from the fluorescence imaging results. Furthermore, the effects of pH values and ATP concentrations on drug transport across the membrane were also studied. Compared with free DOX under acidic conditions, the CDs-DOX complex has higher cellular uptake and better transmembrane efficacy in U2OS cells. Additionally, high concentrations of ATP will cause negative changes in cell membrane permeability, which will hinder the transmembrane transport of CDs and DOX and delay the rapid diffusion of CDs-DOX. The results of this study show that the FCS method can be utilized as a powerful tool for studying the expansion and transport of nanodrugs in living cells, and might provide a new drug exploitation strategy for cancer treatment in vivo.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Living Cells - Fluorescence Correlation Spectroscopy"

1

Jebreiil, Khadem Seyed Mohsen. "Fluorescence Correlation Spectroscopy (FCS) analysis of probe transport in cells From measurements to models." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19218.

Full text
Abstract:
Ziel dieser Arbeit ist es eine Toolbox zur Charakterisierung der anomalen Diffusion von Tracerpartikeln in dicht gepackten Systemen mit Fluoreszenz-Korrelationsspektroskopie (FCS) zur Verfügung zu stellen. Es wird gezeigt, dass die robusten Informationen über die Wahrscheinlichkeitsdichtefunktion (PDF) der Verschiebung des Tracers im asymptotischen Verhalten der FCS-Kurven auf langen, sowie auf kurzen Zeitskalen enthalten sind. So liefert die Analyse des Kurzzeitverhaltens zuverlässige Aussagen über die Werte des Exponenten der anomalen Diffusion, des Diffusionskoeffizienten und der niedrigeren Momente der PDF. Dies erlaubt es eine Gaußverteilung zu bestätigen oder zu widerlegen. Der Test auf Gaußverteilung könnte als Index verwendet werden, um die richtige Form der PDF aus einer Reihe von konkurrierenden Ergebnissen zu erraten. Darüber hinaus untersuchen wir die Konsequenz der nicht skalierenden PDF auf Ergebnis der FCS-Kurven. Wir berechnen die FCS für ein Continuous Time Random Walk Modell mit Wartezeiten gemäß einer Lévy-stabilen Verteilung mit exponentiellem cut-off. Die Ergebnisse zeigen, dass obwohl die Abweichungen vom Gauß’schen Verhalten bei der asymptotischen Analyse erkannt werden können, ihre Körper immer an Formen für die normale Diffusion perfekt angepasst werden können. Schließlich schlagen wir einen alternativen Ansatz für die Durchführung von Spot Variation FCS mit dem gewöhnlichen FCS-Setup vor. Wir führen eine nicht-lineare Transformation ein, die auf das mit Binning oder Kernel smoothing method geglättete Intensitätsprofil der detektierten Fluoreszenzphotonen angewendet wird. Ihre Autokorrelation imitiert die FCS-Kurven für die Größen des Laserspots, die im Experiment effektiv kleiner als die anfängliche Größe sind. Die erhaltenen FCS-Kurven werden verwendet, um künstliche dicht gepackte Systeme sowie lebende Zellen auf Nano-Domänen oder Barrieren hin zu untersuchen.
The objective of this thesis is to provide a toolbox for characterization of anomalous diffusion of tracer particle in crowded systems using fluorescence correlation spectroscopy (FCS). We discuss that the robust information about the probability density function (PDF) of the particle’s displacement is contained in the asymptotic behaviour of the FCS curves at long and short times. Thus, analysis of the short-time behaviour provides reliable values of exponent of anomalous, diffusion coefficient and lower moments of the PDF. This allows one to to confirm or reject its Gaussian nature. The Gaussianity test could be then used to guess the correct form of the PDF from a set of competing models. We show the applicability of the proposed analysis protocol in artificially crowded systems and in living cell experiments. Furthermore, we investigate the consequence of non-scaling PDF on the possible results of the FCS data. As an example of such processes, we calculate the FCS curve for a continues time random walk model with waiting times delivered from Lévy-stable distribution with an exponential cut-off in equilibrium. The results indicate that, although the deviations from Gaussian behaviour may be detected when analyzing the short- and long-time asymptotic of the corresponding curves, their bodies are still perfectly fitted by the fit form used for normal diffusion. Finally, we propose an alternative approach for performing spot variation FCS using an ordinary FCS set-up. We introduce a non-linear transformation which applies on the smoothed intensity profile of the detected fluorescence photons with binning or smoothing kernel method. Autocorrelation of the generated intensity profiles mimic the FCS curves for the sizes of laser spots which are effectively smaller than the initial one in the experiment. The obtained FCS curves are used to investigate the presence of nano-domains or barriers in artificially crowded systems and in living cells.
APA, Harvard, Vancouver, ISO, and other styles
2

Regmi, Raju. "Nanophotonic antennas for enhanced single-molecule fluorescence detection and nanospectroscopy in living cell membranes." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0523/document.

Full text
Abstract:
La spectroscopie de fluorescence de molécule individuelle a révolutionné le domaine des sciences biophysiques, en permettant la visualisation des interactions moléculaires dynamiques et des caractéristiques nanoscopiques avec une haute résolution spatio-temporelle. Le contrôle des réactions enzymatiques et l'étude de la dynamique de diffusion de molécules individuelles permet de comprendre l'influence et le contrôle de ces entités nanoscopiques sur plusieurs processus biophysiques. La nanophotonique basée sur la plasmonique offre des nouvelles opportunités de suivi d'évènements à molécule unique, puisque il est possible de confiner des champs électromagnétiques dans les hotspots à nano-échelle, à dimensions spatiales comparables à une molécule unique. Dans ce projet de thèse, nous explorons plusieurs plateformes de nanoantennas photoniques avec des hotspots, et nous avons démontré les applications dans l'amélioration de la spectroscopie de fluorescence de molécule individuelle. En utilisant la fluorescence burst analysis, l'analyse de fluctuations temporelle de fluorescence,TCSPC, nous quantifions les facteurs d'amélioration de fluorescence, les volumes de détection de nanoantennas; ainsi, nous discutons l'accélération de fluorescence photo dynamique. En alternative aux structures plasmoniques, des antennes diélectriques basées sur les dimères en silicone ont aussi démontré d'améliorer la détection de fluorescence à molécule unique, pour des concentrations micro molaires physiologiquement pertinentes. En outre, nous explorons des systèmes planaires antennas in box pour l'investigation de la dynamique de diffusion de la PE et de la SM dans les membranes des cellules vivantes
Single-molecule fluorescence spectroscopy has revolutionized the field of biophysical sciences by enabling visualization of dynamic molecular interactions and nanoscopic features with high spatiotemporal resolution. Monitoring enzymatic reactions and studying diffusion dynamics of individual molecules help us understand how these nanoscopic entities influence and control various biochemical processes. Nanophotonic antennas can efficiently localize electromagnetic radiation into nanoscale spatial dimensions comparable to single bio-molecules. These confined illumination hotspots there by offer the opportunity to follow single-molecule events at physiological expression levels. In this thesis, we explore various photonic nanoantenna platforms and demonstrate their application in enhanced single-molecule fluorescence detection. Using fluorescence burst analysis, fluorescence correlation spectroscopy (FCS), time-correlated TCSPC measurements, and near field simulations, we quantify nanoantenna detection volumes, fluorescence enhancement factors and discuss the fluorescence photodynamic accelerations mediated by optical antennas. Further, using resonant planar antenna-in-box devices we investigate the diffusion dynamics of phosphoethanolamine and sphingomyelin on the plasma membrane of living cells and discuss the results in the context of lipid rafts. Together with cholesterol depletion experiments, we provide evidence of cholesterol-induced nanodomain partitioning within less than 10~nm diameters and characteristic times being ~100 microseconds
APA, Harvard, Vancouver, ISO, and other styles
3

Baum, Michael [Verfasser], and Karsten [Akademischer Betreuer] Rippe. "Protein Mobility and Interaction Measurements in Living Cells by Dual-Color Multi-Focus Fluorescence Cross-Correlation Spectroscopy / Michael Baum ; Betreuer: Karsten Rippe." Heidelberg : Universitätsbibliothek Heidelberg, 2014. http://d-nb.info/1179925017/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Regmi, Raju. "Nanophotonic antennas for enhanced single-molecule fluorescence detection and nanospectroscopy in living cells membranes." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461707.

Full text
Abstract:
Single-molecule fluorescence spectroscopy has revolutionized the field of biophysical sciences by enabling visualization of dynamic molecular interactions and nanoscopic features with high spatiotemporal resolution. Monitoring enzymatic reactions and studying diffusion dynamics of individual molecules (such as lipids and proteins) help us understand how these nanoscopic entities influence and control various biochemical processes. Nanophotonic antennas can efficiently localize electromagnetic radiation into nanoscale spatial dimensions comparable to single bio-molecules (<10 nm). These ultra-confined illumination hotspots thereby offer opportunity to follow single-molecule events at physiological expression levels. In this thesis, we explore various photonic nanoantenna platforms (double nanohole apertures, dimer nanogap antennas and planar "antenna-in-box'') and demonstrate their application in enhanced single-molecule fluorescence detection. Using fluorescence burst analysis, fluorescence correlation spectroscopy (FCS), time-correlated TCSPC measurements, and near field simulations, we quantify nanoantenna detection volumes, fluorescence enhancement factors and discuss the fluorescence photodynamic accelerations mediated by optical nanoantennas. An alternative to plasmonic structures, all-dielectric nanoantenna based on silicon nanogap is also demonstrated to enhance the fluorescence detection of single molecules diffusing in concentrated solutions. Further, using resonant planar "antenna-in-box'' devices we investigate the diffusion dynamics of phosphoethanolamine and sphingomyelin on the plasma membrane of living cells and discuss the results in the context of lipid rafts. Together with cholesterol depletion experiments, we provide evidence of cholesterol-induced nanodomain partitioning within less than 10 nm diameters and characteristic times being ~100 microseconds
La espectroscopia de fluorescencia de una sola molecula ha revolucionado el campo de las ciencias biofisicas, permitiendo la visualizacion de interacciones moleculares dinamicas y caracteristicas nanoscopicas con alta resolucion espaciotemporal. La monitorizacion de las reacciones enzimaticas y el analisis de la dinamica de difusion de moleculas individuales (como lipidos y proteinas) nos ayudan a comprender como estas entidades nanoscopicas influyen y controlan diversos procesos bioquimicos. Las antenas nanofotonicas pueden localizar eficientemente la radiacion electromagnetica en dimensiones espaciales en nanoescala, comparables a biomoleculas unicas (<10 nm). Estos hotspots de iluminacion ultra configurados ofrecen de este modo la oportunidad de monitorizar eventos de molecula unica a niveles de expresion fisiologica. En esta tesis, exploramos varias plataformas fotonicas de nanoantenas (double nanohole aperture, dimero nanogap antenas y "antenna-in-box" planares) y demostramos su aplicacion en la mejora de la deteccion una sola molecula de fluorescencia. Utilizando el analisis por explosion de fluorescencia, espectroscopia de correlacion de fluorescencia (FCS), medidas TCSPC correlacionadas en el tiempo y simulaciones de campo cercano, cuantificamos volumenes de deteccion de nanoantenas, factores de mejora de fluorescencia y discutimos las aceleraciones fotodinámicas de fluorescencia mediada por nanoantennas opticas. Las nanoantennas dielectricas basadas en nanogaps de silico se han propuesto como una alternativa en el realce de la deteccion de fluorescencia de difusion de moleculas unicas en soluciones concentradas. Ademas, utilizando dispositivos resonantes planares de "antenna-in-box", investigamos la dinamica de difusion de la fosfoetanolamina y la esfingomielina en la membrana plasmatica de las celulas vivas y discutimos los resultados en el contexto de las balsas lipidicas. Junto con experimentos de dismincion de colesterol, proporcionamos pruebas de division inducida por colesterol en el nanodominio dentro de diametros menors de 10 nm y con tiempos caracteristicos de ~100 microsegundos.
La spectroscopie de fluorescence d'une seule molécule a révolutionné le domaine des sciences biophysiques, permettant la visualisation d'interactions moléculaires dynamiques et de caractéristiques nanoscopiques à haute résolution spatio-temporelle. Le suivi des réactions enzymatiques et l'analyse de la dynamique de diffusion des molécules individuelles (telles que les lipides et les protéines) nous aident à comprendre comment ces entités nanoscopiques influencent et contrôlent divers processus biochimiques. Les antennes nanophotoniques peuvent localiser efficacement le rayonnement électromagnétique à des dimensions spatiales nanométriques, comparables à des biomolécules uniques (<10 nm). Ces hotspots d'éclairage ultra-configurés offrent la possibilité de surveiller les événements de molécules uniques à des niveaux d'expression physiologiques. Dans ce mémoire, nous examinons plusieurs plates-formes photoniques nanoantennas (nanotrou à double ouverture, I antennes Dimer nanoespace et plane « antenne-in-box ») et de démontrer son application dans l'amélioration de la détection d'une fluorescence seule molécule. Utilisation de l'analyse par spectroscopie de fluorescence d'explosion corrélation de fluorescence (FCS), les mesures TCSPC corrélées dans le temps et proches des simulations champ quantifier les volumes de détection de nanoantennas, les facteurs d'amélioration fluorescence et discuter des accélérations photodynamiques fluorescence médiée nanoantennas opticas. Des nanoantennas diélectriques à base de nanogap silico ont été proposées comme alternative dans l'amélioration de la détection par fluorescence de la diffusion de molécules uniques dans des solutions concentrées. En outre, l'utilisation de "plan d'antenne-in-box" dispositifs de résonance, nous étudions la dynamique de diffusion de phosphoéthanolamine et sphingomyéline dans la membrane plasmique des cellules vivantes et de discuter des résultats dans le contexte des radeaux lipidiques. Conjointement avec des expériences de réduction du cholestérol, nous fournissons des tests de division induits par le cholestérol dans le nanodomaine dans des diamètres plus petits de 10 nm et avec des temps caractéristiques de ~ 100 microsecondes.
APA, Harvard, Vancouver, ISO, and other styles
5

Yokozeki, Tomoichi. "Meltrin β/ADAM19 mediates ectodomain shedding of Neuregulin β1 in the Golgi apparatus : fluorescence correlation spectroscopic observation of the dynamics of ectodomain shedding in living cells." Kyoto University, 2007. http://hdl.handle.net/2433/135688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hébert, Benedict. "Spatio-temporal image correlation spectroscopy : development and implementation in living cells." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102507.

Full text
Abstract:
The object of this thesis is to develop a new extension of Image Correlation Spectroscopy (ICS) that can measure velocity vectors for flowing protein populations in living cells. This new technique, called Spatio-Temporal Image Correlation Spectroscopy (STICS), allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) from fluorescence microscopy image time series of fluorescently labeled cellular proteins via monitoring of the time evolution of the full space-time correlation function of the intensity fluctuations. By using filtering in Fourier space to remove frequencies associated with immobile or slow components, it is possible to measure the protein transport even in the presence of a large fraction of immobile species that are static in the image series. The STICS method can generate complete transport maps of proteins within sub-regions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements, and it can be applied to any type of fluorescence microscopy image time series. This thesis presents the background theory, computer simulations, and analysis of measurements on fluorescent microspheres and fixed cell samples to demonstrate proof of principle, capabilities, and limitations of the method. Visible fluorescent proteins (VFPs) were used to label a variety of the proteins involved in cell-to-extra-cellular-matrix adhesions, including focal adhesion kinase, paxillin, alpha-actinin, alpha5-integrin, talin, vinculin and actin. Various fusion protein pairs were transfected in living cells and imaged using both laser scanning microscopy and total internal reflection microscopes. Using STICS analysis, co-transport maps of proteins were generated within protruding sub-regions of the basal membrane. The new space time image correlation method can probe the mechanistic details of the hypothesized molecular clutch that regulates the extra cellular matrix/cytoskeletal interactions during migration. The technique was also applied to mapping fluid flow in migrating keratocytes in order to elucidate the role that fluid flow plays in migrating cells.
APA, Harvard, Vancouver, ISO, and other styles
7

Srivastava, Mamta. "Image cross-correlation spectroscopy, development and applications on living and fixed cells." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0014/NQ40290.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Burkhardt, Markus. "Electron multiplying CCD – based detection in Fluorescence Correlation Spectroscopy and measurements in living zebrafish embryos." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61021.

Full text
Abstract:
Fluorescence correlation spectroscopy (FCS) is an ultra-sensitive optical technique to investigate the dynamic properties of ensembles of single fluorescent molecules in solution. It is in particular suited for measurements in biological samples. High sensitivity is obtained by employing confocal microscopy setups with diffraction limited small detection volumes, and by using single-photon sensitive detectors, for example avalanche photo diodes (APD). However, fluorescence signal is hence typically collected from a single focus position in the sample only, and several measurements at different positions have to be performed successively. To overcome the time-consuming successive FCS measurements, we introduce electron multiplying CCD (EMCCD) camera-based spatially resolved detection for FCS. With this new detection method, multiplexed FCS measurements become feasible. Towards this goal, we perform FCS measurements with two focal volumes. As an application, we demonstrate spatial cross-correlation measurements between the two detection volumes, which allow to measure calibration-free diffusion coefficients and direction-sensitive processes like molecular flow in microfluidic channels. FCS is furthermore applied to living zebrafish embryos, to investigate the concentration gradient of the morphogen fibroblast growth factor 8 (Fgf8). It is shown by one-focus APD-based and two-focus EMCCD-based FCS, that Fgf8 propagates largely by random diffusion through the extracellular space in developing tissue. The stable concentration gradient is shown to arise from the equilibrium between a local morphogen production and the sink function of the receiving cells by receptor-mediated removal from the extracellular space. The study shows the applicability of FCS to whole model organisms. Especially in such dynamically changing systems in vivo, the perspective of fast parallel FCS measurements is of great importance. In this work, we exemplify parallel, spatially resolved FCS by utilizing an EMCCD camera. The approach, however, can be easily adapted to any other class of two-dimensional array detector. Novel generations of array detectors might become available in the near future, so that multiplexed spatial FCS could then emerge as a standard extension to classical one-focus FCS
Fluoreszenz-Korrelations-Spektroskopie (FCS) ist eine hochempfindliche optische Methode, um die dynamischen Eigenschaften eines Ensembles von einzelnen, fluoreszierenden Molekülen in Lösung zu erforschen. Sie ist insbesondere geeignet für Messungen in biologischen Proben. Die hohe Empfindlichkeit wird erreicht durch Verwendung konfokaler Mikroskop-Aufbauten mit beugungsbegrenztem Detektionsvolumen, und durch Messung der Fluoreszenz mit Einzelphotonen-empfindlichen Detektoren, zum Beispiel Avalanche-Photodioden (APD). Dadurch wird das Fluoreszenzsignal allerdings nur von einer einzelnen Fokusposition in der Probe eingesammelt, und mehrfache Messungen an verschiedenen Positionen in der Probe müssen nacheinander durchgeführt werden. Um die zeitaufwendigen, aufeinanderfolgenden FCS-Einzelmessungen zu überwinden, entwickeln wir in dieser Arbeit Elektronenvervielfachungs-CCD (EMCCD) Kamera-basierte räumlich aufgelöste Detektion für FCS. Mit dieser neuartigen Detektionsmethode werden Multiplex-FCS Messungen möglich. Darauf abzielend führen wir FCS Messungen mit zwei Detektionsvolumina durch. Als Anwendung nutzen wir die räumliche Kreuzkorrelation zwischen dem Signal beider Fokalvolumina. Sie ermöglicht die kalibrationsfreie Bestimmung von Diffusionskoeffizienten und die Messung von gerichteter Bewegung, wie zum Beispiel laminarem Fluss in mikrostrukturierten Kanälen. FCS wird darüber hinaus angewendet auf Messungen in lebenden Zebrafischembryonen, um den Konzentrationsgradienten des Morphogens Fibroblasten-Wachstumsfaktor 8 (Fgf8) zu untersuchen. Mit Hilfe von APD-basierter ein-Fokus FCS und EMCCD-basierter zwei-Fokus FCS zeigen wir, dass Fgf8 hauptsächlich frei diffffundiert im extrazellulären Raum des sich entwickelnden Embryos. Der stabile Konzentrationsgradient entsteht durch ein Gleichgewicht von lokaler Morphogenproduktion und globalem Morphogenabbau durch Rezeptor vermittelte Entfernung aus dem extrazellulären Raum. Die Studie zeigt die Anwendbarkeit von FCS in ganzen Modell-Organismen. Gerade in diesen sich dynamisch ändernden Systemen in vivo ist die Perspektive schneller, paralleler FCS-Messungen von großer Bedeutung. In dieser Arbeit wird räumlich aufgelöste FCS am Beispiel einer EMCCD Kamera durchgeführt. Die Herangehensweise ist jedoch einfach übertragbar auf jede andere Art von zwei-dimensionalem Flächendetektor. Neuartige Flächendetektoren könnten in naher Zukunft verfügbar sein. Dann könnte räumlich aufgelöste Multiplex-FCS eine standardisierte Erweiterung zur klassischen ein-Fokus FCS werden
APA, Harvard, Vancouver, ISO, and other styles
9

Ma, Qijun [Verfasser]. "Protein interactions in living cells studied by multiparameter fluorescence imaging spectroscopy (MFIS) / Qijun Ma." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2016. http://d-nb.info/108283713X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Klufas, Megan J. "Resolving Membrane Receptor Multimerization in Live Cells using Time Resolved Fluorescence Methods." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron151017994353956.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Living Cells - Fluorescence Correlation Spectroscopy"

1

Taylor, D. Lansing, and Yu-li Wang. Fluorescence Microscopy of Living Cells in Culture, Part B: Quantitative Fluorescence Microscopy-Imaging and Spectroscopy. Elsevier Science & Technology Books, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence Microscopy—Imaging and Spectroscopy. Elsevier, 1989. http://dx.doi.org/10.1016/s0091-679x(08)x6031-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

(Editor), Duncan P. Taylor, Yu-Li Wang (Editor), Leslie Wilson (Series Editor), and Paul T. Matsudaira (Series Editor), eds. Flourescence Microscopy of Living Cells in Culture, Part B: Quantitaive Flourescence Microscopy-Imaging and Spectroscopy, Volume 30 (Methods in Cell Biology). Academic Press, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

(Editor), Yu-Li Wang, ed. Methods in Cell Biology: Fluorescence Microscopy of Living Cells in Culture Part B. Quantitative Fluorescence Microscopy-Imaging and Spectroscopy (Methods in Cell Biology, 30). Academic Press, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

SPIE. Fluorescence in Vivo Imaging Based on Genetically Engineered Probes: From Living Cells to Whole Body Imaging IV - 25-26 January 2009, San Jose, California, United States. SPIE, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Living Cells - Fluorescence Correlation Spectroscopy"

1

Weidemann, Thomas, and Petra Schwille. "Fluorescence Correlation Spectroscopy in Living Cells." In Handbook of Single-Molecule Biophysics, 217–41. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-76497-9_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Xiaoxiao, Yong Hwee Foo, and Thorsten Wohland. "Fluorescence Cross-Correlation Spectroscopy (FCCS) in Living Cells." In Methods in Molecular Biology, 557–73. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-649-8_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hodges, Cameron, and Jens-Christian Meiners. "Fluorescence Correlation Spectroscopy on Genomic DNA in Living Cells." In Methods in Molecular Biology, 415–24. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8591-3_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wachsmuth, Malte, and Klaus Weisshart. "Fluorescence Photobleaching and Fluorescence Correlation Spectroscopy: Two Complementary Technologies To Study Molecular Dynamics in Living Cells." In Imaging Cellular and Molecular Biological Functions, 183–233. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71331-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Weidemann, Thomas. "Application of Fluorescence Correlation Spectroscopy (FCS) to Measure the Dynamics of Fluorescent Proteins in Living Cells." In Methods in Molecular Biology, 539–55. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-649-8_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sadamoto, Hisayo, and Hideki Muto. "Fluorescence Cross-correlation Spectroscopy (FCCS) to Observe Dimerization of Transcription Factors in Living Cells." In Methods in Molecular Biology, 229–41. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-284-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vercammen, Jo, Goedele Maertens, and Yves Engelborghs. "Measuring Diffusion in a Living Cell Using Fluorescence Correlation Spectroscopy. A Closer Look at Anomalous Diffusion Using HIV-1 Integrase and its Interactions as a Probe." In Springer Series on Fluorescence, 323–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/4243_2007_009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tiwari, Manisha, and Masataka Kinjo. "Determination of the Dissociation Constant of the NFκB p50/p65 Heterodimer in Living Cells Using Fluorescence Cross-Correlation Spectroscopy." In The Nucleus, 173–86. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1680-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pramanik, Aladdin. "Ligand–Macromolecule Interactions in Live Cells by Fluorescence Correlation Spectroscopy." In Ligand-Macromolecular Interactions in Drug Discovery, 279–90. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-244-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kemnitz, K. "Picosecond Fluorescence Lifetime Imaging Spectroscopy as a New Tool for 3D Structure Determination of Macromolecules in Living Cells." In New Trends in Fluorescence Spectroscopy, 381–410. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56853-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Living Cells - Fluorescence Correlation Spectroscopy"

1

Hodges, Cameron, Rudra P. Kafle, and Jens-Christian Meiners. "Quantitative fluorescence correlation spectroscopy on DNA in living cells." In SPIE BiOS, edited by Jörg Enderlein, Ingo Gregor, Zygmunt K. Gryczynski, Rainer Erdmann, and Felix Koberling. SPIE, 2017. http://dx.doi.org/10.1117/12.2251409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Lifang, Da Xing, Tongshen Chen, and Yihui Pei. "Nucleoplasmic viscosity of living cells investigated by fluorescence correlation spectroscopy." In Photonics Asia 2007, edited by Xingde Li, Qingming Luo, and Ying Gu. SPIE, 2007. http://dx.doi.org/10.1117/12.760226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Webb, Watt W. "Multiphoton Microscopy MPM: Imaging Spectra and Dynamics of Molecular Function Deep in Living Tissues." In In Vivo optical Imaging at the NIH. Washington, D.C.: Optica Publishing Group, 1999. http://dx.doi.org/10.1364/ivoi.1999.msi3.

Full text
Abstract:
Multiphoton Excitation (MPE) of fluorescence provides the optimum photophysics for microscopic imaging deep in living tissue with minimal photodamage, to depths so far ~ 400 µm. Tissue autofluorescence excited by two-photon or three-photon absorption to ultra-violet energies can provide specific indications of disease. Useful autofluorescence of serotonin (5HT), melatonin, indolamine breakdown products, NADH, collagen, elastin, and a number of yet-to-be-identified molecular species, some of which identify disease states are already being imaged routinely. For research in model animals, genetic constructs that label specific molecules with mutants of Green Fluorescent Protein (GFP) can be imaged deep in tissue with MPM. MPM excitation of GFP mutants at nanomolar concentrations for Fluorescence Correlation Spectroscopy (FCS) provides a robust, internally calibrated, new measure of pH in cells and tissues. Fluorescent labels that penetrate tissue can be usefully imaged in living animals and thick tissue cultures; for example, thioflavins in the beta amyloid plaques of Alzheimer’s Disease are being imaged deep in living transgenic mouse brains. Multiphoton imaging spectroscopy and fluorescence lifetime imaging (FLIM) provides useful molecular identification diagnostics. Some applications are shown in order to illustrate capability. However, the potential of MPM for in vivoimaging has barely been explored, and this technology should be regarded as providing a fertile opportunity that is yet to be fully exploited for biomedical research and for clinical applications.
APA, Harvard, Vancouver, ISO, and other styles
4

Doglia, Silvia M., L. Bianchi, Roberto Colombo, N. Allam, Hamid Morjani, Michel Manfait, and A. M. Villa. "Confocal fluorescence microscopy of living cells." In Laser Spectroscopy of Biomolecules: 4th International Conference on Laser Applications in Life Sciences, edited by Jouko E. Korppi-Tommola. SPIE, 1993. http://dx.doi.org/10.1117/12.146189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xiaojing. "FLUORESCENCE SWITCH FOR SELECTIVELY SENSING COPPER AND HISTIDINE IN BOTH VITRO AND LIVING CELLS." In 69th International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.td12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

"Multi-color fluorescence fluctuation spectroscopy detects higher-order molecular interactions in living cells." In Microscience Microscopy Congress 2023 incorporating EMAG 2023. Royal Microscopical Society, 2023. http://dx.doi.org/10.22443/rms.mmc2023.268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cardoso Dos Santos, Marcelina, Cyrille Vézy, and Rodolphe Jaffiol. "Adhesion of living cells revealed by variable-angle total internal reflection fluorescence microscopy (Conference Presentation)." In Single Molecule Spectroscopy and Superresolution Imaging IX, edited by Jörg Enderlein, Ingo Gregor, Zygmunt K. Gryczynski, Rainer Erdmann, and Felix Koberling. SPIE, 2016. http://dx.doi.org/10.1117/12.2208672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Siegberg, Daniel, Christian Michael Roth, and Dirk-Peter Herten. "Single molecule fluorescence spectroscopy: approaches toward quantitative investigations of structure and dynamics in living cells." In Biomedical Optics 2006, edited by Jörg Enderlein and Zygmunt K. Gryczynski. SPIE, 2006. http://dx.doi.org/10.1117/12.646407.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chorvat, D., F. Elzwiei, V. Bassien-Capsa, A. Mateasik, and A. Chorvatova. "Assessment of low-intensity fluorescence signals in living cardiac cells using time-resolved laser spectroscopy." In 2007 34th Annual Computers in Cardiology Conference. IEEE, 2007. http://dx.doi.org/10.1109/cic.2007.4745494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wiseman, P. W., K. R. Wilson, and J. A. Squier. "Two-photon image correlation spectroscopy: dynamic measurements of molecular aggregation and transport on living cells." In Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39. IEEE, 2000. http://dx.doi.org/10.1109/cleo.2000.907433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography