Academic literature on the topic 'Littlewood-Paley inequality'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Littlewood-Paley inequality.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Littlewood-Paley inequality"

1

Stevic, Stevo. "A Littlewood-Paley type inequality." Bulletin of the Brazilian Mathematical Society 34, no. 2 (July 1, 2003): 211–17. http://dx.doi.org/10.1007/s00574-003-0008-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wilson, J. M. "A semi-discrete Littlewood–Paley inequality." Studia Mathematica 153, no. 3 (2002): 207–33. http://dx.doi.org/10.4064/sm153-3-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Djordjević, Olivera, and Miroslav Pavlović. "On a Littlewood-Paley type inequality." Proceedings of the American Mathematical Society 135, no. 11 (November 1, 2007): 3607–12. http://dx.doi.org/10.1090/s0002-9939-07-09016-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wilson, J. Michael. "Note on a Littlewood-Paley inequality." Proceedings of the American Mathematical Society 128, no. 12 (June 7, 2000): 3609–12. http://dx.doi.org/10.1090/s0002-9939-00-05504-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Choa, Jun Soo, and Hong Oh Kim. "A Littlewood and Paley-type inequality on the ball." Bulletin of the Australian Mathematical Society 50, no. 2 (October 1994): 265–71. http://dx.doi.org/10.1017/s0004972700013721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Lanzhe. "Sharp endpoint inequality for multilinear Littlewood-Paley operator." Kodai Mathematical Journal 27, no. 2 (June 2004): 134–43. http://dx.doi.org/10.2996/kmj/1093351320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Prestini, Elena, and Per Sjölin. "A littlewood-paley inequality for the Carleson operator." Journal of Fourier Analysis and Applications 6, no. 5 (September 2000): 457–66. http://dx.doi.org/10.1007/bf02511540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

SHIGEKAWA, Ichiro, and Nobuo YOSHIDA. "Littlewood-Paley-Stein inequality for a symmetric diffusion." Journal of the Mathematical Society of Japan 44, no. 2 (April 1992): 251–80. http://dx.doi.org/10.2969/jmsj/04420251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pichorides, S. K. "A note on the Littlewood-Paley square function inequality." Colloquium Mathematicum 60, no. 2 (1990): 687–91. http://dx.doi.org/10.4064/cm-60-61-2-687-691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Borovitskiy, V. "Weighted Littlewood–Paley inequality for arbitrary rectangles in ℝ²." St. Petersburg Mathematical Journal 32, no. 6 (October 20, 2021): 975–97. http://dx.doi.org/10.1090/spmj/1680.

Full text
Abstract:
Weighted counterparts of the one-sided Littlewood–Paley inequalities for arbitrary rectangles in R 2 \mathbb {R}^2 are proved. For a partition I \mathcal {I} of the plane R 2 \mathbb {R}^2 into rectangles with sides parallel to coordinate axes and a weight w ( ⋅ , ⋅ ) w(\,\cdot \,, \,\cdot \,) satisfying the two-parameter Muckenhoupt condition A p / 2 A_{p/2} for 2 > p > ∞ 2 > p > \infty , the following inequality holds: c p , w ‖ { M I f } I ∈ I ‖ L w p ( l 2 ) ≤ ‖ f ‖ L w p , \begin{equation*} c_{p, w}\lVert \{M_I f\}_{I \in \mathcal {I}} \rVert _{L^p_w(l^2)} \leq \lVert f \rVert _{L_w^p} , \end{equation*} where the symbols M I f ^ = f ^ χ I \widehat {M_I f} = \widehat {f} \chi _{I} denote the corresponding Fourier multipliers. For I \mathcal {I} as above, p p in the range 0 > p > 2 0 > p > 2 , and weights w w satisfying a dual condition α r ( p ) \alpha _{r(p)} , the following inequality holds ‖ ∑ I ∈ I f I ‖ L w p ≤ C p , w ‖ { f I } I ∈ I ‖ L w p ( l 2 ) , where supp ⁡ f I ^ ⊆ I for I ∈ I . \begin{equation*} \Big \|{\sum }_{I \in \mathcal {I}} f_I\Big \|_{L^p_w} \leq C_{p, w} \big \| \left \{ f_I \right \}_{I \in \mathcal {I}} \big \|_{L^p_w(l^2)} , \text { where } \operatorname {supp}{\widehat {f_I}} \subseteq I \text { for } I \in \mathcal {I}. \end{equation*} The proof is based on the theory of two-parameter singular integral operators on Hardy spaces developed by R. Fefferman and some of its more recent weighted generalizations. The former and the latter inequalities are extensions to the weighted setting, respectively, for Journe’s result of 1985 and Osipov’s result of 2010.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Littlewood-Paley inequality"

1

Cruzeiro, Ana Bela, and Xicheng Zhang. "A Littlewood-Paley Type Inequality on the Path Space." In Seminar on Stochastic Analysis, Random Fields and Applications IV, 57–67. Basel: Birkhäuser Basel, 2004. http://dx.doi.org/10.1007/978-3-0348-7943-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

"The Littlewood-Paley-Stein inequality." In Translations of Mathematical Monographs, 47–77. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/mmono/224/03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography