Academic literature on the topic 'Lits fluidisé'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lits fluidisé.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lits fluidisé"
Miháltz, P., Zs Csikor, P. Chatellier, and B. Siklódi. "Optimisation de la concentration de biomasse dans un réacteur à lit fluidisé." Revue des sciences de l'eau 14, no. 2 (April 12, 2005): 131–45. http://dx.doi.org/10.7202/705413ar.
Full textDufour, I., A. Maali, Y. Amarouchene, C. Ayela, B. Caillard, A. Darwiche, M. Guirardel, et al. "The Microcantilever: A Versatile Tool for Measuring the Rheological Properties of Complex Fluids." Journal of Sensors 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/719898.
Full textRuvalcaba, J. Ramiro Rodriguez, Brigitte Caussat, Merhdji Hemati, and Jean-Pierre Couderc. "Étude hydrodynamique des lits fluidisés sous vide et sous haute température." Canadian Journal of Chemical Engineering 77, no. 1 (February 1999): 35–44. http://dx.doi.org/10.1002/cjce.5450770107.
Full textChehbouni, A., J. Chaouki, C. Guy, and D. Klvana. "Description et modélisation des structures globale et locale des lits fluidisés en régime turbulent." Chemical Engineering Journal and the Biochemical Engineering Journal 61, no. 2 (February 1996): 73–82. http://dx.doi.org/10.1016/0923-0467(95)03029-8.
Full textKing, Danielle, Hakan Başağaoğlu, Hoa Nguyen, Frank Healy, Melissa Whitman, and Sauro Succi. "Effects of Advective-Diffusive Transport of Multiple Chemoattractants on Motility of Engineered Chemosensory Particles in Fluidic Environments." Entropy 21, no. 5 (May 4, 2019): 465. http://dx.doi.org/10.3390/e21050465.
Full textSabiri, Nour-Eddine, and Jacques Comiti. "Ecoulement de fluides newtoniens et non newtoniens à travers des lits fixes stratifiés." Canadian Journal of Chemical Engineering 75, no. 6 (December 1997): 1030–37. http://dx.doi.org/10.1002/cjce.5450750605.
Full textDuravac. "Vacuum publications Duravac Vacuum Fluids 1986 Price List." Vacuum 36, no. 10 (October 1986): 748. http://dx.doi.org/10.1016/0042-207x(86)90543-9.
Full textMajor, Laura. "“There Were Some Things That Did Not Change”: Postcolonial Reckonings with Gender in The No. 1 Ladies’ Detective Agency Series." College Literature 51, no. 1 (January 2024): 84–105. http://dx.doi.org/10.1353/lit.2024.a917865.
Full textWang, Jie, Ming Jun Xu, Lin Li Shi, Qi Shi, Yong Chao Wang, and Yi Xiang Duan. "A Computer-Controlled In Situ Analysis Instrument Based on Laser Induced Breakdown Spectroscopy." Applied Mechanics and Materials 556-562 (May 2014): 561–66. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.561.
Full textEsen, Oğul, Miroslav Grmela, Hasan Gümral, and Michal Pavelka. "Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy." Entropy 21, no. 9 (September 18, 2019): 907. http://dx.doi.org/10.3390/e21090907.
Full textDissertations / Theses on the topic "Lits fluidisé"
Nacef, Saci. "Hydrodynamique des lits fluidisés gaz-liquide-solide." Vandoeuvre-les-Nancy, INPL, 1991. http://www.theses.fr/1991INPL056N.
Full textSabiri, Nour-Eddine. "Etude de l'écoulement des fluides newtoniens et non newtoniens à travers les milieux poreux : lits fixes et lits fluidisés." Nantes, 1995. http://www.theses.fr/1995NANT2052.
Full textAguillon, Martinez Javier. "Étude du comportement hydrodynamique des lits fluidisés circulants avec injection d'air secondaire." Compiègne, 1995. http://www.theses.fr/1995COMPD826.
Full textMotte, Jérôme. "Étude du comportement hydrodynamique de mélanges multi-solides dans un lit fluidisé circulant." Compiègne, 1996. http://www.theses.fr/1996COMPD947.
Full textSaberi, Babak. "Développement des techniques de mesure dans les écoulements polyphasiques et les lits fluidisés." Compiègne, 1996. http://www.theses.fr/1996COMPD944.
Full textSaberi, Shadi. "Modélisation des systèmes à écoulement gaz-solide : application aux cas des réacteurs à lit fluidisé circulant." Compiègne, 1996. http://www.theses.fr/1996COMPD945.
Full textHelland, Eivind. "Etude des écoulements fluide-solide dans les lits fluidisés : simulation numérique et analyse des hétérogénéités." Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11053.
Full textThe goal of this work is to contribute to a better understanding of gas-particle flows. We have developed a code based on the Eulerian-Lagrangian approach in a two-dimensional configuration. This method allows us to follow the trajectory of each particle in the riser in order to study the discrete behavior of the solid phase. We have investigated the gas-solid flow both in diluted and dense fluidized beds. In the first case, we studied the clustering behavior of the particles caused by hydrodynamics and modified by collision characteristics. In the second, we investigated a dense bed in order to get a better understanding of the bubble formation, which is linked to porosity perturbations within the bed
Quan, Haiqin. "Etude théorique et expérimentale des micro-lits fluidisés : hydrodynamique et modélisation numérique." Thesis, Ecole centrale de Lille, 2017. http://www.theses.fr/2017ECLI0027/document.
Full textMicro-fluidized bed (MFB) exhibits great advantages such as a large specific contact surface, a fast dissipation of heat (ideal for exothermic reactions) and better mass and heat transfers, but suffers from difficulties in precise control and shows strong frictional wall effect. Present study was conducted experimentally and numerically to understand fundamental hydrodynamics in MFBs. Experimental work was carried out in four MFBs of 20-4 mm compared to two relatively large beds of 100-50 mm using three types of particles (B347: 347 μm, 2475 kg/m3; B105: 105 μm, 8102 kg/m3; A63: 63.8μm, 2437 kg/m3). The ratio of static bed height (Hs) to bed diameter (Dt) was set between 1-4. Mechanical vibration was applied to the 4 mm bed. A new method for flow regimes diagnosis was developed based on pressure fluctuation analyses, which mainly include calculating the standard deviation, autocorrelation function, probability density function, power spectral density function and time-frequency analysis. Numerical simulations were performed under Eulerian-Eulerian framework in 2D. Six flow regimes were identified: fixed bed, bubbling, bubbling/slugging, slugging, slugging/turbulent and bubbling/turbulent. Partial fluidization is encountered at Hs/Dt=1-2 while slugging prevails quickly after minimum fluidization at Hs/Dt=3-4. In the 4 mm bed, fluidization of B347 particles show better fluidization quality, while an increase in Umf is observed for B105 and A63 particles. Mechanical vibration reduces partial fluidization, thus resulting in larger ΔP and smaller Umf. A larger Umb and a delayed Uc were obtained as well. Results by simulations agree reasonably well with experimental data
Özel, Ali. "Simulation aux grandes échelles des lits fluidisés circulants gaz-particule." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0090/document.
Full textEulerian two fluid approach is generally used to simulate gas-solid flows in industrial circulating fluidized beds. Because of limitation of computational resources, simulations of large vessels are usually performed by using too coarse grid. Coarse grid simulations can not resolve fine flow scales which can play an important role in the dynamic behaviour of the beds. In particular, cancelling out the particle segregation effect of small scales leads to an inadequate modelling of the mean interfacial momentum transfer between phases and particulate shear stresses by secondary effect. Then, an appropriate modelling ac counting for influences of unresolved structures has to be proposed for coarse-grid simu-lations. For this purpose, computational grids are refined to get mesh-independent result where statistical quantities do not change with further mesh refinement for a 3-D peri-odic circulating fluidized bed. The 3-D periodic circulating fluidized is a simple academic configuration where gas-solid flow conducted with A-type particles is periodically driven along the opposite direction of the gravity. The particulate momentum and agitation equations are filtered by the volume averaging and the importance of additional terms due to the averaging procedure are investigated by budget analyses using the mesh independent result. Results show that the filtered momentum equation of phases can be computed on coarse grid simulations but sub-grid drift velocity due to the sub-grid correlation between the local fluid veloc- ity and the local particle volume fraction and particulate sub-grid shear stresses must be taken into account. In this study, we propose functional and structural models for sub- grid drift velocity, written in terms of the difference between the gas velocity-solid volume fraction correlation and the multiplication of the filtered gas velocity with the filtered solid volume fraction. Particulate sub-grid shear stresses are closed by models proposed for single turbulent flows. Models’ predictabilities are investigated by a priori tests and they are validated by coarse-grid simulations of 3-D periodic circulating, dense fluidized beds and experimental data of industrial scale circulating fluidized bed in manner of a posteriori tests
Sellami, Jawhar. "Conception, mise en œuvre, développement et modélisation de réacteurs de précipitation utilisant des lits fluidisés." Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL088N/document.
Full textThe objective of this work is to conceive, develop, implement and to optimize a continuous technology allowing a good control of the precipitation reactions, fast chemical process, giving birth to a solid phase. This precipitor is a multipurpose engine with fluidized bed which did not make the same great strides like fluidized bed crystallizers. Two experimental approaches were adopted : (1) the study of the mixing phenomena of the reagents and (2) the study of the influence of the operating conditions on the precipitation of a model product. The model product selected for this study is the calcite, the polymorphic most stable phase of calcium carbonate which has three polymorphs: vaterite, aragonite and calcite. The latter is obtained by the precipitation reaction between the calcium chloride and sodium carbonate solutions at a temperature of 20° C and a complexing agent (sodium citrate) to have the required crystalline form. A kinetic study was undertaken for the determination of the nucleation and crystalline growth kinetics of calcite in citrate medium. The fluidized bed reactor, having a volume of 10 L, consisted of two zones: cylindrical for fluidization and classification of the particles and cylindro-conical for decantation, was conceived at the Chemical Engineering Science Laboratory (LSGC). The study of mixing phenomena, performed using the decoloration acid-base reaction and the hydrodynamic study, carried out using suspensions of glass microballs, made it possible to develop and optimize this multipurpose reactor. The feasibility of the precipitation of calcite in a fluidized bed was then checked. The experiments carried out in the presence of an important solid content made it possible to decrease supersaturation and to support the crystalline growth. The precipitate obtained presents a relatively narrow size distribution and the particle shape is appreciably spherical. Lastly, the modelling tests of the fluidized bed reactor were undertaken to carry out simulations using the FLUENT commercial computer code
Books on the topic "Lits fluidisé"
J, Anthony E., ed. Fluidized bed combustion. New York: M. Dekker, 2004.
Find full textDeruelle, Nathalie, and Jean-Philippe Uzan. Fields and matter. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0026.
Full textCombustion and gasification in fluidized beds. Boca Raton, FL: Taylor & Francis, 2005.
Find full textNew Edition Diverticular Diet Cookbook, Meal Plan and Food List: The Detailed Guide to Living with Diverticular Disease. Containing Food to Eat and Avoid with Recipes Ranging from Clear Fluids to Foods with Low Residue and High Fiber Content. Independently Published, 2022.
Find full textBook chapters on the topic "Lits fluidisé"
Butcher, Tim A. "Magnetic Action at a Distance: Fields, Gradients and Currents in Fluids." In Topics in Applied Physics, 11–21. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-58376-6_2.
Full textCasey, James, and Marcel J. Crochet. "List of Publications of Paul M. Naghdi." In Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids, 33–47. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9229-2_3.
Full textAbidi, Sophia. "3 Between communities and identities." In Living at Night in Times of Pandemic, 47–62. Bielefeld, Germany: transcript Verlag, 2024. http://dx.doi.org/10.14361/9783839467268-004.
Full text"List of Figures." In Fluidity, edited by Marcel Finke and Kassandra Nakas, 295–300. Dietrich Reimer Verlag, 2022. http://dx.doi.org/10.5771/9783496030614-295.
Full text"Duality, Fluidity, and Equilibrium." In Taken from the Lips: Gender and Eros in Mesoamerican Religions, 13—Ins4. BRILL, 2006. http://dx.doi.org/10.1163/9789047408680_006.
Full textSchulkin, Jay. "The Concept of Sport." In Sport. Columbia University Press, 2016. http://dx.doi.org/10.7312/columbia/9780231176767.003.0001.
Full text"List of Figures and Illustrations." In Global Fluids, viii. Berghahn Books, 2018. http://dx.doi.org/10.2307/j.ctvw04bzv.3.
Full text"List of Symbols." In Life in Moving Fluids, 403–6. Princeton University Press, 2020. http://dx.doi.org/10.2307/j.ctvzsmfc6.23.
Full text"List of algorithms." In Molecular Simulation of Fluids, 567–69. Elsevier, 2024. http://dx.doi.org/10.1016/b978-0-323-85398-9.00005-8.
Full textWitten, T., and P. Pincus. "Polymer molecules." In Structured Fluids, 41–82. Oxford University PressOxford, 2004. http://dx.doi.org/10.1093/oso/9780198526889.003.0003.
Full textConference papers on the topic "Lits fluidisé"
Nogues, M., M. Valles, M. Bourouis, D. Boer, and A. Coronas. "Absorption-Compression Heat Pump for Space Heating and Cooling Using Organic Fluids." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1290.
Full textShiari, Behrouz, Mahdi M. Sadeghi, Ali Darvishian, and Khalil Najafi. "A Discrete Model for an Electrostatically Driven Micro-Hydraulic Actuator." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-39019.
Full textLiu, Jing, and Yang Yang. "Cryogenic and Fluidic Ways Lead to Low Cost Micro/Nano Devices." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82143.
Full textMahat, Meg, Tae Y. Choi, Nasrasadani Seifolah, and Arup Neogi. "Dual Pump Femtosecond Laser Induced Plasma." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56096.
Full textWang, Jiaqi, Hirofumi Miki, Kean C. Aw, and Rajnish N. Sharma. "A New Diffuser/Nozzle Structure With Extended Sidewalls for Maximising the Valveless Micropump Performance." In ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icnmm2014-21325.
Full textYedidiah, S. "An Updated Study of Recirculation at the Inlet of a Rotodynamic Impeller." In ASME 2005 Fluids Engineering Division Summer Meeting. ASMEDC, 2005. http://dx.doi.org/10.1115/fedsm2005-77048.
Full textAbabneh, Amer Khalil, and Charles Garris. "Direct Interaction of Fluid-to-Fluid in an Unsteady Ejector With a Zero-Degree Conning Radial Diffuser." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78544.
Full textMilanovic, Ivana, and Sunil Kumar. "Just-In-Time and Iterative Learning in Thermo-Fluids." In ASME 2024 Fluids Engineering Division Summer Meeting collocated with the ASME 2024 Heat Transfer Summer Conference and the ASME 2024 18th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/fedsm2024-122894.
Full textBöhle, M. "Numerical Investigation of the Flow in Hydrostatic Journal Bearings With Porous Material." In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83437.
Full textYoung, Monica J., Mark N. Glauser, Hiroshi Higuchi, and Jeffrey Taylor. "Towards Sensing and Control of Separation in Subsonic Flows." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45586.
Full text