Journal articles on the topic 'Litium ion batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Litium ion batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gonggo, Siang Tandi, Anang Wahid M. Diah, and Reki Lanteene. "Pengaruh Kaolin Terhadap Membran Blend Kitosan Poli Vinil Alkohol-Litium Sebagai Membran Elektrolit Untuk Aplikasi Baterai Ion Litium." Jurnal Akademika Kimia 6, no. 1 (December 8, 2017): 55. http://dx.doi.org/10.22487/j24775185.2017.v6.i1.9229.
Full textRiyanto, Agus, Simon Sembiring, Megawati Megawati, Ni’matil Mabarroh, Junaidi Junaidi, and Ediman Ginting. "Analisis Transisi Fasa dan Sifat Dielektrik Pada Li2CoSiO4 yang Dipreparasi dari Silika Sekam Padi dan Produk Daur Ulang Katoda Baterai Ion Litium Bekas." ALCHEMY Jurnal Penelitian Kimia 15, no. 1 (March 14, 2019): 89. http://dx.doi.org/10.20961/alchemy.15.1.24622.89-103.
Full textA’yuni, Qurrota, and Trisna Kumala Dhaniswara. "Sintesis Sol-Gel dan Karakterisasi Struktur Padatan FeF3 dengan Difraksi Sinar-X." Journal of Pharmacy and Science 4, no. 1 (January 30, 2019): 23–28. http://dx.doi.org/10.53342/pharmasci.v4i1.127.
Full textGalushkin, Nikolay E., Nataliya N. Yazvinskaya, and Dmitriy N. Galushkin. "Investigation of the Temperature Dependence of Parameters in the Generalized Peukert Equation Used to Estimate the Residual Capacity of Traction Lithium-Ion Batteries." Batteries 8, no. 12 (December 9, 2022): 280. http://dx.doi.org/10.3390/batteries8120280.
Full textJiang, Shida, and Zhengxiang Song. "Estimating the State of Health of Lithium-Ion Batteries with a High Discharge Rate through Impedance." Energies 14, no. 16 (August 8, 2021): 4833. http://dx.doi.org/10.3390/en14164833.
Full textLu, Wanyu, Zijie Wang, and Shuhang Zhong. "Sodium-ion battery technology: Advanced anodes, cathodes and electrolytes." Journal of Physics: Conference Series 2109, no. 1 (November 1, 2021): 012004. http://dx.doi.org/10.1088/1742-6596/2109/1/012004.
Full textJafari, Sadiqa, Zeinab Shahbazi, and Yung-Cheol Byun. "Lithium-Ion Battery Health Prediction on Hybrid Vehicles Using Machine Learning Approach." Energies 15, no. 13 (June 28, 2022): 4753. http://dx.doi.org/10.3390/en15134753.
Full textGrzeczka, Grzegorz, and Paweł Swoboda. "Analysis of the Possibility of Use Lithium - Ion as a Starting Battery on the Ship Engine Room." Solid State Phenomena 236 (July 2015): 106–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.236.106.
Full textChen, Pengfei, Ziwei Lin, Tian Tan, and Yongzheng Zhang. "Lithium-Ion Battery Development with High Energy Density." Highlights in Science, Engineering and Technology 27 (December 27, 2022): 806–13. http://dx.doi.org/10.54097/hset.v27i.3849.
Full textHynes, Toren. "Optimising 3-phenyl-1,4,2-dioxazol-5-one as an electrolyte additive for Lithium-Ion cells." Proceedings of the Nova Scotian Institute of Science (NSIS) 50, no. 2 (March 11, 2020): 373. http://dx.doi.org/10.15273/pnsis.v50i2.10006.
Full textWang, Xingxing, Yujie Zhang, Yelin Deng, Yinnan Yuan, Fubao Zhang, Shuaishuai Lv, Yu Zhu, and Hongjun Ni. "Effects of Different Charging Currents and Temperatures on the Voltage Plateau Behavior of Li-Ion Batteries." Batteries 9, no. 1 (January 5, 2023): 42. http://dx.doi.org/10.3390/batteries9010042.
Full textLu, Kaijia, Chuanshan Zhao, and Yifei Jiang. "Research Progress of Cathode Materials for Lithium-ion Batteries." E3S Web of Conferences 233 (2021): 01020. http://dx.doi.org/10.1051/e3sconf/202123301020.
Full textZhang, Kai, Jianxiang Yin, and Yunze He. "Acoustic Emission Detection and Analysis Method for Health Status of Lithium Ion Batteries." Sensors 21, no. 3 (January 21, 2021): 712. http://dx.doi.org/10.3390/s21030712.
Full textCamargos, Murilo, and Plamen Angelov. "State of Health and Lifetime Prediction of Lithium-ion Batteries Using Self-learning Incremental Models." PHM Society European Conference 7, no. 1 (June 29, 2022): 78–86. http://dx.doi.org/10.36001/phme.2022.v7i1.3323.
Full textPuttaswamy, Rangaswamy, Suresh Gurukar Shivappa, Mahadevan Kittappa Malavalli, and Yanjerappa Arthoba Nayaka. "Triclinic LiVPO4F/C Cathode For Aqueous Rechargeable Lithium-Ion Batteries." Advanced Materials Letters 10, no. 3 (December 31, 2018): 193–200. http://dx.doi.org/10.5185/amlett.2019.2141.
Full textPetrov, S. V., S. G. Bondarenko, and Sato Koichi. "Plasmo-chemical process of obtaining nanosilicon for lithium-ion batteries." Paton Welding Journal 2022, no. 10 (October 28, 2022): 49–56. http://dx.doi.org/10.37434/tpwj2022.10.08.
Full textZhang, Chaolong, Yigang He, Lifeng Yuan, Sheng Xiang, and Jinping Wang. "Prognostics of Lithium-Ion Batteries Based on Wavelet Denoising and DE-RVM." Computational Intelligence and Neuroscience 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/918305.
Full textYang, Qingyun, Yanjin Liu, Hong Ou, Xueyi Li, Xiaoming Lin, Akif Zeb, and Lei Hu. "Fe-Based metal–organic frameworks as functional materials for battery applications." Inorganic Chemistry Frontiers 9, no. 5 (2022): 827–44. http://dx.doi.org/10.1039/d1qi01396c.
Full textShah, Raj, Vikram Mittal, Eliana Matsil, and Andreas Rosenkranz. "Magnesium-ion batteries for electric vehicles: Current trends and future perspectives." Advances in Mechanical Engineering 13, no. 3 (March 2021): 168781402110033. http://dx.doi.org/10.1177/16878140211003398.
Full textXie, Xing-Chen, Ke-Jing Huang, and Xu Wu. "Metal–organic framework derived hollow materials for electrochemical energy storage." Journal of Materials Chemistry A 6, no. 16 (2018): 6754–71. http://dx.doi.org/10.1039/c8ta00612a.
Full textChang, Choong-koo. "Factors Affecting Capacity Design of Lithium-Ion Stationary Batteries." Batteries 5, no. 3 (August 28, 2019): 58. http://dx.doi.org/10.3390/batteries5030058.
Full textGuo, Yi, and Yuhang Chen. "Study on SOC Estimation of Li-ion Battery Based on the Comparison of UKF Algorithm and AUKF Algorithm." Journal of Physics: Conference Series 2418, no. 1 (February 1, 2023): 012097. http://dx.doi.org/10.1088/1742-6596/2418/1/012097.
Full textGao, Yun, Wujun Ji, and Xiaoqiang Chen. "Numerical Study on Thermal Management of Air-Cooling Model for Diamond, Triangular and Rectangular Lithium-Ion Batteries of Electric Vehicles." Processes 10, no. 6 (June 1, 2022): 1104. http://dx.doi.org/10.3390/pr10061104.
Full textZhao, Guang Jin, Wen Long Wu, and Yang Guo. "The Possibility of Using Oxide Cathode Materials of Spent Lithium-Ion Power Batteries for Carbon Dioxide Capture from Fossil Fuel Plant." Advanced Materials Research 779-780 (September 2013): 52–55. http://dx.doi.org/10.4028/www.scientific.net/amr.779-780.52.
Full textNowak, Sascha, and Martin Winter. "Elemental analysis of lithium ion batteries." Journal of Analytical Atomic Spectrometry 32, no. 10 (2017): 1833–47. http://dx.doi.org/10.1039/c7ja00073a.
Full textW, He. "Recycling Potential for Waste Electric Vehicle Lithium - ion Batteries in China." Open Access Journal of Waste Management & Xenobiotics 2, no. 4 (2019): 1–4. http://dx.doi.org/10.23880/oajwx-16000129.
Full textYazvinskaya, Nataliya N., Mikhail S. Lipkin, Nikolay E. Galushkin, and Dmitriy N. Galushkin. "Peukert Generalized Equations Applicability with Due Consideration of Internal Resistance of Automotive-Grade Lithium-Ion Batteries for Their Capacity Evaluation." Energies 15, no. 8 (April 13, 2022): 2825. http://dx.doi.org/10.3390/en15082825.
Full textPires, Rodrigo A., Samuel A. Carvalho, Braz J. Cardoso Filho, Igor A. Pires, Rudolf Huebner, and Thales A. C. Maia. "The Assessment of Electric Vehicle Storage Lifetime Using Battery Thermal Management System." Batteries 9, no. 1 (December 24, 2022): 10. http://dx.doi.org/10.3390/batteries9010010.
Full textLu, Jun Min, and Xiao Kan Wang. "Study on the Lithium-Ion Batteries Performance of Electric Vehicles." Advanced Materials Research 986-987 (July 2014): 1869–72. http://dx.doi.org/10.4028/www.scientific.net/amr.986-987.1869.
Full textWang, Jie, Ping Nie, Bing Ding, Shengyang Dong, Xiaodong Hao, Hui Dou, and Xiaogang Zhang. "Biomass derived carbon for energy storage devices." Journal of Materials Chemistry A 5, no. 6 (2017): 2411–28. http://dx.doi.org/10.1039/c6ta08742f.
Full textChen, Wenshuai, Haipeng Yu, Sang-Young Lee, Tong Wei, Jian Li, and Zhuangjun Fan. "Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage." Chemical Society Reviews 47, no. 8 (2018): 2837–72. http://dx.doi.org/10.1039/c7cs00790f.
Full textP, Nayana. "HIGH PERFORMANCE NANOWIRE ARRAY BATTERY WITH PRELOADED LITHIUM ION." Journal of Electrical Engineering and Automation 01, no. 01 (September 8, 2019): 21–29. http://dx.doi.org/10.36548/jeea.2019.1.003.
Full textBi, Jikai, Jae-Cheon Lee, and Hao Liu. "Performance Comparison of Long Short-Term Memory and a Temporal Convolutional Network for State of Health Estimation of a Lithium-Ion Battery using Its Charging Characteristics." Energies 15, no. 7 (March 26, 2022): 2448. http://dx.doi.org/10.3390/en15072448.
Full textDiao, Weiping, Chetan Kulkarni, and Michael Pecht. "Development of an Informative Lithium-Ion Battery Datasheet." Energies 14, no. 17 (September 1, 2021): 5434. http://dx.doi.org/10.3390/en14175434.
Full textZhang, Yixing, Shunli Wang, and Wenhua Xu. "An improved smoothing factor-extended kalman filtering method for accurate online state-of-charge estimation of Lithium-ion battery." Journal of Physics: Conference Series 2232, no. 1 (May 1, 2022): 012011. http://dx.doi.org/10.1088/1742-6596/2232/1/012011.
Full textZou, Gang, Zhen Yan, Chengying Zhang, and Lei Song. "Transfer learning with CNN-LSTM model for capacity prediction of lithium-ion batteries under small sample." Journal of Physics: Conference Series 2258, no. 1 (April 1, 2022): 012042. http://dx.doi.org/10.1088/1742-6596/2258/1/012042.
Full textReddy, Mogalahalli V., Alain Mauger, Christian M. Julien, Andrea Paolella, and Karim Zaghib. "Brief History of Early Lithium-Battery Development." Materials 13, no. 8 (April 17, 2020): 1884. http://dx.doi.org/10.3390/ma13081884.
Full textChen, Yuxin. "Enhance the Market Competitiveness of Electric Vehicles by Improving the Design of Lithium-ion Batteries." Highlights in Science, Engineering and Technology 32 (February 12, 2023): 245–51. http://dx.doi.org/10.54097/hset.v32i.5173.
Full textJafari, Sadiqa, and Yung-Cheol Byun. "XGBoost-Based Remaining Useful Life Estimation Model with Extended Kalman Particle Filter for Lithium-Ion Batteries." Sensors 22, no. 23 (December 6, 2022): 9522. http://dx.doi.org/10.3390/s22239522.
Full textOuyang, Quan, Rui Ma, Zhaoxiang Wu, Guotuan Xu, and Zhisheng Wang. "Adaptive Square-Root Unscented Kalman Filter-Based State-of-Charge Estimation for Lithium-Ion Batteries with Model Parameter Online Identification." Energies 13, no. 18 (September 22, 2020): 4968. http://dx.doi.org/10.3390/en13184968.
Full textSchmidgruber, Nils, Dominik Mayer, and Jürgen Fleischer. "Hochproduktive, hydraulische Batteriezellfertigung/Highly productive, hydraulic batterycell manufacturing - Plan for the highly productive manufacturing of lithium-ion batteries using a hydraulic press." wt Werkstattstechnik online 112, no. 09 (2022): 586–90. http://dx.doi.org/10.37544/1436-4980-2022-09-58.
Full textLong, Bing, Xiangnan Li, Xiaoyu Gao, and Zhen Liu. "Prognostics Comparison of Lithium-Ion Battery Based on the Shallow and Deep Neural Networks Model." Energies 12, no. 17 (August 25, 2019): 3271. http://dx.doi.org/10.3390/en12173271.
Full textGuo, Dongxu, Geng Yang, Guangjin Zhao, Mengchao Yi, Xuning Feng, Xuebing Han, Languang Lu, and Minggao Ouyang. "Determination of the Differential Capacity of Lithium-Ion Batteries by the Deconvolution of Electrochemical Impedance Spectra." Energies 13, no. 4 (February 18, 2020): 915. http://dx.doi.org/10.3390/en13040915.
Full textLiu, Guanchen, and Lijun Zhang. "Research on the Thermal Characteristics of an 18650 Lithium-Ion Battery Based on an Electrochemical–Thermal Flow Coupling Model." World Electric Vehicle Journal 12, no. 4 (November 24, 2021): 250. http://dx.doi.org/10.3390/wevj12040250.
Full textMadani, Seyed Saeed, Erik Schaltz, and Søren Knudsen Kær. "Applying Different Configurations for the Thermal Management of a Lithium Titanate Oxide Battery Pack." Electrochem 2, no. 1 (January 23, 2021): 50–63. http://dx.doi.org/10.3390/electrochem2010005.
Full textChen, Libao, Ming Zhang, and Weifeng Wei. "Graphene-Based Composites as Cathode Materials for Lithium Ion Batteries." Journal of Nanomaterials 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/940389.
Full textZhou, Fang, Yong Zhong, and Pei Zhang. "Research on Thermal Management System for the Vehicle Application of Lithium-Ion Power Batteries." Advanced Materials Research 347-353 (October 2011): 984–88. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.984.
Full textTao, Yibin, Jinhua Xue, Min Xia, Jin Tao, Qichao Zhang, Xiao Li, Qiangqiang Liao, Cheng Li, and Haibo Tang. "Economic Feasibility of Echelon Utilization Battery in Photovoltaic Energy Storage." E3S Web of Conferences 194 (2020): 02001. http://dx.doi.org/10.1051/e3sconf/202019402001.
Full textSu, Chun, Hongjing Chen, and Zejun Wen. "Prediction of remaining useful life for lithium-ion battery with multiple health indicators." Eksploatacja i Niezawodnosc - Maintenance and Reliability 23, no. 1 (January 2, 2021): 176–83. http://dx.doi.org/10.17531/ein.2021.1.18.
Full textPoyner, Mark A., Indumini Jayasekara, and Dale Teeters. "Fabrication of a Novel Nanostructured SnO2/LiCoO2 Lithium-Ion Cell." MRS Advances 1, no. 45 (2016): 3075–81. http://dx.doi.org/10.1557/adv.2016.537.
Full text