Academic literature on the topic 'Litium ion batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Litium ion batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Litium ion batteries"
Gonggo, Siang Tandi, Anang Wahid M. Diah, and Reki Lanteene. "Pengaruh Kaolin Terhadap Membran Blend Kitosan Poli Vinil Alkohol-Litium Sebagai Membran Elektrolit Untuk Aplikasi Baterai Ion Litium." Jurnal Akademika Kimia 6, no. 1 (December 8, 2017): 55. http://dx.doi.org/10.22487/j24775185.2017.v6.i1.9229.
Full textRiyanto, Agus, Simon Sembiring, Megawati Megawati, Ni’matil Mabarroh, Junaidi Junaidi, and Ediman Ginting. "Analisis Transisi Fasa dan Sifat Dielektrik Pada Li2CoSiO4 yang Dipreparasi dari Silika Sekam Padi dan Produk Daur Ulang Katoda Baterai Ion Litium Bekas." ALCHEMY Jurnal Penelitian Kimia 15, no. 1 (March 14, 2019): 89. http://dx.doi.org/10.20961/alchemy.15.1.24622.89-103.
Full textA’yuni, Qurrota, and Trisna Kumala Dhaniswara. "Sintesis Sol-Gel dan Karakterisasi Struktur Padatan FeF3 dengan Difraksi Sinar-X." Journal of Pharmacy and Science 4, no. 1 (January 30, 2019): 23–28. http://dx.doi.org/10.53342/pharmasci.v4i1.127.
Full textGalushkin, Nikolay E., Nataliya N. Yazvinskaya, and Dmitriy N. Galushkin. "Investigation of the Temperature Dependence of Parameters in the Generalized Peukert Equation Used to Estimate the Residual Capacity of Traction Lithium-Ion Batteries." Batteries 8, no. 12 (December 9, 2022): 280. http://dx.doi.org/10.3390/batteries8120280.
Full textJiang, Shida, and Zhengxiang Song. "Estimating the State of Health of Lithium-Ion Batteries with a High Discharge Rate through Impedance." Energies 14, no. 16 (August 8, 2021): 4833. http://dx.doi.org/10.3390/en14164833.
Full textLu, Wanyu, Zijie Wang, and Shuhang Zhong. "Sodium-ion battery technology: Advanced anodes, cathodes and electrolytes." Journal of Physics: Conference Series 2109, no. 1 (November 1, 2021): 012004. http://dx.doi.org/10.1088/1742-6596/2109/1/012004.
Full textJafari, Sadiqa, Zeinab Shahbazi, and Yung-Cheol Byun. "Lithium-Ion Battery Health Prediction on Hybrid Vehicles Using Machine Learning Approach." Energies 15, no. 13 (June 28, 2022): 4753. http://dx.doi.org/10.3390/en15134753.
Full textGrzeczka, Grzegorz, and Paweł Swoboda. "Analysis of the Possibility of Use Lithium - Ion as a Starting Battery on the Ship Engine Room." Solid State Phenomena 236 (July 2015): 106–12. http://dx.doi.org/10.4028/www.scientific.net/ssp.236.106.
Full textChen, Pengfei, Ziwei Lin, Tian Tan, and Yongzheng Zhang. "Lithium-Ion Battery Development with High Energy Density." Highlights in Science, Engineering and Technology 27 (December 27, 2022): 806–13. http://dx.doi.org/10.54097/hset.v27i.3849.
Full textHynes, Toren. "Optimising 3-phenyl-1,4,2-dioxazol-5-one as an electrolyte additive for Lithium-Ion cells." Proceedings of the Nova Scotian Institute of Science (NSIS) 50, no. 2 (March 11, 2020): 373. http://dx.doi.org/10.15273/pnsis.v50i2.10006.
Full textDissertations / Theses on the topic "Litium ion batteries"
Smaldone, Antonella. "Phisical chemistry of plasmas and applications to cultural heritage and material science." Doctoral thesis, Universita degli studi di Salerno, 2018. http://hdl.handle.net/10556/3115.
Full textIn this project, the attention has been focused on the laser ablation process and on laser induced plasmas spectroscopic study for two different technological applications. First of all, the analytical LIBS (Lase Induced Breakdown Spectroscopy) technique, which allows to obtain qualitative and quantitative information on the elemental composition of the materias analyzed, has been used and developed. The LIBS has been applied to the study of bronze and silver archaelogical findings, coming from three different sites in Basilicata and dated VI century B.C.. The inverse Calibration Free method, that is new a method, that is new a method of quantitative analysis, has been optimized. … [edited by Author]
XXX ciclo
Rohde, Michael [Verfasser], and Ingo [Akademischer Betreuer] Krossing. "New conducting salts for rechargeable lithium-ion batteries = Neue Leitsalze für wiederaufladbare Lithium-Ionen Batterien." Freiburg : Universität, 2014. http://d-nb.info/1123481490/34.
Full textBjörkman, Carl Johan. "Detection of lithium plating in lithium-ion batteries." Thesis, KTH, Kemiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266369.
Full textMed en ökande efterfråga på hållbara transportlösningar så finns det ett behov av elektrifierade fordon. Ett sätt att lagra energi ombord ett elektrifierat fordon är att använda et litium-jon-batteri. Denna batteriteknologi har många fördelar: t.ex. är dessa batterier återladdningsbara, och de kan leverera höga uteffekter samtidigt som de kan ha ett stort energiinnehåll. för att säkerställa en säker drift av litium-jon-batterier måste batteriets styrsystem vara designat med hänsyn till den elektrokemiska dynamiken inuti batteriet. Dock åldras batteriet med tiden, vilket innebär att denna dynamik ändras med tiden, vilket innebär att styrningen av batteriet måste anpassa sig till denna föråldring. Det är möjligt att förutspå åldring av batterier, men vissa åldringsmekanismer kan ske slumpartat, t.ex. via slumpmässiga förändringar i tillverkningsprocessen av batteriet, eller variationer i användningen av batteriet. Genom att därmed bevaka dessa åldringsmekanismer in situ så kan styrsystemets algoritm anpassa sig utmed batteriåldringen, trots dessa slumpartade effekter. En åldringmekanism hos litium-jon-batterier är s.k. litiumplätering. Denna mekanism innebär att litium-joner elektrokemiskt pläteras i form av metalliskt litium på ytan av litium-jon-batteriets negativa elektrod. Mekanismen kan också inducera andra åldringsmekanismer, t.ex. gasutveckling eller elektrolytreduktion. Detta projekt har undersökt en metod för att detektera litiumplätering in situ efter att plätering har skett, genom att både analysera öppencellspänningens (OCV) förändring med tiden direkt efter uppladdning samt analysera de svällande krafterna som uppstår under uppladdning av batteriet. Resultaten visar på en korrelation mellan en hög sannolikhet för litiumplätering och observationen av en topp i svällningskraft och en platå i OCV-kurvan. resultaten visar också en möjlig korrelation mellan påbörjandet av litium-plätering och påbörjandet av toppen i svällningskraft. Vidare visar även resultaten ett troligt samband mellan signalernas magnitud och mängden pläterat litium. Slutligen visar resultaten också ett möjligt samband mellan irreversibelt pläterat litium och ett svällningstryck som ackumuleras med varje uppladdningscykel. Dock krävs det en validering med mer avancerade analysmetoder för att säkerställa användningsbarheten av dessa två signaler, vilket ej var möjligt inom detta projekt.
Adelhelm, Philipp. "From Lithium-Ion to Sodium-Ion Batteries." Diffusion fundamentals 21 (2014) 5, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32397.
Full textHerstedt, Marie. "Towards Safer Lithium-Ion Batteries." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3542.
Full textXu, Chao. "All silicon lithium-ion batteries." Licentiate thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261626.
Full textChinyama, Luzendu Gabriel. "Recovery of Lithium from Spent Lithium Ion Batteries." Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59866.
Full textBurch, Damian. "Intercalation dynamics in lithium-ion batteries." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54233.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 153-160).
A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to reaction rate laws as boundary conditions to handle the transfer of ions between the crystal and the electrolyte. In this thesis, I carefully derive a second set of boundary conditions--necessary to close the original PDE system--via a variational analysis of the free energy functional; I include a thermodynamically-consistent treatment of the reaction rates; I develop a semi-discrete finite volume method for numerical simulations; and I include a careful asymptotic treatment of the dynamical regimes found in different limits of the governing equations. Further, I will present several new findings relevant to batteries: Defect Interactions: When applied to strongly phase-separating, highly anisotropic materials such as LiFePO4, this model predicts phase-transformation waves between the lithiated and unlithiated portions of a crystal. This work extends the analysis of the wave dynamics, and describes a new mechanism for current capacity fade through the interactions of these waves with defects in the particle. Size-Dependent Spinodal and Miscibility Gaps: This work demonstrates that the model is powerful enough to predict that the spinodal and miscibility gaps shrink as the particle size decreases. It is also shown that boundary reactions are another general mechanism for the suppression of phase separation.
(cont.) Multi-Particle Interactions: This work presents the results of parallel simulations of several nearby crystals linked together via common parameters in the boundary conditions. The results demonstrate the so-called "mosaic effect": the particles tend to fill one at a time, so much so that the particle being filled actually draws lithium out of the other ones. Moreover, it is shown that the smaller particles tend to phase separate first, a phenomenon seen in experiments but difficult to explain with any other theoretical model.
by Damian Burch.
Ph.D.
Ranom, Rahifa. "Mathematical modelling of lithium ion batteries." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/375538/.
Full textNazari, Ashkan. "HEAT GENERATION IN LITHIUM-ION BATTERIES." University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1469445487.
Full textBooks on the topic "Litium ion batteries"
Yoshio, Masaki, Ralph J. Brodd, and Akiya Kozawa, eds. Lithium-Ion Batteries. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-34445-4.
Full textWriter, Beta. Lithium-Ion Batteries. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16800-1.
Full textEftekhari, Ali, ed. Future Lithium-ion Batteries. Cambridge: Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016124.
Full textlibrary, Wiley online, ed. Lithium ion rechargeable batteries. Weinheim: Wiley-VCH, 2009.
Find full textC, Julien, and Stoĭnov Z. B, eds. Materials for lithium-ion batteries. Dordrecht: Kluwer Academic Publishers, 2000.
Find full textAbu-Lebdeh, Yaser. Nanotechnology for Lithium-Ion Batteries. Boston, MA: Springer US, 2013.
Find full textMatsumoto, Futoshi, and Takao Gunji. Water in Lithium-Ion Batteries. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8786-0.
Full textAbu-Lebdeh, Yaser, and Isobel Davidson, eds. Nanotechnology for Lithium-Ion Batteries. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-4605-7.
Full textJulien, C., and Z. Stoynov, eds. Materials for Lithium-Ion Batteries. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2.
Full textvan Schalkwijk, Walter A., and Bruno Scrosati, eds. Advances in Lithium-Ion Batteries. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/b113788.
Full textBook chapters on the topic "Litium ion batteries"
Julien, Christian, Alain Mauger, Ashok Vijh, and Karim Zaghib. "Anodes for Li-Ion Batteries." In Lithium Batteries, 323–429. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_10.
Full textJulien, Christian, Alain Mauger, Ashok Vijh, and Karim Zaghib. "Safety Aspects of Li-Ion Batteries." In Lithium Batteries, 549–83. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_14.
Full textJulien, Christian, Alain Mauger, Ashok Vijh, and Karim Zaghib. "Technology of the Li-Ion Batteries." In Lithium Batteries, 585–603. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-19108-9_15.
Full textAbraham, K. M. "Rechargeable Sodium and Sodium-Ion Batteries." In Lithium Batteries, 349–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch16.
Full textZhang, Zhengming John, and Premanand Ramadass. "Lithium-Ion Battery Separators1." In Lithium-Ion Batteries, 1–46. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-34445-4_20.
Full textKoga, Shumon, and Miroslav Krstic. "Lithium-Ion Batteries." In Materials Phase Change PDE Control & Estimation, 199–219. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58490-0_8.
Full textSharma, Neeraj, and Marnix Wagemaker. "Lithium-Ion Batteries." In Neutron Scattering Applications and Techniques, 139–203. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06656-1_7.
Full textVyas, Ujjval B., Varsha A. Shah, and Athul Vijay P. K. "Lithium-Ion Batteries." In Distributed Energy Systems, 185–212. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003229124-13.
Full textYoshino, Akira. "Lithium-Ion Batteries." In Encyclopedia of Applied Electrochemistry, 1194–97. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_145.
Full textObayi, Camillus Sunday, Paul Sunday Nnamchi, and Fabian I. Ezema. "Lithium-Ion Batteries." In Electrode Materials for Energy Storage and Conversion, 1–22. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003145585-1.
Full textConference papers on the topic "Litium ion batteries"
Durganjali, C. Santhi, Harini Raghavan, and Sudha Radhika. "Modelling and Performance Analysis of Different Types of Li-Ion Battery." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24404.
Full textLagarde, Quentin, Serge Mazen, Bruno Beillard, Julien Leylavergne, Joel Andrieu, Jean-Pierre Cancès, Vahid Meghdadi, Michelle Lalande, Edson Martinod, and Marie-Sandrine Denis. "Étude et conception de système de management pour batteries innovantes, Batterie Sodium (NA-ion)." In Les journées de l'interdisciplinarité 2022. Limoges: Université de Limoges, 2022. http://dx.doi.org/10.25965/lji.581.
Full textWang, Yixu, and Hsiao-Ying Shadow Huang. "Comparison of Lithium-Ion Battery Cathode Materials and the Internal Stress Development." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-65663.
Full textKoga, Shumon, Leobardo Camacho-Solorio, and Miroslav Krstic. "State Estimation for Lithium Ion Batteries With Phase Transition Materials." In ASME 2017 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dscc2017-5266.
Full textChiuHuang, Cheng-Kai, Chuanzhen Zhou, and Hsiao-Ying Shadow Huang. "Exploring Lithium-Ion Intensity and Distribution via a Time-of-Flight Secondary Ion Mass Spectroscopy." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63013.
Full textYoo, Kisoo, Prashanta Dutta, and Soumik Banerjee. "Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52407.
Full textChiuHuang, Cheng-Kai, and Hsiao-Ying Shadow Huang. "A Diffusion Model in a Two-Phase Interfacial Zone for Nanoscale Lithium-Ion Battery Materials." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-89235.
Full textLi, Genong, Shaoping Li, and Gi-Heon Kim. "Treatment of Electric Short-Circuit in Electrochemical-Thermal Coupled Battery Simulations." In ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49664.
Full textMarcicki, James, Giorgio Rizzoni, A. T. Conlisk, and Marcello Canova. "A Reduced-Order Electrochemical Model of Lithium-Ion Cells for System Identification of Battery Aging." In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-6013.
Full textReddy, T. B., P. G. Russell, J. Flynn, and G. M. Ehrlich. "Rechargeable Lithium Ion Batteries." In SAE Aerospace Power Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. http://dx.doi.org/10.4271/971231.
Full textReports on the topic "Litium ion batteries"
Patterson, Mary. Chemical Shuttle Additives in Lithium Ion Batteries. Office of Scientific and Technical Information (OSTI), March 2013. http://dx.doi.org/10.2172/1163216.
Full textLucht, Brett L. Novel Electrolytes for Lithium Ion Batteries. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1165338.
Full textTurner, Joseph, and Edward Buiel. EXTREME FAST CHARGING LITHIUM-ION BATTERIES. Office of Scientific and Technical Information (OSTI), October 2020. http://dx.doi.org/10.2172/1737737.
Full textJansen, Andrew N., Gregory K. Krumdick, Stephen E. Trask, Bryant J. Polzin, Wenquan Lu, Ozge Kahvecioglu Feridun, Stuart D. Hellring, Matthew Stewart, and Brian Kornish. New Aqueous Binders for Lithium-ion Batteries. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1418339.
Full textJohn Olson, PhD. NANOWIRE CATHODE MATERIAL FOR LITHIUM-ION BATTERIES. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/826165.
Full textGaines, L., and R. Cuenca. Costs of lithium-ion batteries for vehicles. Office of Scientific and Technical Information (OSTI), August 2000. http://dx.doi.org/10.2172/761281.
Full textLi, Jianlin, Hsin Wang, Srikanth Allu, Srdjan Simunovic, Kelsey (Grady) Livingston, Nancy Dudney, Brain Morin, Carl Hu, Drew Pereira, and Amy Brinson. Lithium-Ion Batteries with Safer Current Collectors. Office of Scientific and Technical Information (OSTI), October 2022. http://dx.doi.org/10.2172/1895226.
Full textBehl, Wishvender K., and Edward J. Plichta. An Electrolyte for Low Temperature Applications of Lithium and Lithium-Ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada351962.
Full textKarulkar, Mohan Pramod. Real-Time Detection of Lithium Plating During Fast Charge of Lithium Ion Batteries. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1592831.
Full textOwens, Boone B., and P. S. Prasad. The Use of Lithium Batteries in Biomedical Devices. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada212187.
Full text