Academic literature on the topic 'Lithographic applications'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithographic applications.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lithographic applications"
Kwon, B., and Jong H. Kim. "Importance of Molds for Nanoimprint Lithography: Hard, Soft, and Hybrid Molds." Journal of Nanoscience 2016 (June 22, 2016): 1–12. http://dx.doi.org/10.1155/2016/6571297.
Full textHruby, Jill. "LIGA Technologies and Applications." MRS Bulletin 26, no. 4 (April 2001): 337–40. http://dx.doi.org/10.1557/mrs2001.76.
Full textHuenger, Eric, Joe Lachowski, Greg Prokopowicz, Ray Thibault, Michael Gallagher, Scott Kisting, Lynne Mills, and Masaki Kondoh. "Low Temperature Curing - Aqueous Base Developable Photoimageable Dielectric for WLP (Wafer Level Packaging)." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, DPC (January 1, 2012): 000986–1015. http://dx.doi.org/10.4071/2012dpc-tp25.
Full textFinter, J. "Photopolymer Systems for Lithographic Applications." Molecular Crystals and Liquid Crystals Incorporating Nonlinear Optics 161, no. 1 (August 1988): 231–53. http://dx.doi.org/10.1080/00268948808070251.
Full textAngelopoulos, Marie. "Lithographic applications of conducting polymers." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 9, no. 6 (November 1991): 3428. http://dx.doi.org/10.1116/1.585816.
Full textSchriever, Guido, and Peter Zink. "EUV Sources for Lithographic Applications." Optik & Photonik 3, no. 2 (June 2008): 40–43. http://dx.doi.org/10.1002/opph.201190189.
Full textHatzakis, Michael. "Organosilicon polymers for lithographic applications." Makromolekulare Chemie. Macromolecular Symposia 24, no. 1 (January 1989): 169–75. http://dx.doi.org/10.1002/masy.19890240117.
Full textStewart, Michael D., and C. Grant Willson. "Imprint Materials for Nanoscale Devices." MRS Bulletin 30, no. 12 (December 2005): 947–51. http://dx.doi.org/10.1557/mrs2005.248.
Full textWATT, F., A. A. BETTIOL, J. A. VAN KAN, E. J. TEO, and M. B. H. BREESE. "ION BEAM LITHOGRAPHY AND NANOFABRICATION: A REVIEW." International Journal of Nanoscience 04, no. 03 (June 2005): 269–86. http://dx.doi.org/10.1142/s0219581x05003139.
Full textLauria, John, Ronald Albright, Olga Vladimirsky, Maarten Hoeks, Roel Vanneer, Bert van Drieenhuizen, Luoqi Chen, Luc Haspeslagh, and Ann Witvrouw. "SLM device for 193nm lithographic applications." Microelectronic Engineering 86, no. 4-6 (April 2009): 569–72. http://dx.doi.org/10.1016/j.mee.2008.11.022.
Full textDissertations / Theses on the topic "Lithographic applications"
Hadley, Philip. "Aqueous photopolymers for lithographic applications." Thesis, Lancaster University, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308991.
Full textCeresoli, M. "SYMMETRIC BLOCK COPOLYMERS TEMPLATES FOR NANO-LITHOGRAPHIC APPLICATIONS." Doctoral thesis, Università degli Studi di Milano, 2016. http://hdl.handle.net/2434/422644.
Full textEravuchira, Pinkie Jacob. "Lithographic Micro- and Nanostructuring of SU-8 for Biotechnological Applications." Doctoral thesis, Universitat Rovira i Virgili, 2015. http://hdl.handle.net/10803/292245.
Full textEn esta tesis doctoral se ha llevado a cabo investigación sobre métodos de fabricación de estructuras micrométricas y nanométricas de SU-8. La investigación ha partido de la base de un análisis de los trabajos anteriores en estructuración de SU-8 y ha tenido como principal objetivo el de obtener nuevas estructuras para la aplicación en biotecnología. Uno de los resultados más relevantes de la investigación ha sido la propuesta de una técnica híbrida que combina fotolitografía con litografía por presión para obtener superficies de SU-8 con una estructura jerarquizada. Las investigaciones también han llevado a proponer un mecanismo de sentado basado en la fotoluminiscencia del SU-8. Los experimentos demuestran que la fotoluminiscencia se reduce a cada paso de modificación de la química de superficie. Esta característica se produce de forma repetible también cuando se adhiere un antigen (IgG) a una superficie de SU-8 modificada con el anticuerpo correspondiente (aIgG). Gracia a este efecto se ha propuesto un inmunosensor basado en la reducción de fotoluminiscencia i se ha evaluado su sensibilidad. El resultado más relevante demuestra que las estructuras jerárquicamente organizadas muestran una reducción de fotoluminiscencia mayor, y por tanto una mejor sensibilidad
n this Ph. D. Dissertation research on lithographic methods for the fabrication of micrometric and nanometric SU-8 structures has been carried out. The research has been based on a survey of existing techniques to structure the SU-8 with the main objective of obtaining novel structures for biotechnology applications. One of the main results of the research has been the proposal of an hybrid technique that combines photolithography and soft lithography to obtain hierarchically structured SU-8 surfaces. The investigations have also led to the proposal of a sensing mechanism based on the photoluminescence of SU-8. The experiments show that photoluminescence is reduced with every step of surface chemistry modification. This is a repeatable feature that is observed also upon attachment of an antigen (IgG) onto a SU-8 surface grafted with antibody (aIgG). Thanks to this effect, an immunosensor based on the reduction of photoluminescence has been proposed and its sensitivity has been evaluated. The results show that the hierarchically patterned structures offer a higher photoluminescence reduction and thus a better sensitivity.
Liang, Jianyu. "Non-lithographic fabrication of superlattices for nanometric electro-magnetic-optic applications /." View online version; access limited to Brown University users, 2005. http://wwwlib.umi.com/dissertations/fullcit/3174638.
Full textMurphy, Julian James. "Lithographic characterisation of a selection of polymeric resists for microlithographic applications." Thesis, University of Kent, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244327.
Full textGotrik, Kevin Willy. "Flow controlled solvent vapor annealing of block copolymers for lithographic applications." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81057.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 185-192).
Self-assembly of block copolymer thin-films may provide an inexpensive alternative to patterning lithographic features below the resolution limits of traditional optical methods. Block copolymers (BCPs) are polymers made of two or more distinct monomer/block units that are covalently bonded. Due to their differences in surface energy, the different blocks tend to phase segregate like oil and water; but because of the covalent linkage, this segregation is practically limited to size scales ranging from only a few nm to ~ 100 nm. A thin film of a BCP can be used in much the same way as a photoresist in the lithographic process, whereas a desired pattern morphology can be obtained by etching one block away and leaving behind a self-assembled hard mask for the underlying substrate. After a thin film of BCP is coated onto a given substrate, the BCP must be given an annealing step, where the disordered entangled polymer networks can be allowed to diffuse and equilibrate into lower free energy configurations which result in periodic patterns of micelles with different morphologies such as spheres, in/out of plane cylinders, etc. This work explored the technique of solvent vapor annealing, where organic solvents were allowed to interact with BCP thin films to facilitate annealing and act as surrogates for the different BCP polymer blocks. This allowed for a wide range of control over the BCP self-assembly (morphology, periodicity, etc.) for a given molecular weight BCP. Additionally, by adding heat at critical times during the self-assembly, time scales for solvent vapor enhanced self-assembly could be reduced from hours to seconds making the prospects for this technology to become industrially applicable more promising.
by Kevin Willy Gotrik.
Ph.D.
Alnaimi, Radhwan. "Development of a low-debris laser driven soft X-ray source for lithographic applications." Thesis, Imperial College London, 2016. http://hdl.handle.net/10044/1/61658.
Full textANDREOZZI, ANDREA. "Fabrication of nanostructured materials using block copolymer based lithography." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28333.
Full textWieberger, Florian [Verfasser], and Hans-Werner [Akademischer Betreuer] Schmidt. "Synthesis and Combinatorial Optimization of Novel Star-Shaped Resist Materials for Lithographic Applications / Florian Wieberger. Betreuer: Hans-Werner Schmidt." Bayreuth : Universität Bayreuth, 2012. http://d-nb.info/1059412489/34.
Full textTu, Fan [Verfasser], and Hubertus [Gutachter] Marbach. "On the Lithographic Fabrication of Fe and Co Nanostructures via Focused Electron/Photon Beam Induced Processing: Properties and Applications of the Structures / Fan Tu ; Gutachter: Hubertus Marbach." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1150964308/34.
Full textBooks on the topic "Lithographic applications"
E, Seeger David, and Society of Photo-optical Instrumentation Engineers., eds. Emerging lithographic technologies: 10-11 March 1997, Santa Clara, California. Bellingham, Wash: SPIE, 1997.
Find full textYuli, Vladimirsky, Society of Photo-optical Instrumentation Engineers., and Semiconductor Equipment and Materials International, eds. Emerging lithographic technologies III: 15-17 March, 1999, Santa Clara, California. Bellingham, Wash: SPIE, 1999.
Find full text1969-, Lercel Michael J., Society of Photo-optical Instrumentation Engineers., and International SEMATECH, eds. Emerging lithographic technologies X: 21-23 February, 2006, San Jose, California, USA. Bellingham, Wash: SPIE, 2006.
Find full textL, Engelstad Roxann, Society of Photo-optical Instrumentation Engineers., Semiconductor Equipment and Materials International., and International SEMATECH, eds. Emerging lithographic technologies VII: 25-27 February, 2003, Santa Clara, California, USA. Bellingham, Wash: SPIE, 2003.
Find full textAnn, Dobisz Elizabeth, Society of Photo-optical Instrumentation Engineers., Semiconductor Equipment and Materials International., and International SEMATECH, eds. Emerging lithographic technologies IV: 28 February-1 March, 2000, Santa Clara, USA. Bellingham, Wash: SPIE, 2000.
Find full text1969-, Lercel Michael J., Society of Photo-optical Instrumentation Engineers., and SEMATECH (Organization), eds. Emerging lithographic technologies XI: 27 February- 1 March 2007, San Jose, California, USA. Bellingham, Wash: SPIE, 2007.
Find full text1969-, Lercel Michael J., Society of Photo-optical Instrumentation Engineers., and SEMATECH (Organization), eds. Emerging lithographic technologies XI: 27 February- 1 March 2007, San Jose, California, USA. Bellingham, Wash: SPIE, 2007.
Find full textScott, Mackay R., Society of Photo-optical Instrumentation Engineers., Semiconductor Equipment and Materials International., and International SEMATECH, eds. Emerging lithographic technologies VIII: 24-26 February, 2004, Santa Clara, California, USA. Bellingham, Wash., USA: SPIE, 2004.
Find full textYuli, Vladimirsky, Society of Photo-optical Instrumentation Engineers., Semiconductor Equipment and Materials International, and SEMATECH (Organization), eds. Emerging lithographic technologies II: 23-25 February 1998, Santa Clara, California. Bellingham, Wash: SPIE, 1998.
Find full textAnn, Dobisz Elizabeth, Society of Photo-optical Instrumentation Engineers., Semiconductor Equipment and Materials International, and International SEMATECH, eds. Emerging lithographic technologies V: 27 February-1 March, 2001, Santa Clara, [California], USA. Bellingham, Wash: SPIE, 2001.
Find full textBook chapters on the topic "Lithographic applications"
McCarley, Robin L., Melani G. Sullivan, Stanton Ching, Yining Zhang, and Royce W. Murray. "Lithographic and Related Microelectrode Fabrication Techniques." In Microelectrodes: Theory and Applications, 205–26. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3210-7_12.
Full textCheng, Alison Y., Scott B. Clendenning, and Ian Manners. "Lithographic Applications of Highly Metallized Polyferrocenylsilanes." In Macromolecules Containing Metal and Metal-Like Elements, 49–58. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471747319.ch2.
Full textHIRAOKA, H. "Functionally Substituted Novolak Resins: Lithographic Applications, Radiation Chemistry, and Photooxidation." In ACS Symposium Series, 339–60. Washington, D.C.: American Chemical Society, 1985. http://dx.doi.org/10.1021/bk-1984-0266.ch017.
Full textCastronovo, Matteo, and Denis Scaini. "The Atomic Force Microscopy as a Lithographic Tool: Nanografting of DNA Nanostructures for Biosensing Applications." In DNA Nanotechnology, 209–21. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-142-0_15.
Full textMontelius, Lars, and Babak Heidari. "Biotechnology Applications of NIL." In Alternative Lithography, 297–303. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_16.
Full textSeekamp, J. "Optical Applications of Nanoimprint Lithography." In Alternative Lithography, 287–96. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_15.
Full textOtuka, Adriano J. G., Vinicius Tribuzi, Daniel S. Correa, and Cleber R. Mendonça. "Three-Dimensional Microstructures for Biological Applications." In Multiphoton Lithography, 355–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527682676.ch14.
Full textChen, Y., M. Natali, S. P. Li, and A. Lebib. "Application of Nanoimprint Lithography in Magnetism." In Alternative Lithography, 249–70. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_13.
Full textSchmidt, Georg, Tatjana Borzenko, Massimo Tormen, Volkmar Hock, and Laurens W. Molenkamp. "Application of Microcontact Printing and Nanoimprint Lithography." In Alternative Lithography, 271–85. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9204-8_14.
Full textSchumm, Benjamin, and Stefan Kaskel. "Nanoimprint Lithography for Photovoltaic Applications." In Solar Cell Nanotechnology, 185–201. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch7.
Full textConference papers on the topic "Lithographic applications"
Woo Lee, Hong Jin Fan, Marin Alexe, Roland Scholz, Margit Zacharias, Kornelius Nielsch, and Ulrich Gosele. "Metal nanotube membranes and their lithographic applications." In 2006 IEEE Nanotechnology Materials and Devices Conference. IEEE, 2006. http://dx.doi.org/10.1109/nmdc.2006.4388876.
Full textZhu, Hongwei, Tingwen Xing, and Zexiang Chen. "Dynamic compensation for the lithographic object lens." In SPIE Optical Engineering + Applications, edited by José Sasián and Richard N. Youngworth. SPIE, 2014. http://dx.doi.org/10.1117/12.2060302.
Full textLi, M., X. Yang, N. Cox, J. Beadsworth, and D. Deppe. "Record Low Differential Resistance Using Lithographic VCSELs." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.jth2a.49.
Full textWang, Tianji, Yaotang Li, Shining Yang, Shaowu Fan, Shichao Zhang, and Huanrong Wen. "Fractal in laser lithographic digital hologram." In 1998 International Conference on Applications of Photonic Technology, edited by George A. Lampropoulos and Roger A. Lessard. SPIE, 1998. http://dx.doi.org/10.1117/12.328694.
Full textOinuma, Ryoji, and Frederick Best. "Evaporative modeling for idealized lithographic pores." In SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM- STAIF 2002. AIP, 2002. http://dx.doi.org/10.1063/1.1449704.
Full textXu, Shuang, Gongfa Li, Bo Tao, and Yongxing Guo. "Polarization aberration measurement of lithographic tools." In Optical Metrology and Inspection for Industrial Applications V, edited by Sen Han, Toru Yoshizawa, and Song Zhang. SPIE, 2018. http://dx.doi.org/10.1117/12.2500778.
Full textRea, Edward C., Andrea Caprara, Colin Seaton, and Yefim Kil. "198-nm cw laser source for lithographic applications." In ICALEO® 2003: 22nd International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2003. http://dx.doi.org/10.2351/1.5060137.
Full textZeitner, Uwe D., Tina Weichelt, Yannick Bourgin, and Robert Kinder. "Alternative high-resolution lithographic technologies for optical applications." In SPIE Advanced Lithography, edited by Andreas Erdmann and Jongwook Kye. SPIE, 2016. http://dx.doi.org/10.1117/12.2222028.
Full textKuan, S. W. J., C. C. Fu, R. F. W. Pease, and C. W. Frank. "Studies Of Ultrathin Polymer Films For Lithographic Applications." In 1988 Microlithography Conferences, edited by Scott A. MacDonald. SPIE, 1988. http://dx.doi.org/10.1117/12.968342.
Full textYasar, Ozlem, Michael Dinh, Shih-Feng Lan, and Binil Starly. "Fabrication of Micropatterned Hydrogels Using Maskless Photopolymerization for Tissue Engineering Applications." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192377.
Full textReports on the topic "Lithographic applications"
Kuang, Ping. A new architecture as transparent electrodes for solar and IR applications based on photonic structures via soft lithography. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1029554.
Full text