Academic literature on the topic 'Lithium silicates'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium silicates.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lithium silicates"

1

Tang, Tao, Huo Gen Huang, and De Li Luo. "Solid-State Reaction Synthesis and Mechanism of Lithium Silicates." Materials Science Forum 654-656 (June 2010): 2006–9. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.2006.

Full text
Abstract:
Lithium-based ceramics have been recognized as promising tritium breeding-materials for D-T fusion reactor blankets. Lithium silicates, Li4SiO4 and Li2SiO3, are recommended by many ITER research teams as the first selection for the solid tritium breeder. The solid-state reaction method is the most important way to synthesize lithium silicates. In present study, the processes of solid-sate reaction between amorphous silica and Li2CO3 powders was investigaed by TGA/DSC; the lithium silicate powders were synthesized at 700~900°C with different Li:Si molar ratio using solid-state reaction method. The optimized synthesis temperature and the solid-state reaction mechanism were derived on the base of experimental results.
APA, Harvard, Vancouver, ISO, and other styles
2

Iliushchenko, V., L. Kalina, P. Hruby, V. Bilek Jr, J. Fladr, P. Bily, and J. Bojanovsky. "The treatment of cementitious surface by selected silicate sealers." Journal of Physics: Conference Series 2341, no. 1 (September 1, 2022): 012003. http://dx.doi.org/10.1088/1742-6596/2341/1/012003.

Full text
Abstract:
Over the past decades, the efficiency of the silicate-based surface treatment agents, in other words, sealers, in concrete systems has been widely investigated. The surface treatment technology protects the cementitious systems against the penetration of undesirable substances. Nevertheless, understanding of the several aspects concerning silicate-based sealers is not entirely clear. This paper studies the action mechanism of selected silicates such as potassium, sodium, lithium water glasses, and colloidal silica. The effectiveness of used sealers in terms of water absorption reduction, the ability of silicates to heal pores, and the influence on the microstructure of the cement substrate were studied. Instrumental methods such as rheology, mercury intrusion porosimetry, or scanning electron microscopy were used to achieve satisfactory results. Nuances between the unique film-forming sealers were found. Colloidal silica showed a low sealing effect compared to alkali silicates.
APA, Harvard, Vancouver, ISO, and other styles
3

Pfeiffer, Heriberto, Pedro Bosch, and Silvia Bulbulian. "Synthesis of lithium silicates." Journal of Nuclear Materials 257, no. 3 (December 1998): 309–17. http://dx.doi.org/10.1016/s0022-3115(98)00449-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Yue-Sheng, and Yu-Sheng Su. "Lithium Silicates as an Artificial SEI for Rechargeable Lithium Metal Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 680. http://dx.doi.org/10.1149/ma2023-024680mtgabs.

Full text
Abstract:
The major motivation of replacing lithium-ion batteries with lithium metal batteries is to obtain higher energy density by adopting the metallic lithium anode (3860 mAh g-1, theoretically), which means they can store more energy in the same volume or weight. One of the main challenges of rechargeable lithium metal batteries is the formation of lithium dendrites during the charging process.1 Lithium dendrites are tiny needle-like structures that can grow from the surface of the lithium metal electrode and penetrate the separator, causing battery short-circuiting. This can lead to safety issues, including the potential for fire or explosion. Another challenge is the formation of solid-electrolyte interface (SEI) on the surface of the lithium metal electrode, which can reduce the battery's efficiency and cycle life.2 The SEI layer can also lead to the formation of inactive lithium and increase the risk of dendrite growth. In the present work, various lithium silicates have been synthesized to be implemented as the artificial SEI layer via a facile dry coating method.3,4 The lithium silicate coating acts as a protective barrier that prevents direct contact between the lithium metal and the electrolyte, which may cause undesirable side reactions and reduce the efficiency and lifespan of the battery.4 The lithium silicate-based artificial SEI layer improves the stability and efficiency of lithium metal batteries by reducing unwanted surface reactions, improving ion transport kinetics, and protecting the lithium metal anode from mechanical deformation and unstable SEI formation during extended cycling. This laminated lithium anode structure could be an effective design for the future development of long-cycle-life lithium metal batteries. F. Wu et al., Energy Storage Materials, 15, 148–170 (2018). X.-B. Cheng et al., Adv. Sci., 3, 1500213 (2016). A. Bhat, P. Sireesha, Y. Chen, and Y. Su, ChemElectroChem, 9 (2022) https://onlinelibrary.wiley.com/doi/10.1002/celc.202200772. Y.-S. Su, K.-C. Hsiao, P. Sireesha, and J.-Y. Huang, Batteries, 8, 2 (2022). Figure 1
APA, Harvard, Vancouver, ISO, and other styles
5

Al-Johani, Hanan, Julfikar Haider, Julian Satterthwaite, and Nick Silikas. "Lithium Silicate-Based Glass Ceramics in Dentistry: A Narrative Review." Prosthesis 6, no. 3 (May 2, 2024): 478–505. http://dx.doi.org/10.3390/prosthesis6030034.

Full text
Abstract:
Considering the rapid evolution of lithium silicate-based glass ceramics (LSCs) in dentistry, this review paper aims to present an updated overview of the recently introduced commercial novel LSCs. The clinical and in vitro English-language literature relating to the microstructure, manufacturing, strengthening, properties, surface treatments and clinical performance of LSC materials was obtained through an electronic search. Findings from relevant articles were extracted and summarised for this manuscript. There is considerable evidence supporting the mechanical and aesthetic competency of LSC variants, namely zirconia-reinforced lithium silicates and lithium–aluminium disilicates. Nonetheless, the literature assessing the biocompatibility and cytotoxicity of novel LSCs is scarce. An exploration of the chemical, mechanical and chemo-mechanical intaglio surface treatments—alternative to hydrofluoric acid etching—revealed promising adhesion performance for acid neutralisation and plasma treatment. The subtractive manufacturing methods of partially crystallised and fully crystallised LSC blocks and the additive manufacturing modalities pertaining to the fabrication of LSC dental restorations are addressed, wherein that challenges that could be encountered upon implementing novel additive manufacturing approaches using LSC print materials are highlighted. Furthermore, the short-term clinical performance of zirconia-reinforced lithium silicates and lithium–aluminium disilicates is demonstrated to be comparable to that of lithium disilicate ceramics and reveals promising potential for their long-term clinical performance.
APA, Harvard, Vancouver, ISO, and other styles
6

Su, Yu-Sheng, Kuang-Che Hsiao, Pedaballi Sireesha, and Jen-Yen Huang. "Lithium Silicates in Anode Materials for Li-Ion and Li Metal Batteries." Batteries 8, no. 1 (January 4, 2022): 2. http://dx.doi.org/10.3390/batteries8010002.

Full text
Abstract:
The structural and interfacial stability of silicon-based and lithium metal anode materials is essential to their battery performance. Scientists are looking for a better inactive material to buffer strong volume change and suppress unwanted surface reactions of these anodes during cycling. Lithium silicates formed in situ during the formation cycle of silicon monoxide anode not only manage anode swelling but also avoid undesired interfacial interactions, contributing to the successful commercialization of silicon monoxide anode materials. Additionally, lithium silicates have been further utilized in the design of advanced silicon and lithium metal anodes, and the results have shown significant promise in the past few years. In this review article, we summarize the structures, electrochemical properties, and formation conditions of lithium silicates. Their applications in advanced silicon and lithium metal anode materials are also introduced.
APA, Harvard, Vancouver, ISO, and other styles
7

QUINTANA, P., and A. WEST. "Conductivity of lithium gallium silicates." Solid State Ionics 23, no. 3 (April 1987): 179–82. http://dx.doi.org/10.1016/0167-2738(87)90048-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Huang, Kesheng, Bing Li, Mingming Zhao, Jiaqing Qiu, Huaiguo Xue, and Huan Pang. "Synthesis of lithium metal silicates for lithium ion batteries." Chinese Chemical Letters 28, no. 12 (December 2017): 2195–206. http://dx.doi.org/10.1016/j.cclet.2017.11.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Islam, M. Saiful. "Recent atomistic modelling studies of energy materials: batteries included." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1923 (July 28, 2010): 3255–67. http://dx.doi.org/10.1098/rsta.2010.0070.

Full text
Abstract:
Advances in functional materials for energy conversion and storage technologies are crucial in addressing the global challenge of green sustainable energy. This article aims to demonstrate the valuable role that modern modelling techniques now play in providing deeper fundamental insight into novel materials for rechargeable lithium batteries and solid oxide fuel cells. Recent work is illustrated by studies on important topical materials encompassing transition-metal phosphates and silicates for lithium battery electrodes, and apatite-type silicates for fuel cell electrolytes.
APA, Harvard, Vancouver, ISO, and other styles
10

Szőcs, D. E., E. Szilágyi, Cs Bogdán, E. Kótai, and Z. E. Horváth. "Lithium concentration dependence of implanted helium retention in lithium silicates." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, no. 11-12 (June 2010): 1857–61. http://dx.doi.org/10.1016/j.nimb.2010.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lithium silicates"

1

Lu, Hong Materials Science &amp Engineering Faculty of Science UNSW. "Formation of ??-eucryptite and ??-spodumene from topaz mixtures." Awarded by:University of New South Wales. School of Materials Science and Engineering, 2006. http://handle.unsw.edu.au/1959.4/25141.

Full text
Abstract:
The production of ??-eucryptite [LiAlSiO4] and ??-spodumene [LiAlSi2O6] from topaz [Al2SiO4(F0.64OH0.36)2, containing ~3 wt% quartz impurity] from Torrington, NSW may be of commercial importance since both lithium aluminosilicates have negative or low coefficients of thermal expansion and are used commercially as raw materials in the glass, ceramics, and metallurgical industries. A review of the literature has revealed that the production of ??-eucryptite and ??-spodumene from topaz has not been reported before. The aim of the present work was to determine the kinetics and reaction mechanisms of formation of ??-eucryptite from topaz + lithium carbonate mixtures and ??-spodumene from topaz + lithium carbonate + silica mixtures. To this end, the related reactions and subsolidus phase equilibria of the Li2O-Al2O3-SiO2 ternary system were determined. The subsolidus phase equilibria for the Li2O-Al2O3-SiO2 ternary system were investigated by literature assessment, experimentation, and thermodynamic calculations. The experimentation confirmed the previously published tentative compatibility relations in the Al2O3 and the SiO2 corners. Thermodynamic calculations were used to define the phase relations in the Li2O corner. Thermodynamic calculations also were used to define the phase equilibria for two binary subsystems, Li2SiO3-LiAlO2 and Li4SiO4-LiAlO2. The decomposition of topaz and formation of ??-eucryptite from topaz + lithium carbonate mixtures and ??-spodumene from topaz + lithium carbonate + silica mixtures were investigated experimentally using differential thermal analysis (DTA), thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman microspectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM). Confirmatory thermodynamic calculations also were done. One significant finding of the present work was the formation of nanofibres from topaz + lithium carbonate mixtures at 1150???C. These fibres were formed by gas-phase reaction of SiF4 and AlOF produced from the reaction between topaz, lithium carbonate and by reaction of SiO2 and Li(OH), which was produced by Li2O volatilisation. These fibres, which were difficult to analyse, most likely consisted of metastable ???-spodumene solid solution or mullite in the incipient stage of formation. Formation of single-phase ???-spodumene from topaz + lithium carbonate + silica mixtures was observed after heating above 950???C for 24 h. Reaction paths for the formation of ??-spodumene over the temperature range 450???-1550???C were proposed. The formation of single-phase ??-spodumene was not simple and straightforward but a complex process involving several precursor phases. Specifically, there were two reaction mechanisms involving the formation of single-phase ???-spodumene by gas-solid reaction and gas-liquid-solid reaction. The reaction kinetics and thermodynamics of the formation of single-phase ??-spodumene at 750???-950???C were assessed. Essential work supplementary to that associated with the Li2O-Al2O3-SiO2 system consisted of determination of the decomposition mechanism of topaz, which was determined to take place in four stages. Reaction paths for the decomposition of topaz also were proposed. Another significant finding of the present work was the formation of transient single-crystal mullite from topaz + lithium carbonate + silica mixtures at ~600???C, which may be contrasted with the normal temperature range of 1000???-1400???C for formation from clay-based raw materials. This phenomenon occurred via a gas-solid growth mechanism. The present observation suggests a potential low-temperature route for the production of high-purity mullite fibres without glass contamination.
APA, Harvard, Vancouver, ISO, and other styles
2

Bastian, Luc. "Impact des variations de la mousson Africaine sur l’érosion chimique des silicates dans le bassin versant du Nil depuis 100.000 ans." Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4101/document.

Full text
Abstract:
L’objectif de cette thèse est de déterminer une reconstruction de l’altération continentale dans le bassin du Nil depuis 100.000 ans, afin de mieux comprendre l’impact des variations climatiques sur les sols, les apports à la Méditerranée et le cycle du carbone. Ce travail repose sur une étude géochimique fine des argiles extraites d’archives sédimentaires du delta du Nil sur une échelle de temps de 100.000 ans. Il repose sur une approche inédite du couplage d’un traceur de source (isotopes du néodyme) et de traceurs d’altérations (isotopes du lithium). Les résultats de cette étude mettent en évidence une réponse rapide de l’altération continentale aux variations hydro-climatique en Afrique du Nord. De plus, les changements climatiques en Atlantique Nord et du ralentissement de l’AMOC ont eu une influence importante sur la diminution de l’intensité d’altération continentale dans le bassin du Nil. A l’actuel, les taux d’altération, et la consommation de CO2 associée, des trapps d’Ethiopie sont relativement faibles par rapport aux autres régions basaltiques. Nos résultats montrent cependant que durant l’African Humid Period, la consommation de CO2 dans cette région était 2 à 3 fois plus importante qu’aujourd’hui. Cela indique que les trapps d’Ethiopie ont pu jouer un rôle non négligeable dans le cycle du CO2, et en particulier lors des périodes de fort runoff. Enfin, des développements analytiques ont été réalisés afin de pouvoir exploiter les compositions isotopiques en lithium des carbonates biogéniques marins, comme nouveaux traceurs des apports en eau douce du Nil. Les résultats obtenus suggèrent une influence des effets dits « vitaux » et des processus de diagénèse
This thesis presents a reconstruction of the chemical weathering in the Nile basin since 100.000 years. His objective is to better understand the impact of climatic variations on chemical weathering, to better. This work is based on the geochemistry study on marine core recorded in the Nile delta, on a time scale of 100.000 years. It use a novel approach with the coupling of à source tracer (εNd) and chemical weathering tracers (δ7Li and elementary ratios) on the fine fraction (< 2µm). In addition, it was analyzed samples of each actual Nil sources and a core sample from Tana Lack (Ethiopie). The results of this studies have enabled to reconstruct the chemical weathering variations in the Nile basin since 100.000 years. It show a rapid respond of chemical weathering to climate variations. This was also observed by important impact of North Atlantic climate variations on the decrease of chemical weathering in the Nile basin. At present, the chemical weathering flux and the CO2 consumption of the Ethiopian traps are low comparted to the other basaltic regions, as the Deccan. However, our results show that during the most humid periods (African Humid Period) the CO2 consumption was 2 to 3 time higher than today. This indicates that the Ethiopian traps could be have played a non-negligible role in the global CO2 cycle during the Cenozoic, and principally during the most humid periods in North Africa. Finally, analytical developments have been realized to be able to exploit the lithium isotopes on biogenic carbonates as a new tracer of Nile water flood. The results suggest an influence of “vital” effect and diagenetic process
APA, Harvard, Vancouver, ISO, and other styles
3

Carmo, Lucas Sátiro do. "Dosimetria termoluminescente de altas doses de raios gama, raios beta, feixe de prótons e de nêutrons epitérmicos utilizando minerais naturais de silicatos e dosímetros de LiF: Mg, Cu, P (MCP)." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-09102015-084259/.

Full text
Abstract:
No mundo de hoje, onde o uso da radiação de diversas naturezas está generalizado, a quantificação da energia depositada por essas diferentes radiações se tornou uma atividade de grande importância, principalmente quando a faixa de energia é considerada elevada, estas altas energias de radiação estão presentes, geralmente, em aceleradores de partículas, reatores nucleares e em irradiadores industriais, por exemplo. Este trabalho tem como objetivo medir altas doses de radiação de raios gama, feixes de elétrons e feixes de prótons utilizando duas variedades de um silicato natural (água-marinha e goshenita) e medir altas doses de nêutrons epitérmicos de alta fluência utilizando dosímetros de Fluoreto de Lítio dopados com Mg, Cu e P (MCP). A técnica utilizada para medir a dose absorvida por esses materiais foi a termoluminescência. As irradiações com raios- γ provenientes de fontes de 60Co foram de 100 kGy a 2000 kGy para a água-marinha e de 600 kGy a 2000 kGy para a goshenita, os resultados de intensidade TL vs Dose mostram que a partir de certa dose - 250 kGy e 1234,8 kGy para água-marinha e goshenita, respectivamente - o sinal TL começa a decrescer. Foi observado neste trabalho que, estes materiais quando irradiados com tais doses e posteriormente irradiados com doses baixas de alguns Gys até cerca de 400-500 Gy, o sinal TL decresce regularmente, podendo ser utilizado na dosimetria das radiações nessa faixa de dose. Para a irradiação de feixe de prótons e de feixe de elétrons foram utilizados dosímetros em placa de goshenita e dosímetros de pastilhas de água-marinha, a carga do feixe de prótons vai de 20 a 216 μC e a dose do feixe de elétrons vai de 10 kGy a 70 kGy. As irradiações com nêutrons epitérmicos utilizando LiF: Mg, Cu, P foram realizadas no reator IEA-R1/IPEN com fluências de 1014 a 1017 n/cm² e a quantificação das doses absorvidas foram realizadas utilizando o método UHTR (Ultra High Temperature Ratio).
In the present days the usage of ionizing radiation from several different sources is spread all over the world. The measurement of the absorbed energy from these radiations became a very important task, mainly when the dose range is considered being in a very high level. These high energies of radiation are associated with particles accelerators, nuclear reactors and industrial irradiators, for example. This work is concerned for measuring high-doses of gamma radiation, electron beams and proton beams using two varieties of a natural silicate (aqua-marine and goshenite) and measuring effects of high-fluence neutrons using LiF: Mg, Cu, P (MCP) detectors. Thermoluminescence was employed to measure the absorbed dose for irradiations with gamma rays ranging from 100 kGy up to 2000 kGy for aquamarine and from 600 kGy and 2000 kGy for goshenite. The TL intensity reaches maximum at 250 kGy in aquamarine and at 1234 kGy for goshenite; this means that for doses larger than 250 kGy in aquamarine and 1234 kGy in goshenite the TL intensity drops. However, the descending part can be used in very high dose dosimetry. Furthermore, has been observed in this study that starting with aquamarine irradiated with 250 kGy and goshenite with 1234 kGy, the subsequent irradiation with doses from low to 400-500 Gy produces a regularly decreasing TL intensity, so that it can be used in radiation dosimetry from low to 400-500 Gy doses. For proton beams, goshenite were used. The beam charge ranges from 20 a 216 μC. For electron beams small pressed pellets of aquamarine were used. The dose ranges from 10 kGy to 70 kGy. The epithermal neutron irradiation was performed at IEA-R1 research reactor at IPEN and MCP-LiF detectors were used to measure the absorbed dose. A method called UHTR (Ultra High Temperature Ratio) was employed for calculating the amount of energy absorbed by the dosimeter. The fluence of epithermal neutrons ranges from 1014 a 1017 n/cm².
APA, Harvard, Vancouver, ISO, and other styles
4

Riquieri, Hilton. "Impacto do processo de cristalização na microestrutura e na resistência à flexão de cerâmicas de silicato de lítio reforçadas por zircônia." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152526.

Full text
Abstract:
Submitted by HILTON RIQUIERI null (hilton.riquieri@terra.com.br) on 2018-01-11T19:29:07Z No. of bitstreams: 1 Tese Impressão 11-01-18.pdf: 5465220 bytes, checksum: 6c44956d0ac81de9008cdd4833458455 (MD5)
Approved for entry into archive by Silvana Alvarez null (silvana@ict.unesp.br) on 2018-01-18T15:27:03Z (GMT) No. of bitstreams: 1 riquieri_h_dr_sjc.pdf: 5445301 bytes, checksum: bf194667a00b4990a467e32526c3cdb9 (MD5)
Made available in DSpace on 2018-01-18T15:27:03Z (GMT). No. of bitstreams: 1 riquieri_h_dr_sjc.pdf: 5445301 bytes, checksum: bf194667a00b4990a467e32526c3cdb9 (MD5) Previous issue date: 2017-12-04
O objetivo deste trabalho foi avaliar o silicato de lítio reforçado por zircônia quanto a sua microestrutura e as mesmas propriedades mecânicas em diferentes fases de cristalização. Cento e vinte amostras de discos de silicato de lítio reforçado por zircônia foram usinados de acordo com as normas ISO 6872 (12x1,2mm) para o ensaio de flexão biaxial. Foram separados em 4 grupos de acordo com a fase de cristalização. Grupo I: 30 amostras de Celtra pré cristalizado (CNC); Grupo II: 30 amostras de Celtra cristalizado (CC); Grupo III: 30 amostras de Suprinity Não Cristalizado (SNC) e Grupo IV: 30 amostras de Suprinity Cristalizado (SC). Os corpos de prova foram submetidos ao ensaio mecânico de flexão biaxial e em seguida realizadas análises qualitativas e quantitativas. Por meio microscopia eletrônica de varredura, microscopia eletrônica com emissão de campo MEV-FEG, EDS e difração de raios X (n=4), foi realizada a caracterização completa dos materiais e análise morfológica da microestrutura para todos os grupos. Para as análises estatísticas foram utilizados o módulo Weibull (m) e resistência característica (σ0).
The objective of this work was to evaluate the lithium silicate reinforced by zirconia as to its microstructure and the same mechanical properties in different phases of crystallization. One hundred and twenty samples of zirconia-reinforced lithium silicate discs were machined according to ISO 6872 (12x1,2mm) standards for the biaxial flexural test. They were separated into 4 groups according to the crystallization step. Group I: 30 samples of Pre-Crystallized Celtra (CPC); Group II: 30 samples of Crystallized Celtra (CC); Group III: 30 samples of Uncrystallized Suprinity (SNC) and Group IV: 30 samples of Crystallized Suprinity (SC). The specimens were submitted to the mechanical biaxial flexion test and qualitative and quantitative analyzes were performed. Scanning Electron Microscopy, Electron Microscopy with Field emission SEM-FEG, EDS and X-ray diffraction (n = 4) were carried out to characterize the materials and morphological analysis of the microstructure for all groups. The Weibull (m) and characteristic resistance (σ0) were used for the statistical analysis.
APA, Harvard, Vancouver, ISO, and other styles
5

Moakes, Greg. "Study of Lithium Solvation Environments in Water-saturated Nitrobenzene." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14105.

Full text
Abstract:
It was found that there exist three major water environments when water is dissolved in nitrobenzene. 2H NMR has proved that these solvatomers exist irrespective of whether lithium salt is added to the system. 7Li NMR experiments suggested that the first solvatomer is majority nitrobenzene, the second a mixed solvation shell consisting of nitrobenzene and water and the third solvatomer is a large water aggregated at the glass surface. The mixed solvation state is short lived and is promoted by addition of water of by supersaturating the system upon cooling. This is a high energy state and decays either into the homogenous bulk NB state or to the surface of the glass wall, depending on if glass surface is present. In the 7Li NMR experiments, the hydrophobicity of the salt, determined by the anion, affects the relative intensity of the three 7Li resonances. Addition of lithium serves to promote hydrogen bonding in the majority nitrobenzene solvatomer, as confirmed by FTIR and neutron diffraction studies. There is no evidence that it has an effect on the size of the mixed solvatomer or the water aggregate immobilized on the glass surface. A reasonable hypothesis is that lithium exchanges between the water species which are formed independent of lithium involvement. The system is summarized as follows: Below critical water concentration (~200mM) nitrobenzene/water is a homogeneous distribution of water molecules in nitrobenzene. Addition of lithium salt to such a system has two main affects. First, the lithium promotes hydrogen bonding between the dissolved water molecules, as confirmed by FTIR and neutron scattering. Second, the hydrogen bonded water may precipitate causing microheterogeneity of the system, leading to a second resonance observed in both the 2H and 7Li NMR spectra (LiNB/W). In the presence of glass, a third solvation state can nucleate at the glass surface; this solvation state has character even closer to that of bulk water (LiW). These two supplementary solvation states can be artificially induced by either adding aliquots of water or cooling.
APA, Harvard, Vancouver, ISO, and other styles
6

PORFIRIO, TATIANE C. "Preparação e caracterização microestrutural e dielétrica da perovsquita CaCusub(3)Tisub(4)Osub(12)." reponame:Repositório Institucional do IPEN, 2015. http://repositorio.ipen.br:8080/xmlui/handle/123456789/24066.

Full text
Abstract:
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2015-10-28T11:10:50Z No. of bitstreams: 0
Made available in DSpace on 2015-10-28T11:10:50Z (GMT). No. of bitstreams: 0
Tese (Doutorado em Tecnologia Nuclear)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
APA, Harvard, Vancouver, ISO, and other styles
7

Henchiri, Soufian. "Les isotopes du lithium, traceurs de la zone critique de la Terre : du local au global." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC201.

Full text
Abstract:
La Zone Critique de la Terre désigne la fine pellicule recouvrant sa surface, à l’interface du cycle de l’eau, de lithosphère et de la biosphère. Cette couche est produite à sa base par altération chimique et détruite à son sommet par érosion mécanique. Parce que le lithium et ses isotopes ont la particularité de se partager entre la phase dissoute et la phase solide au cours des réactions d’interactions eaux-roches, nous explorons, dans cette thèse, le potentiel des isotopes du lithium dissous dans les rivières comme traceurs des processus d’altération chimique des continents. Nous nous sommes focalisés, dans un premier temps, sur le Bassin Congolais. Cette étude met en évidence le caractère équivoque de la réponse de la composition isotopique du Li (δ7Li) dissous des rivières aux topographies plates (et aux intensités d’altération élevées). Deux valeurs extrêmes de δ7Li dissous sont, en effet, produites dans le bassin du Congo, qui tracent deux styles d’altération continentale distincts, dans lesquels les processus d’altération chimique sont différents. D’autre part, nous proposons une nouvelle estimation du flux moyen de Li et de sa composition isotopique moyenne exportés à l’océan par les rivières aujourd’hui (5,5×1010 g.an−1 et 19±2‰, respectivement). Nous montrons que le δ7Li dissous dans les grands fleuves est contrôlé, au premier ordre, par la réincorporation du Li dans les minéraux secondaires (dans les sols et les plaines d’inondation) et, d’une manière équivoque, de l’intensité d’altération. En outre, l’étude des δ7Li dissous dans les rivières drainant les îles volcaniques (Islande, Java, Martinique, Sao Miguel et Réunion) montre que l’hydrothermalisme continental, générant des eaux très concentrées en Li avec une valeur basse de δ7Li (car très peu fractionnée par rapport à la roche mère basaltique), influence le δ7Li dissous des rivières des îles volcaniques et peut avoir un impact significatif sur le flux de Li (et son δ7Li) transféré(s) à l’océan à l’échelle globale. Enfin, nous proposons une interprétation de l’augmentation de l’ordre de 9‰ qu’a connue la signature isotopique du Li de l’eau de mer au cours du Cénozoïque à l’aide d’un modèle de boîtes simple de l’océan et au regard de nos résultats. Il émane de ce travail de thèse que les isotopes du Li dissous dans les rivières prouvent là encore leur capacité à être de bons traceurs des régimes d’altération des roches silicatées continentales (et ce, même en contexte anthropisé, comme le montre notre étude du bassin de l’Orgeval, en Seine-et-Marne). Le Li et ses isotopes constituent donc des traceurs prometteurs de la Zone Critique de la Terre et des paléo-processus d’altération chimique ainsi que de l’évolution géodynamique des continents voire des grands mouvements verticaux affectant la lithosphère continentale
The Critical Zone of the Earth is the layer covering its surface, at the interface between the water cycle, the lithosphere and the biosphere. This layer is produced at its base by chemical weathering and destroyed at its top by mechanical erosion. We explore the potential of lithium isotopes dissolved in rivers as tracers of continental chemical weathering processes as lithium and its isotopes are highly fractionated between the dissolved and solid phases during water-rock interaction processes. First, we are focused on the Congo Bassin. This study demonstrates the equivocal response of the isotopic composition of the riverine dissolved Li isotope compositions (δ7Li) to flat topography (and high weathering intensities). Two extreme values of dissolved δ7Li are produced in the Congo Basin, which trace two distinct continental weathering styles in which chemical weathering processes are different. On the other hand, we refined the mean flux of Li and its average isotopic signature exported to the ocean by rivers today (5.5×1010 g. an-1 et 19±2‰, respectively). We show that dissolved δ7Li in large rivers is controlled, at first-order, by the re-incorporation of Li into secondary weathering minerals (in soils and floodplains) and in, an equivocal way, of the weathering intensity. Moreover, the study of dissolved δ7Li in rivers draining volcanic islands (Iceland, Java, Martinique, Sao Miguel and Reunion) shows that continental hydrothermal activity, producing waters with high Li concentration with low value of δ7Li (as low fractionated towards the basaltic bedrock), influences the dissolved δ7Li in rivers of volcanic islands and can have an impact on the Li flux (and its δ7Li) transferred to the ocean on a global scale. Finally, by using a simple box model of the ocean and our results, we suggest an interpretation of the 9‰ increase of seawater δ7Li during the Cenozoic. This thesis highlights that riverine dissolved Li isotopes confirm once again their capacity to be powerful tracers of the weathering regimes of continental silicate rocks (even in anthropized context, as showed by our study of the Orgeval catchment, in Seine-et-Marne). Li and its isotopes are thus promising tracers of the Critical Zone of the Earth and the chemical weathering paleo-processes as well as the long-term geodynamic evolution of the continents or even the large vertical movements affecting the continental lithosphere
APA, Harvard, Vancouver, ISO, and other styles
8

Moritani, Kimikazu. "Study on Production and Reactions of Radiation-induced Defects in Ceramic Materials." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/77998.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gaddam, Anuraag. "Structure and crystallization of multicomponent lithium silicate glasses." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/21819.

Full text
Abstract:
Doutoramento em Ciência e Engenharia de Materiais
A presente tese tem como objetivo adquirir uma compreensão aprofundada acerca do processo de cristalização de vidros à base de silicato de lítio com a adição de pequenas quantidades de outros componentes. Os principais componentes investigados neste estudo são os óxidos de Mn, Al, B e P. Estudaram-se os efeitos de cada um destes componentes na estrutura do vidro, na separação de fases líquido-líquido, nos processos de nucleação e crescimento de cristais, na microestrutura e no conjunto das fases cristalinas formadas. Os vitro-cerâmicos utilizados neste estudo são produzidos a partir de amostras tridimensionais de vidro fundido e vertido em moldes, ou a partir de pós de frita obtida por arrefecimento dos fundidos em água. A adição de óxidos de Mn aos vidros de silicato de lítio resulta na criação de entidades moleculares individuais de Mn. Por conseguinte, estas entidades moleculares dificultam o todo o processo de cristalização do vidro. Óxidos de Al e B são incorporados na rede de vidro como formadores de rede. Estes componentes, por conseguinte, também diminuem a tendência do vidro para a cristalização. O P2O5 também desempenha um papel de formador de rede do vidro. No entanto, ele aumenta a tendência do vidro para a cristalização. Dá-se uma ênfase especial ao estabelecimento de correlações entre a estrutura do vidro e seu comportamento na cristalização. Estes esforços levaram à introdução de um novo modelo matemático baseado na mecânica estatística para descrever a estrutura de vidro. O modelo foi desenvolvido principalmente para silicatos binários e mais tarde estendido para composições de silicatos multicomponentes.
The present thesis is aimed at gaining an in-depth understanding of the crystallization process in multicomponent lithium silicate based glasses when other components are added in small amounts. The added components investigated in this study are oxides of Mn, Al, B and P. The effects of each of these components on glass structure, liquid-liquid phase separation, crystal nucleation, crystal growth, microstructure and phase assemblage are studied. The glass ceramics used in this study are produced by both bulk glasses obtained by melt quenching as well as by powder methods from glass frits. Oxides of Mn when added to lithium silicate glasses result in creating individual Mn molecular entities. Consequently, these molecular entities hinder the overall crystallization ability of the glass. Oxides of Al and B are incorporated into glass network as network formers. These components consequently decrease the overall crystallization ability of the glass. P2O5 is also incorporated into glass network as network former. However, it increases the overall crystallization ability of the glass. Particular emphasis is given to establishing correlations between glass structure and its corresponding crystallization behaviour. These efforts led to introducing a new mathematical model based on statistical mechanics for describing the glass structure. The model was primarily developed for binary silicates and later on extended to multicomponent silicates.
APA, Harvard, Vancouver, ISO, and other styles
10

Reid, William B. "The electrical characteristics of lithium silicate glasses." Thesis, University of Aberdeen, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.328008.

Full text
Abstract:
The electrical behaviour of a series of lithium silicate glasses has been characterised by the versatile a.c. impedance technique. The advantage of using a combination of complex plane and spectroscopic plots in the data analysis is shown. The compositional dependence of the conductivities of the phase separated glasses, which exhibit complex two-phase spinodal decomposition or nucleation and growth textures, is related to the volume fraction of the phases present in the conduction pathway and the tortuosity of the effective medium. The compositional dependence of the conductivities of homogeneous lithium silicate glasses is accounted for by postulating a glass structure composed of silicate anion clusters which are surrounded by a lithia-rich phase which constitutes the preferred conduction pathway. Annealing effects are also reported. The effect of surface roughness on the response of the electrode/electrolyte interface, a phenomenon originally reported by de Levie, and contact problems between the metal electrode and the glass electrolyte are discussed. Novel results regarding the effect of gold electrode recrystallisation on the a.c. response of glass electrolytes are reported. The a.c. impedance technique is shown to be a very useful, surface sensitive tool for monitoring interfacial phenomena such as atmospheric corrosion and surface ion-exchange. The technique is also successfully applied to studies of the mechanism of glass-ceramic formation, where the identification of surface crystallisation products and residual glass, by electrical measurement, is possible. Conclusive evidence for the presence of an effective medium conduction mechanism (percolation theory) in the inhomogeneous glass-ceramic, is given. The electrical data are corroborated by electron microscopy, x-ray diffractometry, energy dispersive x-ray analysis and Fourier Transform Infrared Spectroscopy.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lithium silicates"

1

United States. National Aeronautics and Space Administration. Scientific and Technical Information Division., ed. Fracture toughness and crack growth of Zerodur. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Philip A. E. Pogge von Strandmann, Mathieu Dellinger, and A. Joshua West. Lithium Isotopes: A Tracer of Past and Present Silicate Weathering. University of Cambridge ESOL Examinations, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Philip A. E. Pogge von Strandmann, Mathieu Dellinger, and A. Joshua West. Lithium Isotopes: A Tracer of Past and Present Silicate Weathering. University of Cambridge ESOL Examinations, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Philip A. E. Pogge von Strandmann, Mathieu Dellinger, and A. Joshua West. Lithium Isotopes: A Tracer of Past and Present Silicate Weathering. University of Cambridge ESOL Examinations, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lithium silicates"

1

Sata, T., and K. Sakai. "High Temperature Vaporization from Lithium Silicates." In Sintering ’87, 309–14. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Handke, Miroslaw, and Marek Nocuń. "Vibrational Spectroscopy of Lithium Silicates and Aluminosilicates in Crystalline Form." In Progress in Fourier Transform Spectroscopy, 507–10. Vienna: Springer Vienna, 1997. http://dx.doi.org/10.1007/978-3-7091-6840-0_124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bährle-Rapp, Marina. "Lithium Magnesium Silicate." In Springer Lexikon Kosmetik und Körperpflege, 328. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hlaváček, Petr, Libor Sitek, Rudolf Hela, and Lenka Bodnárová. "Erosion Test with High-speed Water Jet Applied on Surface of Concrete Treated with Solution of Modified Lithium Silicates." In Advances in Manufacturing Engineering and Materials, 135–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99353-9_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bährle-Rapp, Marina. "Lithium Magnesium Sodium Silicate." In Springer Lexikon Kosmetik und Körperpflege, 328. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vien, Vu Tri, Mai Van Dung, Nguyen Manh Tuan, Tran Thanh Nam, and Le The Vinh. "An Analysis of Structure Heterogeneity of Lithium Silicate Melts." In Intelligent Computing & Optimization, 285–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00979-3_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Juri, Afifah Z., Animesh K. Basak, and Ling Yin. "Fracture Behaviour of Zirconia-Reinforced Lithium Silicate Glass–Ceramic Composite." In Springer Proceedings in Materials, 319–25. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9848-7_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wei, Yunyun, Guihong Han, Yanfang Huang, and Duo Zhang. "Characterization of Modified Nickel Silicate Anode Material for Lithium–Ion Batteries." In The Minerals, Metals & Materials Series, 51–57. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05749-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Griffith, C. S., A. C. Griffin, A. Roper, and A. Skalski. "Development of SiLeach® Technology for the Extraction of Lithium Silicate Minerals." In The Minerals, Metals & Materials Series, 2235–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95022-8_188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Minford, Eric, and Karl M. Prewo. "Fatigue Behavior of Silicon Carbide Fiber Reinforced Lithium-Alumino-Silicate Glass-Ceramics." In Tailoring Multiphase and Composite Ceramics, 561–70. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2233-7_45.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lithium silicates"

1

Taheri, B., A. Munoz F., R. C. Powell, D. H. Blackburn, and D. C. Cranmer. "Effect of structure and composition of the thermal lensing and permanent laser-induced refractive-index changes in glasses." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.mc3.

Full text
Abstract:
We have previously reported the ability to produce permanent refractive-index gratings in rare earth-doped glasses through the creation of laser-induced local structural changes and have shown how thermal lensing affects the grating properties. We present here the extension of this research to the investigation of the effects of glass structure and composition on thermal lensing and on the ability to produce permanent gratings. New types of lithium borate, lead and magnesium silicates and germanates, and a lead phosphate glass were investigated. The results of four-wave mixing experiments show that the grating scattering efficiency is strongly dependent on the strength of the chemical bonds and the charge to radius ratio of the glass components. The thermal lensing properties of these materials under 7-ns pulsed excitation at 457nm can be attributed to the molecular polarizibility of their components. They are also dependent on lead concentration and are stronger in the silicates and germanates, having continuous random network structures, compared to the phosphates and borates with more constrained chain- and ring-type structures, respectively. A model is presented to interpret the results of thermal lensing experiments.
APA, Harvard, Vancouver, ISO, and other styles
2

Prasetia, Irfan, Soyo Asano, and Kazuyuki Torii. "Diffusion Properties of Sodium and Lithium Silicates through Cement Pastes and its Mitigating Effect on Alkali-silica Reaction." In Ninth International Conference on Creep, Shrinkage, and Durability Mechanics (CONCREEP-9). Reston, VA: American Society of Civil Engineers, 2013. http://dx.doi.org/10.1061/9780784413111.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Chunyao, Philip Pogge von Strandmann, Kevin Burton, and Ed Hathorne. "Tracing silicate weathering in estuaries using lithium isotopes." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nakgaki, Takao, Katsuya Yamashita, Masahiro Kato, Kenji Essaki, Takayuki Iwahashi, and Masafumi Fukuda. "Performance Prediction of High-Temperature CO2 Capture System Utilizing Lithium Silicate for Pulverized Coal-Fired Power Plant." In ASME 2005 Power Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pwr2005-50369.

Full text
Abstract:
Lithium silicate is a solid CO2-sorbent that can be used repeatedly, and uniquely features absorption of CO2 at temperatures between 500°C and 600°C with an exothermic reaction and regeneration at temperatures above 700°C with an endothermic reaction. This paper introduces the conceptual model and feasibility study of the CO2 capture system utilizing the lithium silicate applicable to a pulverized coal-fired power plant. In this system, assuming a moving bed, the sorbent reactor is installed in a 500MW boiler and absorbs CO2 in the flue gas, and after the absorption process, recirculation of CO2 transports the heat for regeneration. To design the system, unsteady state numerical analysis was used to predict the reactor performance in a 60-minute cycle for absorption and regeneration, which includes the reaction rate based on experimental data. The analysis result indicates that about 20% of CO2 can be captured from flue gas without significant loss in the power generation efficiency.
APA, Harvard, Vancouver, ISO, and other styles
5

Wengler, M. C., I. Nee, B. Schreder, J. Zimmer, and K. Buse. "Volume-Phase Holograms in Photosensitive Lithium-Aluminium-Silicate Glasses." In Photorefractive Effects, Materials, and Devices. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/pemd.2003.197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Hui, Bowei Chen, Yuhui He, and Xiang Shui Miao. "Digit Recognition Through Unsupervised Learning by Lithium Silicate Synapses." In 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT). IEEE, 2018. http://dx.doi.org/10.1109/icsict.2018.8564941.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mishra, Richa, Madhumita Goswami, and Madangopal Krishnan. "Ag-doped Lithium alumino silicate photostructurable glass for microdevice fabrication." In DAE SOLID STATE PHYSICS SYMPOSIUM 2017. Author(s), 2018. http://dx.doi.org/10.1063/1.5028808.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nagarkar, V. V., V. Gaysinskiy, Z. Bell, M. Bliss, S. Miller, and K. J. Riley. "A neutron imaging detector from bundled lithium silicate glass fibers." In 2009 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC 2009). IEEE, 2009. http://dx.doi.org/10.1109/nssmic.2009.5402405.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Denny, Adam, Mindy M. Zimmer, and Heather S. Cunningham. "LITHIUM ISOTOPE BIAS DURING SIMS ANALYSIS OF SILICATE GLASS STANDARDS." In GSA Connects 2021 in Portland, Oregon. Geological Society of America, 2021. http://dx.doi.org/10.1130/abs/2021am-371308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Itabashi, Haruka, Naoaki Kuwata, Daichi Fujimoto, Yasutaka Matsuda, and Junichi Kawamura. "Characterization of Lithium Borate and Lithium Silicate Thin-Films as Solid Electrolyte for Thin-Film Battery." In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_166.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lithium silicates"

1

Jacques, I. J., A. J. Anderson, and S. G. Nielsen. The geochemistry of thallium and its isotopes in rare-element pegmatites. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328983.

Full text
Abstract:
The Tl isotopic and trace element composition of K-feldspar, mica, pollucite and pyrite from 13 niobium-yttrium-fluorine (NYF)-type and 14 lithium-cesium-tantalum (LCT)-type rare-element pegmatites was investigated. In general, the epsilon-205Tl values for K-feldspar in NYF- and LCT-type pegmatites increases with increasing magmatic fractionation. Both NYF and LCT pegmatites display a wide range in epsilon-205Tl (-4.25 to 9.41), which complicates attempts to characterize source reservoirs. We suggest 205Tl-enrichment during pegmatite crystallization occurs as Tl partitions between the residual melt and a coexisting aqueous fluid or flux-rich silicate liquid. Preferential association of 205Tl with Cl in the immiscible aqueous fluid may influence the isotopic character of the growing pegmatite minerals. Subsolidus alteration of K-feldspar by aqueous fluids, as indicated by the redistribution of Cs in K-feldspar, resulted in epsilon-205Tl values below the crustal average (-2.0 epsilon-205Tl). Such low epsilon-205Tl values in K-feldspar is attributed to preferential removal and transport of 205Tl by Cl-bearing fluids during dissolution and reprecipitation. The combination of thallium isotope and trace element data may be used to examine late-stage processes related to rare-element mineralization in some pegmatites. High epsilon-205Tl and Ga in late-stage muscovite appears to be a favorable indicator of rare-element enrichment LCT pegmatites and may be a useful exploration vector.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography