Academic literature on the topic 'Lithium niobate'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium niobate.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lithium niobate"
Liu, Leshu, Ken Liu, Ning Liu, Zhihong Zhu, and Jianfa Zhang. "Fano-Resonant Metasurface with 92% Reflectivity Based on Lithium Niobate on Insulator." Nanomaterials 12, no. 21 (October 31, 2022): 3849. http://dx.doi.org/10.3390/nano12213849.
Full textLu, Yi, Benjamin Johnston, Peter Dekker, Michael J. Withford, and Judith M. Dawes. "Channel Waveguides in Lithium Niobate and Lithium Tantalate." Molecules 25, no. 17 (August 27, 2020): 3925. http://dx.doi.org/10.3390/molecules25173925.
Full textZivasatienraj, Bill, M. Brooks Tellekamp, and W. Alan Doolittle. "Epitaxy of LiNbO3: Historical Challenges and Recent Success." Crystals 11, no. 4 (April 9, 2021): 397. http://dx.doi.org/10.3390/cryst11040397.
Full textGaribay-Alvarado, Jesús, Rurik Farías, and Simón Reyes-López. "Sol-Gel and Electrospinning Synthesis of Lithium Niobate-Silica Nanofibers." Coatings 9, no. 3 (March 26, 2019): 212. http://dx.doi.org/10.3390/coatings9030212.
Full textTimpu, Flavia, Helena Weigand, Fabian Kaufmann, Felix U. Richter, Viola-Valentina Vogler-Neuling, Artemios Karvounis, and Rachel Grange. "Towards active electro-optic lithium niobate metasurfaces." EPJ Web of Conferences 238 (2020): 05003. http://dx.doi.org/10.1051/epjconf/202023805003.
Full textShizuka, Hiroo, Koichi Okuda, Masayuki Nunobiki, Wei Li, and Takanobu Inaoka. "A Study on the Ductile Mode Cutting of Lithium Niobate." Advanced Materials Research 126-128 (August 2010): 246–51. http://dx.doi.org/10.4028/www.scientific.net/amr.126-128.246.
Full textKubasov, I. V., A. V. Popov, A. S. Bykov, A. A. Temirov, A. M. Kislyuk, R. N. Zhukov, D. A. Kiselev, M. V. Chichkov, M. D. Malinkovich, and Yu N. Parkhomenko. "Deformation anisotropy of Y + 128° –cut single crystalline bidomain wafers of lithium niobate." Izvestiya Vysshikh Uchebnykh Zavedenii. Materialy Elektronnoi Tekhniki = Materials of Electronics Engineering 19, no. 2 (June 30, 2016): 95–102. http://dx.doi.org/10.17073/1609-3577-2016-2-95-102.
Full textGao, Bofeng, Mengxin Ren, Wei Wu, Hui Hu, Wei Cai, and Jingjun Xu. "Lithium Niobate Metasurfaces." Laser & Photonics Reviews 13, no. 5 (April 7, 2019): 1800312. http://dx.doi.org/10.1002/lpor.201800312.
Full textTitov, R. A. "Influence of the complexing ability of b3+ cations in the composition of B2O3 flux on the characteristics of LiNbO3:b crystals." Transaction Kola Science Centre 12, no. 2-2021 (December 13, 2021): 261–67. http://dx.doi.org/10.37614/2307-5252.2021.2.5.052.
Full textWei, Xing, and Samuel Kesse. "Heterogeneously Integrated Photonic Chip on Lithium Niobate Thin-Film Waveguide." Crystals 11, no. 11 (November 12, 2021): 1376. http://dx.doi.org/10.3390/cryst11111376.
Full textDissertations / Theses on the topic "Lithium niobate"
Barry, Ian Eric. "Microstructuring of lithium niobate." Thesis, University of Southampton, 2000. https://eprints.soton.ac.uk/15498/.
Full textJaeger, Nicolas August Fleming. "Integrated optical devices in lithium niobate." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/26300.
Full textApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Wessel, Rudolf. "Modelocked waveguide lasers in lithium niobate /." Paderborn : HNI, 2000. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=008936815&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textJorgensen, Jonathan David. "Electon paramagnetic resonance of lithium niobate heavily doped with chromium and lithium niobate codoped with magnesium and iron." Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/jorgensen/JorgensenJ0810.pdf.
Full textMohamedelhassan, Ashraf. "Fabrication of Ridge Waveguides in Lithium Niobate." Thesis, KTH, Fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-95360.
Full textHarun, Ahmad Mukifza. "Treparation of lithium niobate nanocrystals and nanocomposites." Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.595647.
Full textAbernethy, Joyce Anne. "Novel devices in periodically poled lithium niobate." Thesis, University of Southampton, 2003. https://eprints.soton.ac.uk/15473/.
Full textChen, Li. "Hybrid Silicon and Lithium Niobate Integrated Photonics." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429660021.
Full textHarhira, Aïssa. "Photoluminescence polaron dans le niobate de lithium : approche axpérimentale et modélisation." Thesis, Metz, 2007. http://www.theses.fr/2007METZ052S/document.
Full textBecause of their electro-optical, non-linear optical and photorefractive effet, lithium niobate crystals (LN) are used in many applications such as modulation, filtering, holographic storage or frequency conversion. Its known that the photorefractive effect is influenced by both extrincic deep centers (Fe2+ and Fe3+ in most cases) and by niobium antisites (Nbli5+) which constitute preferential sites to trap an electron hence giving a small bound polaron (Nbli4+). This defect is characterized by a photo_indiced obsorption (API) broad band in the NIR range, as well as slightly Stokes shifted photoluminescence band (PL). We presnt nerein an experime,tal study of the polaron related PL in iron doped congruent lithium niobate as a function of temperature and incident intensity in CW and pulsed regime. We also propose a phenomenological threecenter model as an interpretation of all observed results. We show that the PL permits one to determine the concentration of deep centres in congruent LN in trace amounts, whatever their nature. For Fe 2+ ions, the sensitivity is typically around 0,25 ppm at RT, which is better than absorption spectroscopy. In addition, unlike other techniques, the PL is spatially resolved (micrometer scale) which allows to maps the concentration of deep donors, hence its potential for characterizating waveguides, integrated optical components and other microstructures
Valdivia, Christopher E. "Light-induced ferroelectric domain engineering in lithium niobate & lithium tantalate." Thesis, University of Southampton, 2007. https://eprints.soton.ac.uk/65500/.
Full textBooks on the topic "Lithium niobate"
Volk, Tatyana, and Manfred Wöhlecke. Lithium Niobate. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-70766-0.
Full textEngineers, Institution of Electrical, INSPEC (Information service), and Knovel (Firm), eds. Properties of lithium niobate. London: IEE, 2002.
Find full textKa-Kha, Wong, and INSPEC (Information service), eds. Properties of lithium niobate. London: IEE/INSPEC, 2002.
Find full textSidorov, N. V. Niobat litii︠a︡: Defekty, fotorefrakt︠s︡ii︠a︡, kolebatelʹnyĭ spektr, poli︠a︡ritony. Moskva: Nauka, 2003.
Find full textS, Kuzḿinov Yu, ed. Physics and chemistry of crystalline lithium niobate. Bristol: Hilger, 1990.
Find full textRobert, Hull, Osgood R. M, Parisi Jürgen 1951-, Warlimont Hans 1931-, Wöhlecke Manfred, and SpringerLink (Online service), eds. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2008.
Find full textLithium niobate crystals: (physico-chemical aspects of technology). Cambridge: Cambridge International Science Publishing, 1999.
Find full textAtuchin, V. V. Metall-diffuzionnye opticheskie volnovody na osnove niobata litii︠a︡: Tekhnologii, matematicheskoe modelirovanie. Vladivostok: Morskoĭ gos. universitet im. admirala G.I. Nevelʹskogo, 2009.
Find full textBullen, Peter Stanley. Domain Broadening in Periodic Poling of Thinned Lithium Niobate and Spectroscopic Methods for Whole Blood Analysis. [New York, N.Y.?]: [publisher not identified], 2019.
Find full textCheng, Ya. Lithium Niobate Nanophotonics. Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003133773.
Full textBook chapters on the topic "Lithium niobate"
Gooch, Jan W. "Lithium Niobate." In Encyclopedic Dictionary of Polymers, 431. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_6973.
Full textWeik, Martin H. "lithium niobate integrated circuit." In Computer Science and Communications Dictionary, 910. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_10413.
Full textDelacourt, D. "Integrated Optics on Lithium Niobate." In Advances in Integrated Optics, 79–93. Boston, MA: Springer US, 1994. http://dx.doi.org/10.1007/978-1-4615-2566-0_4.
Full textSaulnier, J. "Lithium Niobate For Optoelectronic Applications." In Materials for Optoelectronics, 293–339. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1317-5_11.
Full textMacfarlane, R., H. Guenther, Y. Furukawa, and L. Kitamura. "Two-Color Holography in Lithium Niobate." In Holographic Data Storage, 149–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-540-47864-5_8.
Full textHornung, Thomas, Ka-Lo Yeh, and Keith A. Nelson. "Terahertz nonlinear response in lithium niobate." In Ultrafast Phenomena XV, 772–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-68781-8_246.
Full textCourjal, N., F. I. Baida, M. P. Bernal, J. Dahdah, C. Guyot, H. Lu, B. Sadani, and G. Ulliac. "Photonic Bandgap Properties of Lithium Niobate." In Ferroelectric Crystals for Photonic Applications, 313–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41086-4_12.
Full textManzo, Michele, F. Laurell, V. Pasiskevicius, and K. Gallo. "Lithium Niobate: The Silicon of Photonics!" In NATO Science for Peace and Security Series B: Physics and Biophysics, 421–22. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5313-6_42.
Full textAlferness, R. C. "Titanium-Diffused Lithium Niobate Waveguide Devices." In Springer Series in Electronics and Photonics, 145–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-97074-0_4.
Full textGong, Songbin. "Lithium Niobate for M/NEMS Resonators." In Microsystems and Nanosystems, 99–129. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-28688-4_4.
Full textConference papers on the topic "Lithium niobate"
Hu, H., D. Buchter, L. Gui, H. Suche, V. Quiring, R. Ricken, H. Herrmann, and W. Sohler. "Lithium niobate photonic wires." In 2010 23rd Annual Meeting of the IEEE Photonics Society (Formerly LEOS Annual Meeting). IEEE, 2010. http://dx.doi.org/10.1109/photonics.2010.5698855.
Full textYu, Mengjie. "Lithium niobate photonic devices." In Laser Resonators, Microresonators, and Beam Control XXIII, edited by Andrea M. Armani, Alexis V. Kudryashov, Alan H. Paxton, Vladimir S. Ilchenko, and Julia V. Sheldakova. SPIE, 2021. http://dx.doi.org/10.1117/12.2579140.
Full textJamison, Tracee L., Allen Chi-Luen Wang, Zheng-Xuan Lai, James Flattery, and Philipp Kornreich. "Lithium niobate cylinder fiber." In Photonics North 2006, edited by Pierre Mathieu. SPIE, 2006. http://dx.doi.org/10.1117/12.707705.
Full textLing, Jingwei, Rui Luo, Yang He, Mingxiao Li, Hanxiao Liang, and Qiang Lin. "Athermal lithium niobate microring resonators." In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.ftu5c.1.
Full textCho, Y., and K. Yamanouchi. "Nonlinear Constants of Lithium Niobate." In IEEE 1986 Ultrasonics Symposium. IEEE, 1986. http://dx.doi.org/10.1109/ultsym.1986.198904.
Full textPendergrass, L. L. "Ferroelectric Microdomains in Lithium Niobate." In IEEE 1987 Ultrasonics Symposium. IEEE, 1987. http://dx.doi.org/10.1109/ultsym.1987.198960.
Full textWang, Renyuan, and Sunil A. Bhave. "Lithium Niobate Optomechanical Disk Resonators." In 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). IEEE, 2020. http://dx.doi.org/10.1109/ifcs-isaf41089.2020.9264025.
Full textde Almeida, Jose M. M. M., Antonio M. P. P. Leite, and Jaymin Amin. "Spectroscopy of doped lithium niobate." In Symposium on Integrated Optoelectronics, edited by Shibin Jiang. SPIE, 2000. http://dx.doi.org/10.1117/12.382863.
Full textVeithen, M. "Electron Localization in Lithium Niobate." In FUNDAMENTAL PHYSICS OF FERROELECTRICS 2002. AIP, 2002. http://dx.doi.org/10.1063/1.1499569.
Full textYu, Mengjie. "Lithium-Niobate-Based Frequency Combs." In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542522.
Full textReports on the topic "Lithium niobate"
Eichenfield, Matt. Reduced Dimensionality Lithium Niobate Microsystems. Office of Scientific and Technical Information (OSTI), January 2017. http://dx.doi.org/10.2172/1338889.
Full textPleszkun, Andrew R. Lithium Niobate Arithmetic Logic Unit. Fort Belvoir, VA: Defense Technical Information Center, March 1991. http://dx.doi.org/10.21236/ada236062.
Full textKingsley, Stuart, and Sri Sriram. Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada444733.
Full textBranch, Darren W., Grant D. Meyer, Christopher Jay Bourdon, and Harold G. Craighead. Active Mixing in Microchannels using Surface Acoustic Wave Streaming on Lithium Niobate. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/1126940.
Full textEvans, Jonathan W. Beam Switching of an Nd:YAG Laser Using Domain-Engineered Prisms in Magnesium-Oxide-Doped Congruent Lithium Niobate. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada532280.
Full textCocuzzi, Matthew D. Sub-Nanosecond Infrared Optical Parametric Pulse Generation in Periodically Poled Lithium Niobate Pumped by a Seeded Fiber Amplifier. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada479710.
Full text