Academic literature on the topic 'Lithium-ion (Li-ion)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium-ion (Li-ion).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lithium-ion (Li-ion)"
Wu, Feng, Hua Quan Lu, Yue Feng Su, Shi Chen, and Yi Biao Guan. "A Simple Way of Pre-Doping Lithium Ion into Carbon Negative Electrode for Lithium Ion Capacitor." Materials Science Forum 650 (May 2010): 142–49. http://dx.doi.org/10.4028/www.scientific.net/msf.650.142.
Full textHuang, Yuxi, Rui Ding, Qilei Xu, Wei Shi, Danfeng Ying, Yongfa Huang, Tong Yan, Caini Tan, Xiujuan Sun, and Enhui Liu. "A conversion and pseudocapacitance-featuring cost-effective perovskite fluoride KCuF3 for advanced lithium-ion capacitors and lithium-dual-ion batteries." Dalton Transactions 50, no. 25 (2021): 8671–75. http://dx.doi.org/10.1039/d1dt00904d.
Full textYu, Yang, Fei Lu, Na Sun, Aoli Wu, Wei Pan, and Liqiang Zheng. "Single lithium-ion polymer electrolytes based on poly(ionic liquid)s for lithium-ion batteries." Soft Matter 14, no. 30 (2018): 6313–19. http://dx.doi.org/10.1039/c8sm00907d.
Full textZhao, Chen-Zi, Peng-Yu Chen, Rui Zhang, Xiang Chen, Bo-Quan Li, Xue-Qiang Zhang, Xin-Bing Cheng, and Qiang Zhang. "An ion redistributor for dendrite-free lithium metal anodes." Science Advances 4, no. 11 (November 2018): eaat3446. http://dx.doi.org/10.1126/sciadv.aat3446.
Full textSun, Yifei, Michele Kotiuga, Dawgen Lim, Badri Narayanan, Mathew Cherukara, Zhen Zhang, Yongqi Dong, et al. "Strongly correlated perovskite lithium ion shuttles." Proceedings of the National Academy of Sciences 115, no. 39 (August 13, 2018): 9672–77. http://dx.doi.org/10.1073/pnas.1805029115.
Full textChinnam, Parameswara Rao, Vijay Chatare, Sumanth Chereddy, Ramya Mantravadi, Michael Gau, Joe Schwab, and Stephanie L. Wunder. "Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators." Journal of Materials Chemistry A 4, no. 37 (2016): 14380–91. http://dx.doi.org/10.1039/c6ta05499d.
Full textGuo, Ai Hong, Shuang Feng, Yun Ting Mi, and Hong Zhi Li. "Synthesis and Electrochemical Properties of Rechargeable Battery Electrolyte Lithium Bis(heptafluoroisopropyl)tetrafluorophosphate." Applied Mechanics and Materials 327 (June 2013): 128–31. http://dx.doi.org/10.4028/www.scientific.net/amm.327.128.
Full textGuo, Ai Hong, Feng Yuan, Chun Na Zhang, and Wen Bo Su. "Electrochemical Characterization of Lithium Bis(heptafluoroisopropyl)tetrafluorophosphate with Properties of Chemical Materials." Advanced Materials Research 700 (May 2013): 11–14. http://dx.doi.org/10.4028/www.scientific.net/amr.700.11.
Full textGurmesa, Gamachis Sakata, Natei Ermias Benti, Mesfin Diro Chaka, Girum Ayalneh Tiruye, Qinfang Zhang, Yedilfana Setarge Mekonnen, and Chernet Amente Geffe. "Fast 3D-lithium-ion diffusion and high electronic conductivity of Li2MnSiO4 surfaces for rechargeable lithium-ion batteries." RSC Advances 11, no. 16 (2021): 9721–30. http://dx.doi.org/10.1039/d1ra00642h.
Full textXu, Shenzhen, Ryan M. Jacobs, Ha M. Nguyen, Shiqiang Hao, Mahesh Mahanthappa, Chris Wolverton, and Dane Morgan. "Lithium transport through lithium-ion battery cathode coatings." Journal of Materials Chemistry A 3, no. 33 (2015): 17248–72. http://dx.doi.org/10.1039/c5ta01664a.
Full textDissertations / Theses on the topic "Lithium-ion (Li-ion)"
Xing, Hanwen, and Xin Liu. "A Lithium-ion Battery Charger." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-44826.
Full textPopovic, Jelena. "Novel lithium iron phosphate materials for lithium-ion batteries." Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5459/.
Full textKonventionelle Energiequellen sind weder nachwachsend und daher nachhaltig nutzbar, noch weiterhin langfristig verfügbar. Sie benötigen Millionen von Jahren um gebildet zu werden und verursachen in ihrer Nutzung negative Umwelteinflüsse wie starke Treibhausgasemissionen. Im 21sten Jahrhundert ist es unser Ziel nachhaltige und umweltfreundliche, sowie möglichst preisgünstige Energiequellen zu erschließen und nutzen. Neuartige Technologien assoziiert mit transportablen Energiespeichersystemen spielen dabei in unserer mobilen Welt eine große Rolle. Li-Ionen Batterien sind in der Lage wiederholt Energie aus entsprechenden Prozessen nutzbar zu machen, indem sie reversibel chemische in elektrische Energie umwandeln. Die Leistung von Li-Ionen Batterien hängen sehr stark von den verwendeten Funktionsmaterialien ab. Aktuell verwendete Elektrodenmaterialien haben hohe Produktionskosten, verfügen über limitierte Energiespeichekapazitäten und sind teilweise gefährlich in der Nutzung für größere Bauteile. Dies beschränkt die Anwendungsmöglichkeiten der Technologie insbesondere im Gebiet der hybriden Fahrzeugantriebe. Die vorliegende Dissertation beschreibt bedeutende Fortschritte in der Entwicklung von LiFePO4 als Kathodenmaterial für Li-Ionen Batterien. Mithilfe einfacher Syntheseprozeduren konnten eine vollkommen neue Morphologie (mesokristallines LiFePo4) sowie ein nanostrukturiertes Material mit exzellenten elektrochemischen Eigenschaften hergestellt werden. Die neu entwickelten Verfahren zur Synthese von LiFePo4 sind einschrittig und bei signifikant niedrigeren Temperaturen im Vergleich zu konventionellen Methoden. Die Verwendung von preisgünstigen und umweltfreundlichen Ausgangsstoffen stellt einen grünen Herstellungsweg für die large scale Synthese dar. Mittels des neuen Synthesekonzepts konnte meso- und nanostrukturiertes LiFe PO4 generiert werden. Die Methode ist allerdings auch auf andere phospho-olivin Materialien (LiCoPO4, LiMnPO4) anwendbar. Batterietests der besten Materialien (nanostrukturiertes LiFePO4 mit Kohlenstoffnanobeschichtung) ergeben eine mögliche Energiespeicherung von 94%.
Cen, Yinjie. "Si/C Nanocomposites for Li-ion Battery Anode." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-dissertations/468.
Full textRosina, Kenneth. "Structural and electrochemical investigation of aluminum fluoride coated Li[Li₁/₉Ni₁/₃Mn₅/₉]O₂ cathodes for secondary Li-ion batteries." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708756.
Full textZhao, Kejie. "Mechanics of Electrodes in Lithium-Ion Batteries." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10551.
Full textEngineering and Applied Sciences
Seo, Imsul. "Relaxation Analysis of Cathode Materials for Lithium-Ion Secondary Battery." Kyoto University, 2013. http://hdl.handle.net/2433/180446.
Full textZou, Haiyang. "Development of a Recycling Process for Li-Ion Batteries." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/260.
Full textWagner, Reinhard, Daniel Rettenwander, Maria Maier, Walter Schmidt, Julia Langer, Martin Wilkening, and Georg Amthauer. "Synthesis of Coarse-grained Garnet-type Li-ion Conductor Li7-3x(Al/Ga)xLa3Zr2O12 and its Li-ion Dynamics." Diffusion fundamentals 21 (2014) 9, S.1-2, 2014. https://ul.qucosa.de/id/qucosa%3A32401.
Full textBuiel, Edward. "Lithium insertion in hard carbon anode materials for Li-ion batteries." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0013/NQ36573.pdf.
Full textDrewett, Nicholas E. "Novel routes to high performance lithium-ion batteries." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3513.
Full textBooks on the topic "Lithium-ion (Li-ion)"
Li li zi dian chi yong lin suan tie li zheng ji cai liao: LiFePO4 Cathode Material Used for Li-ion Battery. Beijing Shi: Ke xue chu ban she, 2013.
Find full textDian dong qi che yong li li zi er ci dian chi. Beijing: Ke xue chu ban she, 2010.
Find full textDian dong qi che yong li li zi er ci dian chi. 2nd ed. Beijing: Ke xue chu ban she, 2013.
Find full textKim, Won-Seok. Enhanced electrochemical characteristics of lithium manganese oxide thin film cathodes for li-ion rechargeable microbatteries. 2004.
Find full textWagemaker, Marnix. Structure & Dynamics of Lithium in Anatase Tio2: Study of Interstitial Li-Ion Intercalation in Anatase Tio2 at the Atomic Level. Delft Univ Pr, 2003.
Find full textBook chapters on the topic "Lithium-ion (Li-ion)"
Liu, Kailong, Yujie Wang, and Xin Lai. "Introduction to Battery Full-Lifespan Management." In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 1–25. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_1.
Full textSalomon, Mark, Hsiu-ping Lin, Edward J. Plichta, and Mary Hendrickson. "Temperature Effects on Li-Ion Cell Performance." In Advances in Lithium-Ion Batteries, 309–44. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47508-1_12.
Full textZhang, Ji-Guang, Wei Wang, Jie Xiao, Wu Xu, Gordon L. Graff, Gary Yang, Daiwon Choi, Deyu Wang, Xiaolin Li, and Jun Liu. "Silicon-Based Anodes Li-ion battery, see also lithium-ion battery silicon-based anodes for Li-Ion Batteries Li-ion battery, see also lithium-ion battery." In Encyclopedia of Sustainability Science and Technology, 9293–316. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_496.
Full textSamaras, I., E. Pavlidou, G. Perentzis, and L. Papadimitriou. "Electron-Gun Evaporated Carbon Films for Li-Ion Microbatteries." In Materials for Lithium-Ion Batteries, 611–13. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_54.
Full textMoshtev, R., and P. Zlatilova. "Synthesis of Overlithiated LiNiO2 Cathode Materials for Li-Ion Cells." In Materials for Lithium-Ion Batteries, 525–28. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_34.
Full textJulien, C. "Local Environment in 4-Volt Cathode Materials for Li-Ion Batteries." In Materials for Lithium-Ion Batteries, 309–26. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_13.
Full textAurbach, Doron. "The Role of Surface Films on Electrodes in Li-Ion Batteries." In Advances in Lithium-Ion Batteries, 7–77. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/0-306-47508-1_2.
Full textHatzikraniotis, E., C. L. Mitsas, and D. I. Siapkas. "Differential Capacity Analysis, a Tool to Examine the Performance of Graphites for Li-Ion Cells." In Materials for Lithium-Ion Batteries, 529–34. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_35.
Full textMoshtev, R., and B. Johnson. "Comparison Study of the Physical Characteristics and Cycling Performance of Commercially Available Li-Ion Batteries." In Materials for Lithium-Ion Batteries, 615–18. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_55.
Full textLiu, Kailong, Yujie Wang, and Xin Lai. "Key Stages for Battery Full-Lifespan Management." In Data Science-Based Full-Lifespan Management of Lithium-Ion Battery, 27–47. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01340-9_2.
Full textConference papers on the topic "Lithium-ion (Li-ion)"
Dey, Satadru, Beshah Ayalew, and Pierluigi Pisu. "Estimation of Lithium-Ion Concentrations in Both Electrodes of a Lithium-Ion Battery Cell." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9693.
Full textAlavi-Soltani, S. R., T. S. Ravigururajan, and Mary Rezac. "Thermal Issues in Lithium-Ion Batteries." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-15106.
Full textLoud, John, and Xiaoyun Hu. "Failure Analysis Methodology for Li-Ion Incidents." In ISTFA 2007. ASM International, 2007. http://dx.doi.org/10.31399/asm.cp.istfa2007p0242.
Full textNingtyas, Rani Pramudyo, Sang Kompiang Wirawan, and Chandra Wahyu Purnomo. "Lithium purification from spent li-ion batteries leachate using ion exchange resin." In THE INTERNATIONAL CONFERENCE ON CHEMICAL SCIENCE AND TECHNOLOGY (ICCST – 2020): Chemical Science and Technology Innovation for a Better Future. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0045707.
Full textDurganjali, C. Santhi, Harini Raghavan, and Sudha Radhika. "Modelling and Performance Analysis of Different Types of Li-Ion Battery." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24404.
Full textXu, Zhibang, Meng Xu, Xia Wang, and Peng Zhao. "Conductive Heating of Li-Ion Batteries at Low Temperatures." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88235.
Full textHu, Chao, Gaurav Jain, Craig Schmidt, Carrie Strief, and Melani Sullivan. "Online Estimation of Lithium-Ion Battery Capacity Using Sparse Bayesian Learning." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46964.
Full textXi, Zhimin, Rong Jing, and Cheol Lee. "Diagnostics and Prognostics of Lithium-Ion Batteries." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46935.
Full textSharma, Rahul, Rahul, Mamta Sharma, and J. K. Goswamy. "Li-ion battery: Lithium cobalt oxide as cathode material." In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0017341.
Full textShen, Sheng, M. K. Sadoughi, Xiangyi Chen, Mingyi Hong, and Chao Hu. "Online Estimation of Lithium-Ion Battery Capacity Using Deep Convolutional Neural Networks." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86347.
Full textReports on the topic "Lithium-ion (Li-ion)"
Apblett, Christopher A. Lithium Thiophosphate Compounds as Stable High Rate Li-Ion Separators. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1171577.
Full textGao, Yue, Guoxing Li, Pei Shi, and Linh Le. Multifunctional Li-ion Conducting Interfacial Materials for Lithium Metal Batteries”. Office of Scientific and Technical Information (OSTI), December 2021. http://dx.doi.org/10.2172/1839857.
Full textCrafts, Chris C., Daniel Harvey Doughty, James McBreen, and Emanuel Peter Roth. Advanced technology development program for lithium-ion batteries : thermal abuse performance of 18650 Li-ion cells. Office of Scientific and Technical Information (OSTI), March 2004. http://dx.doi.org/10.2172/918751.
Full textSusarla, Naresh, and Shabbir Ahmed. Estimating the cost and energy demand of producing lithium manganese oxide for Li-ion batteries. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1607686.
Full textYakovleva, Marina. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES. Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1164223.
Full textSanchez-Vazquez, Mario, and Nancy Perez-Peralta. Theoretical Study of Si(x)Ge(y)Li(z)- (x=4-10, y=1-10, z=0-10) Clusters for Designing of Novel Nanostructured Materials to be Utilized as Anodes for Lithium-Ion Batteries. Fort Belvoir, VA: Defense Technical Information Center, March 2015. http://dx.doi.org/10.21236/ad1013217.
Full text