Academic literature on the topic 'Lithium gel polymer electrolyte system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lithium gel polymer electrolyte system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lithium gel polymer electrolyte system"
Hoang Huy, Vo Pham, Seongjoon So, and Jaehyun Hur. "Inorganic Fillers in Composite Gel Polymer Electrolytes for High-Performance Lithium and Non-Lithium Polymer Batteries." Nanomaterials 11, no. 3 (March 1, 2021): 614. http://dx.doi.org/10.3390/nano11030614.
Full textRushing, Jeramie C., Anit Gurung, and Daniel G. Kuroda. "Relation between microscopic structure and macroscopic properties in polyacrylonitrile-based lithium-ion polymer gel electrolytes." Journal of Chemical Physics 158, no. 14 (April 14, 2023): 144705. http://dx.doi.org/10.1063/5.0135631.
Full textRazalli, S. M. M., S. I. Y. S. M. Saaid, Tengku Ishak Tengku Kudin, Muhd Zu Azhan Yahya, Oskar Hasdinor Hassan, and Ab Malik Marwan Ali. "Electrochemical Properties of Glyme Based Plasticizer on Gel Polymer Electrolytes Doped with Lithium Bis(Trifluoromethanesulfonyl)Imide." Materials Science Forum 846 (March 2016): 534–38. http://dx.doi.org/10.4028/www.scientific.net/msf.846.534.
Full textVeselkova, Iuliia, Kamil Jasso, Tomas Kazda, and Marie Sedlaříková. "Gel Polymer Electrolyte Based on Methyl Methacrylate for Lithium-Sulfur Batteries." ECS Transactions 105, no. 1 (November 30, 2021): 239–45. http://dx.doi.org/10.1149/10501.0239ecst.
Full textRizzuto, Carmen, Dale C. Teeters, Riccardo C. Barberi, and Marco Castriota. "Plasticizers and Salt Concentrations Effects on Polymer Gel Electrolytes Based on Poly (Methyl Methacrylate) for Electrochemical Applications." Gels 8, no. 6 (June 8, 2022): 363. http://dx.doi.org/10.3390/gels8060363.
Full textRajasudha, G., V. Narayanan, and A. Stephen. "Effect of Iron Oxide on Ionic Conductivity of Polyindole Based Composite Polymer Electrolytes." Advanced Materials Research 584 (October 2012): 536–40. http://dx.doi.org/10.4028/www.scientific.net/amr.584.536.
Full textPark, Habin, Anthony Engler, Nian Liu, and Paul Kohl. "Dynamic Anion Delocalization of Single-Ion Conducting Polymer Electrolyte for High-Performance of Solid-State Lithium Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 227. http://dx.doi.org/10.1149/ma2022-023227mtgabs.
Full textPodlesnov, E., M. G. Nigamatdianov, and M. V. Dorogov. "Review of Materials for Electrodes and Electrolytes of Lithium Batteries." Reviews on Advanced Materials and Technologies 4, no. 4 (2022): 39–61. http://dx.doi.org/10.17586/2687-0568-2022-4-4-39-61.
Full textZailani, N. A. M., F. A. Latif, Z. S. M. Al Shukaili, Pramod K. Singh, S. F. M. Zamri, and M. A. A. Rani. "Ionic Liquid Encapsulated Poly (Methyl Methacrylate) Electrolyte Film in Electrical Double Layer Capacitor." International Journal of Emerging Technology and Advanced Engineering 12, no. 11 (November 1, 2022): 89–97. http://dx.doi.org/10.46338/ijetae1122_10.
Full textZhang, Lan, and Shi Chao Zhang. "Preparation and Characterization of a Novel Gel Polymer Membrane Based on a Tetra-Copolymer." Advanced Materials Research 396-398 (November 2011): 1755–59. http://dx.doi.org/10.4028/www.scientific.net/amr.396-398.1755.
Full textDissertations / Theses on the topic "Lithium gel polymer electrolyte system"
Chamaani, Amir. "Hybrid Polymer Electrolyte for Lithium-Oxygen Battery Application." FIU Digital Commons, 2017. https://digitalcommons.fiu.edu/etd/3562.
Full textSafa, Meer N. "Poly (Ionic Liquid) Based Electrolyte for Lithium Battery Application." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3746.
Full textPiana, Giulia. "Electrolyte solide innovant à base de liquides ioniques pour micro-accumulateurs au lithium : réalisation par voie humide et caractérisation des propriétés de transport." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS359/document.
Full textNew deposition techniques compatible with making tridimensional geometries are currently being investigated with the aim of improving the performances of lithium microbatteries. This work focuses on the development of a new quasi-solid electrolyte deposited by a “wet process”. An ionic liquid-based membrane containing a lithium salt was prepared by the photo-induced polymerization of a dimethacrylate oligomer. New methods such as a new type of conductivity cell based on planar interdigitated electrodes to measure ionic conductivity as well as in-situ monitoring of photo-polymerization using impedance spectroscopy were used. Transport properties of lithium ion were measured by PGSE-NMR. Interestingly, a significant reduction of lithium ion mobility was observed after UV-curing while the total ionic conductivity only decreased slightly. This phenomenon is due to the formation of lithium ion complexes with ethylene oxide moieties of the solid matrix, evidenced by Raman spectroscopy measurements. Additionally, we have shown that the structures of the complexes depend on the salt concentration and a dual solid/liquid transport mechanism was suggested. Hence, in order to improve lithium ion diffusion, a co-polymer was added in an attempt to decrease the cross-linking density of the solid matrix thus improving its segmental motion. The cyclability of the all solid state micro batteries was indeed improved. Comparable performances with the standard solid electrolyte LiPON were obtained at room temperature. In summary, it was established that electrochemical performances of the solid state microbatteries depend to a certain extent on the structure of the polymer electrolyte. Therefore it is possible to find new ways in designing these types of electrolytes for further improvement
DESTRO, MATTEO. "Towards Realization of an Innovative Li-Ion Battery: Materials Optimization and System Up-Scalable Solutions." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2506270.
Full textChaudoy, Victor. "Electrolytes polymères gélifiés pour microbatteries au lithium." Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4019/document.
Full textIn this thesis, a new polymer gel electrolyte was prepared and optimized for Li based microbatteries. The gel consisted of an ionic liquid based phase (P13FSI/LiTFSI) confined in a semi-interpenetrating polymers (sIPN) network (PVdF-HFP/crosslinked PEO). sIPN electrolytes were prepared and optimized according to the PVdFHFP/ crosslinked PEO ratio and the liquid phase fraction. Furthermore, the sIPN electrolyte was used as an electrolyte in Li/LiNi1/3Mn1/3Co1/3O2 battery. The performances of the battery (specific capacity, efficiency, cyclability) were determined and compared to batteries using a crosslinked PEO or PVdF-HFP based gel. Such a thin and stable sIPN electrolyte film enabled the preparation of Li based microbatteries using thermal evaporation deposition of lithium directly conducted on the sIPN electrolyte film. This assembly (Li/sIPN) was therefore used to prepare a LiCoO2/sIPN gel/Li quasi solid-state microbattery. This microbattery showed a stable nominal capacity of 850 μAh for over 100 cycles of charge and discharge under 1 C rate at 25°C
Krejza, Ondřej. "Gelové polymerní elektrolyty pro elektrochromní prvky." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-233503.
Full textSzotkowski, Radek. "Gelové polymerní elektrolyty s nanočásticemi." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-319296.
Full textGeorge, Sweta Mariam. "Exploring Soft Matter and Modified-Liquid Electrolytes for Alkali metal (Li, Na) Based Rechargeable Batteries." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5913.
Full textSen, Sudeshna. "A Few Case Studies of Polymer Conductors for Lithium-based Batteries." Thesis, 2016. http://etd.iisc.ac.in/handle/2005/3019.
Full textSen, Sudeshna. "A Few Case Studies of Polymer Conductors for Lithium-based Batteries." Thesis, 2016. http://hdl.handle.net/2005/3019.
Full textBooks on the topic "Lithium gel polymer electrolyte system"
Writer, Beta. Lithium-Ion Batteries: A Machine-Generated Summary of Current Research. Springer, 2019.
Find full textBook chapters on the topic "Lithium gel polymer electrolyte system"
Das, Akhila, Neethu T. M. Balakrishnan, N. S. Jishnu, Jarin D. Joyner, Jou-Hyeon Ahn, Fatima M. J. Jabeen, and Prasanth Raghavan. "Poly(Vinylidene Fluoride- co-Hexafluoropropylene) (PVdF-co-HFP)-Based Gel Polymer Electrolyte for Lithium-Ion Batteries." In Polymer Electrolytes for Energy Storage Devices, 133–48. First edition | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003144793-6.
Full textGupta, Himani, and Rajendra K. Singh. "Ionic Liquid-Based Gel Polymer Electrolytes for Application in Rechargeable Lithium Batteries." In Energy Storage Battery Systems - Fundamentals and Applications [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.93397.
Full text"Energy Efficiency." In Green Chemistry: Principles and Case Studies, 169–207. The Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/bk9781788017985-00169.
Full textConference papers on the topic "Lithium gel polymer electrolyte system"
Zhang, Ruisi, Niloofar Hashemi, Maziar Ashuri, and Reza Montazami. "Advanced Gel Polymer Electrolyte for Lithium-Ion Polymer Batteries." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18386.
Full textCho, Jeong-Ju, and M. Urquidi-Macdonald. "Study of Lithium Polymer Interface to Enhance Efficiency and Safety in Lithium/Water Batteries." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1361.
Full textGohel, Khushbu, and D. K. Kanchan. "Conductivity and dielectric behavior of lithium ion conducting gel polymer electrolyte." In NATIONAL CONFERENCE ON ADVANCED MATERIALS AND NANOTECHNOLOGY - 2018: AMN-2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5052103.
Full textZamani, Somayeh, George Shubert, and Yong Lak Joo. "Investigation of Gel Polymer Electrolyte Failure Mechanism in Lithium-Sulfur Batteries." In AIChE Annual Meeting, Orlando, FL. US DOE, 2019. http://dx.doi.org/10.2172/1874097.
Full textBeshkarev, Mikhail A., and Ivan A. Putsylov. "Development and research of a lithium battery with a gel-polymer electrolyte." In 2022 4th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). IEEE, 2022. http://dx.doi.org/10.1109/reepe53907.2022.9731373.
Full textLiu, Wei, Ryan Milcarek, Kang Wang, and Jeongmin Ahn. "Novel Structured Electrolyte for All-Solid-State Lithium Ion Batteries." In ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2015 Power Conference, the ASME 2015 9th International Conference on Energy Sustainability, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fuelcell2015-49384.
Full textAGRAWAL, S. L., A. AWADHIA, and S. K. PATEL. "ION CONDUCTING BEHAVIOUR OF COMPOSITE POLYMER GEL ELECTROLYTE: PEG - PVA - (NH4CH2CO2)2 SYSTEM." In Proceedings of the 10th Asian Conference. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773104_0060.
Full textAgrawal, S. L., and Neelesh Rai. "Studies on Blend Based Nanocomposite Polymer Gel Electrolyte: {(PVA:PEG):NH4 SCN:AL2 O3 } System." In 14th Asian Conference on Solid State Ionics (ACSSI 2014). Singapore: Research Publishing Services, 2014. http://dx.doi.org/10.3850/978-981-09-1137-9_015.
Full textFitrianingsih, Nety, Herlin Tarigan, and Rahmat Hidayat. "Preliminary study on the preparation of hybrid polymer gel electrolyte for lithium battery applications and its ac impedance characteristics." In 2013 Joint International Conference on Rural Information & Communication Technology and Electric-Vehicle Technology (rICT & ICeV-T). IEEE, 2013. http://dx.doi.org/10.1109/rict-icevt.2013.6741554.
Full textКорбова, Екатерина Вадимовна, Михаил Семенович Липкин, Андрей Анатольевич Александров, Елена Юрьевна Чеснокова, and Игорь Антонович Мокриевич. "STUDY OF ELECTROCHEMICAL TRANSFORMATION PRODUCTS OF LITHIUM ION BATTERY ELECTROLYTE OF LITHIUM COBALT-GRAPHITE SYSTEM." In Перспективы внедрения результатов научных исследований в современном мире: сборник статей международной научной конференции (Томск, Январь 2023). Crossref, 2023. http://dx.doi.org/10.58351/230121.2023.68.71.002.
Full text