Cifonelli, Antonio. "Probabilistic exponential smoothing for explainable AI in the supply chain domain." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR41.
Abstract:
Le rôle clé que l’IA pourrait jouer dans l’amélioration des activités commerciales est connu depuis longtemps, mais le processus de pénétration de cette nouvelle technologie a rencontré certains freins au sein des entreprises, en particulier, les coûts de mise œuvre. En moyenne, 2.8 ans sont nécessaires depuis la sélection du fournisseur jusqu’au déploiement complet d’une nouvelle solution. Trois points fondamentaux doivent être pris en compte lors du développement d’un nouveau modèle. Le désalignement des attentes, le besoin de compréhension et d’explications et les problèmes de performance et de fiabilité. Dans le cas de modèles traitant des données de la supply chain, cinq questions spécifiques viennent s’ajouter aux précédentes : - La gestion des incertitudes. Les décideurs cherchent un moyen de minimiser le risque associé à chaque décision qu’ils doivent prendre en présence d’incertitude. Obtenir une prévision exacte est un rêve ; obtenir une prévision assez précise et en calculer les limites est réaliste et judicieux. - Le traitement des données entières et positives. La plupart des articles ne peuvent pas être vendus en sous-unités. Cet aspect simple de la vente se traduit par une contrainte qui doit être satisfaite : le résultat doit être un entier positif. - L’observabilité. La demande du client ne peut pas être mesurée directement, seules les ventes peuvent être enregistrées et servir de proxy. - La rareté et la parcimonie. Les ventes sont une quantité discontinue. En enregistrant les ventes par jour, une année entière est condensée en seulement 365 points. De plus, une grande partie d’entre elles sera à zéro. - L’optimisation juste-à-temps. La prévision est une fonction clé, mais elle n’est qu’un élément d’une chaîne de traitements soutenant la prise de décision. Le temps est une ressource précieuse qui ne peut pas être consacrée entièrement à une seule fonction. Le processus de décision et les adaptations associées doivent donc être effectuées dans un temps limité et d’une manière suffisamment flexible pour pouvoir être interrompu et relancé en cas de besoin afin d’incorporer des événements inattendus ou des ajustements nécessaires. Cette thèse s’insère dans ce contexte et est le résultat du travail effectué au cœur de Lokad. La recherche doctorale a été financée par Lokad en collaboration avec l’ANRT dans le cadre d’un contrat CIFRE. Le travail proposé a l’ambition d’être un bon compromis entre les nouvelles technologies et les attentes des entreprises, en abordant les divers aspects précédemment présentés. Nous avons commencé à effectuer des prévisions en utilisant la famille des lissages exponentiels, qui sont faciles à mettre en œuvre et extrêmement rapides à exécuter. Largement utilisés dans l’industrie, elles ont déjà gagné la confiance des utilisateurs. De plus, elles sont faciles à comprendre et à expliquer à un public non averti. En exploitant des techniques plus avancées relevant du domaine de l’IA, certaines des limites des modèles utilisés peuvent être surmontées. L’apprentissage par transfert s’est avéré être une approche pertinente pour extrapoler des informations utiles dans le cas où le nombre de données disponibles était très limité. Nous avons proposé d’utiliser un modèle associé à une loi de Poisson, une binomiale négative qui correspond mieux à la nature des phénomènes que nous cherchons à modéliser et à prévoir. Nous avons aussi proposé de traiter l’incertitude par des simulations de Monte Carlo. Un certain nombre de scénarios sont générés, échantillonnés et modélisés par dans une distribution. À partir de cette dernière, des intervalles de confiance de taille différentes et adaptés peuvent être déduits. Sur des données réelles de l’entreprise, nous avons comparé notre approche avec les méthodes de l’état de l’art comme DeepAR, DeepSSMs et N-Beats. Nous en avons déduit un nouveau modèle conçu à partir de la méthode Holt-Winter [...]<br>The key role that AI could play in improving business operations has been known for a long time, but the penetration process of this new technology has encountered certain obstacles within companies, in particular, implementation costs. On average, it takes 2.8 years from supplier selection to full deployment of a new solution. There are three fundamental points to consider when developing a new model. Misalignment of expectations, the need for understanding and explanation, and performance and reliability issues. In the case of models dealing with supply chain data, there are five additionally specific issues: - Managing uncertainty. Precision is not everything. Decision-makers are looking for a way to minimise the risk associated with each decision they have to make in the presence of uncertainty. Obtaining an exact forecast is a advantageous; obtaining a fairly accurate forecast and calculating its limits is realistic and appropriate. - Handling integer and positive data. Most items sold in retail cannot be sold in subunits. This simple aspect of selling, results in a constraint that must be satisfied by the result of any given method or model: the result must be a positive integer. - Observability. Customer demand cannot be measured directly, only sales can be recorded and used as a proxy. - Scarcity and parsimony. Sales are a discontinuous quantity. By recording sales by day, an entire year is condensed into just 365 points. What’s more, a large proportion of them will be zero. - Just-in-time optimisation. Forecasting is a key function, but it is only one element in a chain of processes supporting decision-making. Time is a precious resource that cannot be devoted entirely to a single function. The decision-making process and associated adaptations must therefore be carried out within a limited time frame, and in a sufficiently flexible manner to be able to be interrupted and restarted if necessary in order to incorporate unexpected events or necessary adjustments. This thesis fits into this context and is the result of the work carried out at the heart of Lokad, a Paris-based software company aiming to bridge the gap between technology and the supply chain. The doctoral research was funded by Lokad in collaborationwith the ANRT under a CIFRE contract. The proposed work aims to be a good compromise between new technologies and business expectations, addressing the various aspects presented above. We have started forecasting using the exponential smoothing family which are easy to implement and extremely fast to run. As they are widely used in the industry, they have already won the confidence of users. What’s more, they are easy to understand and explain to an unlettered audience. By exploiting more advanced AI techniques, some of the limitations of the models used can be overcome. Cross-learning proved to be a relevant approach for extrapolating useful information when the number of available data was very limited. Since the common Gaussian assumption is not suitable for discrete sales data, we proposed using a model associatedwith either a Poisson distribution or a Negative Binomial one, which better corresponds to the nature of the phenomena we are seeking to model and predict. We also proposed using Monte Carlo simulations to deal with uncertainty. A number of scenarios are generated, sampled and modelled using a distribution. From this distribution, confidence intervals of different and adapted sizes can be deduced. Using real company data, we compared our approach with state-of-the-art methods such as DeepAR model, DeepSSMs and N-Beats. We deduced a new model based on the Holt-Winter method. These models were implemented in Lokad’s work flow