Academic literature on the topic 'Liquide de pyrolyse'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquide de pyrolyse.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Liquide de pyrolyse":

1

Luck, F., C. Bonnin, G. Niel, and G. Naud. "Caractérisation des sous-produits d'oxydation des boues en conditions sous-critiques et supercritiques." Revue des sciences de l'eau 8, no. 4 (April 12, 2005): 481–92. http://dx.doi.org/10.7202/705234ar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'élimination de la matière organique et la réduction de volume des boues peuvent être obtenues par incinération, par oxydation sous pression en milieu humide ("wet air oxidation") ou par combustion en eau supercritique ("supercritical water oxidation"). Une étude en autoclave agité a permis de comparer sur une même boue d'épuration les performances des deux techniques d'oxydation voie humide et d'oxydation supercritique, en mettant l'accent sur les sous-produits résiduels en phase liquide et la composition de la phase gaz. Les résultats obtenus montrent que l'élimination de la DCO dépend fortement de la température: l'abattement de la DCO passe de 70 % à 235 °C à 94 % à 430 °C. L'azote organique de la boue est transformé en NH4+ mais seule une élimination limitée de l'azote totale est obtenue à 430 °C. Les sous-produits résiduels dans la phase liquide sont constitués en majorité d'acides gras, d'aldéhydes et de cétones, l'acide acétique étant prédominant. Hormis le CO2, les sous-produits gazeux majeurs formés par des réactions complexes comme la pyrolyse, le réformage et la méthanation sont CO, H2 et CH4. Dans les conditions supercritiques, tous les sous-produits gazeux sont fortement oxydés. L'augmentation de la température de traitement permet d'obtenir un résidu solide de plus en plus inerte, les cendres obtenues en conditions supercritiques contenant moins de 1 % de matière organique. Les performances des deux procédés étudiés laissent envisager leur développement à moyen terme comme voies alternatives d'élimination des boues.
2

Joo, Junghee, Heeyoung Choi, Kun-Yi Andrew Lin, and Jechan Lee. "Pyrolysis of Denim Jeans Waste: Pyrolytic Product Modification by the Addition of Sodium Carbonate." Polymers 14, no. 22 (November 21, 2022): 5035. http://dx.doi.org/10.3390/polym14225035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Quickly changing fashion trends generate tremendous amounts of textile waste globally. The inhomogeneity and complicated nature of textile waste make its recycling challenging. Hence, it is urgent to develop a feasible method to extract value from textile waste. Pyrolysis is an effective waste-to-energy option to processing waste feedstocks having an inhomogeneous and complicated nature. Herein, pyrolysis of denim jeans waste (DJW; a textile waste surrogate) was performed in a continuous flow pyrolyser. The effects of adding sodium carbonate (Na2CO3; feedstock/Na2CO3 = 10, weight basis) to the DJW pyrolysis on the yield and composition of pyrolysates were explored. For the DJW pyrolysis, using Na2CO3 as an additive increased the yields of gas and solid phase pyrolysates and decreased the yield of liquid phase pyrolysate. The highest yield of the gas phase pyrolysate was 34.1 wt% at 800 °C in the presence of Na2CO3. The addition of Na2CO3 could increase the contents of combustible gases such as H2 and CO in the gas phase pyrolysate in comparison with the DJW pyrolysis without Na2CO3. The maximum yield of the liquid phase pyrolysate obtained with Na2CO3 was 62.5 wt% at 400 °C. The composition of the liquid phase pyrolysate indicated that the Na2CO3 additive decreased the contents of organic acids, which potentially improve its fuel property by reducing acid value. The results indicated that Na2CO3 can be a potential additive to pyrolysis to enhance energy recovery from DJW.
3

ASSUMPÇÃO, Luiz Carlos Fonte Nova de, Mônica Regina da Costa MARQUES, and Montserrat Motas CARBONELL. "CO-PYROLYSIS OF POLYPROPYLENE WITH PETROLEUM OF BACIA DE CAMPOS." Periódico Tchê Química 06, no. 11 (January 20, 2009): 23–30. http://dx.doi.org/10.52571/ptq.v6.n11.2009.24_periodico11_pgs_23_30.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this study, the process of co-pyrolysis of polypropylene (PP) residues with gas-oil was evaluated, varying the temperature and the amount of polypropylene fed to the reactor. The polypropylene samples and gas-oil were submitted to the thermal co-pyrolysis in an inert atmosphere, varying the temperature and the amount of PP. The influence of the gas-oil was evaluated carrying the co-pyrolysis in the absence of PP. The pyrolysed liquids produced by this thermal treatment were characterized by modified gaseous chromatography in order to evaluate the yield in the range of distillation of diesel. As a result, the increase of PP amount lead to a reduction in the yield of the pyrolytic liquid and to an increase of the amount of solid generated. The effect of temperature increase showed an inverse result. The results show that plastic residue co-pyrolysys is a potential method for chemical recycling of plastic products.
4

Purevsuren, Barnasan, Otgonchuluun Dashzeveg, Ariunaa Alyeksandr, Narangerel Janchig, and Jargalmaa Soninkhuu. "Pyrolysis of pine wood and characterisation of solid and liquid products." Mongolian Journal of Chemistry 19, no. 45 (December 28, 2018): 24–31. http://dx.doi.org/10.5564/mjc.v19i45.1086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pyrolysis of pine wood was carried out at different temperatures and the yields of solid (biochar), liquid (tar and pyrolysed water) and gas products were determined. Temperature around 500 ºC was determined as an optimal heating temperature of pyrolysis and approximately 27.1% hard residue (biochar), 21.46% tar, 20.04% pyrolysed water and 31.30% gas were obtained by pyrolysis. The thermal stability indices of pine wood are relatively low, which are indications of its low thermal stability and high yield of volatile matter (Vdaf = 90.3%). The thermal stability indices of pyrolysis of solid residue show that it is characterised by a very high thermal stability than its initial sample, for example, there was an increase of Т5% 7.7 and Т15% 3.8 times. The chemical composition of pyrolysed tar of pine wood has also been determined. Were obtained 4 different fractions with varying boiling temperature ranges of pine wood pyrolysed tar and have determined the yields of each fraction. Neutral tar was analysed by GC/MS and 20 aliphatic compounds, 25 aromatic compounds and 18 polar compounds were determined.
5

Murat, Martyna, Jaromír Lederer, Alena Rodová, and José Miguel Hidalgo Herrador. "Hydrodeoxygenation and pyrolysis of free fatty acids obtained from waste rendering fat." Eclética Química Journal 45, no. 3 (July 1, 2020): 28–36. http://dx.doi.org/10.26850/1678-4618eqj.v45.3.2020.p28-36.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Non-edible fats are a common renewable feedstock for the biofuels production to avoid partially the use of edible feeds and fossil fuels. The aim of this work was the use of waste rendering fat to produce pyrolyzed and hydrogenated oils. The feedstock was hydrolyzed producing free fatty acids and glycerol + residues. The free fatty acids were pyrolyzed (with and without metal sulfides metal supported catalyst) or hydrotreated separately. An autoclave closed hermetically in nitrogen (pyrolysis) or hydrogen (hydrotreatment) atmosphere was used. Gaseous products were analyzed by GC‑FID/TCD. Liquid products were analyzed by Simulated Distillation (ASTM D2887) and FT-IR (attenuated total reflectance technique). For the pyrolysis, the main gaseous products were carbon dioxide, methane, ethane, and propane. For the hydrotreatment, the total amount of gases produced was much lower being the main product the carbon dioxide. For liquids, the hydrotreatment of the free fatty acids produced the respective hydrocarbons by decarboxylation reaction and the pyrolysis produced a mixture of compounds with lighter boiling ranges compared to the original free fatty acids. The use of a metal sulfide metal supported catalyst in the pyrolysis led to a higher amount of hydrogen production. but similar boiling range liquid products compared to the non-catalytic test.
6

Serve, L., F. Gadel, J. L. Lliberia, and J. L. Blaz. "Caractères biogéochimiques de la matière organique dans la colonne d'eau et les sédiments d'un écosystème saumâtre: l'étang de Thau - Variations saisonnières." Revue des sciences de l'eau 12, no. 4 (April 12, 2005): 619–42. http://dx.doi.org/10.7202/705369ar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Le long de la côte méditerranéenne française du Golfe du Lion, l'étang de Thau présente des caractères assez particuliers. Il est parfois soumis à des conditions anoxiques appelées "malaigues" qui résultent de l'accumulation de matières organiques durant la période chaude liée au développement des macrophytes. Ces dépôts organiques associés aux biomasses résultant des activités conchylicoles et aux apports extérieurs contribuent en cours d'année aux échanges biogéochimiques entre la colonne d'eau et les dépôts. Dans ce même milieu, l'analyse de la distribution et de la nature de la matière organique par des méthodes fines comme la chromatographie liquide haute performance ou la pyrolyse a permis de préciser son origine et son évolution dans la colonne d'eau et les dépôts. Durant les quatre saisons, les particularités de la matière organique ont donc été analysées en terme d'accumulation, de dégradation et de conservation. L'été constitue une période de production et de dégradation. L'automne est principalement caractérisé par des processus dégradatifs et des apports terrigènes (composés phénoliques). L'hiver correspond à une période de relative stabilité de la matière organique consécutive aux conditions froides. Le printemps enfin représente une période de reprise de l'activité biologique produisant une matière organique fraîche riche en sucres. Sous les tables conchylicoles on observe un accroissement de la matière organique dans la colonne d'eau et les dépôts. Mais les processus actifs de dégradation réduisent considérablement la quantité de matière organique déposée. Les résultats de ces mécanismes varient selon les stations sous table et hors table. Dans les dépôts les résultats de la dégradation dans la colonne d'eau amènent à une décroissance des composés biodégradables et à un accroissemenet des composés résistants comme les phénols et les hydrocarbures aromatiques. Ces processus de minéralisation s'accroissent vers la profondeur dans les dépôts au profit du pôle aromatique. Les relations entre les nutriments et la matière organique qui constitue à la fois leur source et leur puits se marquent bien sous les tables conchylicoles où les sels nutritifs s'accumulent en surface.
7

Asueta, Asier, Laura Fulgencio-Medrano, Rafael Miguel-Fernández, Jon Leivar, Izotz Amundarain, Ana Iruskieta, Sixto Arnaiz, Jose Ignacio Gutiérrez-Ortiz, and Alexander Lopez-Urionabarrenechea. "A Preliminary Study on the Use of Highly Aromatic Pyrolysis Oils Coming from Plastic Waste as Alternative Liquid Fuels." Materials 16, no. 18 (September 20, 2023): 6306. http://dx.doi.org/10.3390/ma16186306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this work, the low-temperature pyrolysis of a real plastic mixture sample collected at a WEEE-authorised recycling facility has been investigated. The sample was pyrolysed in a batch reactor in different temperature and residence time conditions and auto-generated pressure by following a factorial design, with the objective of maximising the liquid (oil) fraction. Furthermore, the main polymers constituting the real sample were also pyrolysed in order to understand their role in the generation of oil. The pyrolysis oils were characterised and compared with commercial fuel oil number 6. The results showed that in comparison to commercial fuel oil, pyrolysis oils coming from WEEE plastic waste had similar heating values, were lighter and less viscous and presented similar toxicity profiles in fumes of combustion.
8

Fombu, A. H., A. E. Ochonogor, and O. E. Olayide. "Use of Response Surface Methodology in Optimizing the Production yield of Biofuel from Cashew Nut Shell through the Process of Pyrolysis." IOP Conference Series: Earth and Environmental Science 1178, no. 1 (May 1, 2023): 012017. http://dx.doi.org/10.1088/1755-1315/1178/1/012017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract A fixed bed pyrolysis reactor was used to pyrolyze Cashew nut shell (CNS). Response Surface Methodology (RSM) was then used to study the pyrolysis process. One Factor at a Time (OFAT) experiment was applied using different factors and levels. The OFAT results showed that the highest pyrolysis liquid yield was 57.8 wt.%. Two levels from each factor were chosen to run the RSM (applying Central Composite Design (CCD)) by forming two levels three factors (23) design. A quadratic model suggested by the Design Expert (version 11) software was used to predict the yield. The maximum liquid yield from the RSM was 61.3 wt. %.
9

CARNEIRO, Débora da Silva, and Mônica Regina da Costa MARQUES. "CO-PYROLYSIS OF POLYETHYLENE S WASTE WITH BACIA DE CAMPOS'S GASOIL." Periódico Tchê Química 07, no. 13 (January 20, 2010): 16–21. http://dx.doi.org/10.52571/ptq.v7.n13.2010.17_periodico13_pgs_16_21.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In this work the process of co-pyrolysis of polyethylene plastic residue was carried through with petroleum, in a temperature of 550°C. First, the polyethylene samples and petroleum had been submitted the thermal co-pyrolysis in inert atmosphere. Later they had been evaluated the efficiency of the process with variation of the amount of polyethylene residue added to the petroleum. The generated pyrolytic liquids had been characterized by modified gaseous chromatography, with the objective to evaluate the generation of fractions in the band of the distillation of diesel. It can be observed that the increase of the amount of PE in the half reactional favors the reduction of the income of pyrolytic liquid and the increase of the amount of generate solid. The results show that plastic residue co-pyrolysys is a potential method for chemical recycling of plastic products.
10

Van Rensburg, Melissa Lisa, S'phumelele Lucky Nkomo, and Ntandoyenkosi Malusi Mkhize. "Characterization and pyrolysis of post-consumer leather shoe waste for the recovery of valuable chemicals." Detritus, no. 14 (March 31, 2021): 92–107. http://dx.doi.org/10.31025/2611-4135/2021.14064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Majority of post-consumer leather footwear currently ends up in landfill sites with adverse environmental impacts. Current waste recovery options have proven largely unsuccessful in minimizing this waste stream. This study investigates whether leather from post-consumer footwear can be pyrolyzed using gram-scale (fixed-bed) and microgram-scale (TGA) pyrolysis reactors. The investigation was conducted using final pyrolysis process temperatures between 450 and 650 °C and solid residence times of 5 to 15 minutes. The purpose of the experiments was to assess the waste recovery potential of leather pyrolysis products for valuable chemicals. The pyrolysis product fractions (solid, liquid, and gas) distribution were investigated, optimal pyrolysis conditions presented, and the product fractions characterized for their elemental and chemical composition using ultimate and GC-MS analysis. The distribution of the product fractions proved leather footwear pyrolysis was viable under the given conditions. The completion of leather footwear pyrolysis was evident at 650°C since the solid yield reached a constant value of approximately 25 wt.%. The liquid fraction was maximized within the temperature range of 550-650°C (Max= 54 wt.%), suggesting optimal pyrolysis conditions within this range. The higher heating values (HHVs) of the pyrolysis leather oil (33.6 MJ/kg) and char (25.6 MJ/kg) suggested their potential application for energy or fuel. The liquid fraction comprised predominantly of nitrogen derivatives and potential applications areas include use in the production of fertilizers, chemical feedstocks, or the pharmaceutical industry. This study proved that leather from post-consumer footwear can be pyrolyzed and provided valuable insight into its characterization and potential applications areas.

Dissertations / Theses on the topic "Liquide de pyrolyse":

1

Fouchères, Marie-Christine. "Contribution à l'étude analytique d'hydroliquéfiats du charbon obtenus par divers procédés catalytiques." Metz : Université Metz, 2008. ftp://ftp.scd.univ-metz.fr/pub/Theses/1984/Foucheres.Marie_Christine.SMZ8405.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boer, Febrina. "Valorization of sugarcane bagasse via slow pyrolysis and its by-product for the protection of wood." Electronic Thesis or Diss., Paris, AgroParisTech, 2021. http://www.theses.fr/2021AGPT0008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les résidus de biomasse, comme la bagasse de canne à sucre, ont un grand potentiel pour fournir des sources d’énergie renouvelables. Cependant, ses propriétés naturelles telles que sa faible densité, son faible pouvoir calorifique et sa sensibilité à la biodégradation peuvent limiter son utilisation. Pour améliorer son efficacité énergétique, la pyrolyse lente–processus de décomposition thermique dans un environnement pauvre en oxygène–peut être appliquée en transformant la biomasse en un charbon riche en carbone. Dans un scénario typique de pyrolyse lente, la biomasse est lentement chauffée pour produire principalement du charbon, dont les vapeurs organiques sont souvent considérées comme des produits secondaires. Cependant, il y a un intérêt à récupérer ce sous-produit en condensant la vapeur organique générée pendant la pyrolyse à des fins diverses. De plus, ce produit a une longue histoire en raison de ses avantages en tant que bio-pesticide utilisé par les agriculteurs traditionnels, notamment dans les pays asiatiques. Dans cette étude, la bagasse a été pyrolysée pour co-produire du charbon et du liquide de pyrolyse (huile de pyrolyse) en utilisant un réacteur de laboratoire à lit fixe. Différents paramètres ont été testés, tels que les températures (400 °C et 500 °C), la vitesse de chauffe (1 °C/min et 10 °C/min) et le temps de séjour (30 min et 60 min). Cette étude vise à évaluer le potentiel de valorisation de la bagasse dans le but de densifier l’énergie (conversion de la biomasse en charbon) et de valoriser l’utilisation de son sous-produit (liquide de pyrolyse) pour la protection du bois. Les résultats ont montré que le rendement en charbon diminue avec l’augmentation de la température de pyrolyse mais entraîne une amélioration favorable du pouvoir calorifique; tout en générant une masse élevée de rendement liquide. Les conditions de pyrolyse optimales pour co-produire le charbon et le liquide de pyrolyse étaient la température de 500 °C et la vitesse de chauffe de 10 °C/min, donnant 28,97% de charbon et 55,46% de liquide. Les principaux composés du liquid de pyrolyse étaient l’eau, l’acide acétique, le glycolaldéhyde, la 1-hydroxy-2-propanone, le méthanol, l’acide formique, le lévoglucosane, le furfural, suivis de quelques composés phéno- liques et de dérivés du guaiacol. Le liquid de pyrolyse présente également une activité anti-fongique et anti-termite à des concentrations relativement faibles dans les essais biologiques sur boîtes de Pétri. Lorsqu’il est traité au bois de hêtre et de pin, le liquid de pyrolyse indique une bonne protection contre les termites (Reticulitermes flavipes) et les champignons Basidiomycete (Coniophora puteana et Rhodonia placenta, une pourriture cubique et Trametes versicolor, une pourriture fibreuse) à une concentration de 50% et 100%. Cependant, il reste lessivée lorsqu’il est exposé à l’eau ou à une forte humidité, ce qui indique que des études futures devraient être menées pour trouver comment diminuer sa lessivabilité.Mots clés: biomasse, charbon, pyrolyse lente, bagasse de canne à sucre, liquide de pyrolyse, protection du bois
Biomass residue—such as sugarcane bagasse—has great potential in providing renewable energy sources. However, its natural properties such as low density, low calorific value, and biodegradation susceptibility can limit its utilization. To improve its energy efficiency, slow pyrolysis—the process of thermal decomposition in an oxygen-deficient environment—can be applied by transforming the biomass into carbon-rich char. In a typical slow pyrolysis scenario, biomass is slowly heated to produce mainly char, where the organic vapors are often considered secondary products. However, there is an interest to recover this by-product by condensing the organic vapor generated during pyrolysis for various purposes. Moreover, this product has a long history due to its benefits as a bio-pesticide used by traditional farmers, notably in Asian countries. In this study, bagasse was slow-pyrolyzed to co-produce char and pyrolysis liquid using a laboratory fixed bed reactor. Different parameters were tested, such as temperatures (400 °C and 500 °C), heating rate (1 °C/min and 10 °C/min), and holding time (30 min and 60 min). This study aims to evaluate the valorization potential of bagasse with the purpose of energy densification (conversion of biomass into char) and valorizing the utilization of its by-product (pyrolysis liquid) for wood protection.Results showed that the yield of char decrease with the increase of pyrolysis temperature but results in the favorable calorific value improvement; while at the same time generating a high mass of liquid yield. The optimum pyrolysis condition to co-produce char and pyrolysis liquid was at 500 °C temperature and 10 °C/min of heating rate, yielding 28.97% char and 55.46% liquid. The principal compounds of pyrolysis liquid were water, acetic acid, glycolaldehyde, 1-hydroxy-2-propanone, methanol, formic acid, levoglucosan, furfural, followed by some phenol compounds and guaiacol derivatives. Pyrolysis liquid also exhibits anti-fungal and anti-termite activity at relatively low concentrations in the Petri-dishes bioassays. When treated to beech and pine wood, pyrolysis liquid indicates good protection towards termites (Reticulitermes flavipes) and Basidiomycete fungi (Coniophora puteana and Rhodonia placenta, cubic rot and Trametes versicolor, a fibrous rot) at concentration 50% and 100%. However, it remains leachable when exposed to water or high humidity, which indicates that future studies should be conducted to find out how to decrease its leachability.Keywords: biomass, char, slow pyrolysis, sugarcane bagasse, pyrolysis liquid, wood protection
3

L'homme, Christelle. "Analyse des fructooligosasaccharides dans les fruits frais et les aliments à base de fruits par chromatographie liquide haute performance échangeuse d'anions avec détection par ampérométrie pulsée. Etude de leur dégradation thermique." Aix-Marseille 3, 2002. http://www.theses.fr/2002AIX30026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Une méthode d'analyse par chromatographie liquide haute performance échangeuse d'anions (Système Dionex) couplée à une détection par ampérométrie pulsée a été mise au point afin d'identifier et de quantifier les fructooligosaccharides (FOS) dans les fruits frais et les aliments à base de fruits. Trois FOS ont été détectés : 1-kestose, nystose et inulobiose. Leur teneur varie en fonction de l'espèce, de la variété, du degré de maturité du fruit. Le taux de 1-kestose diminue au cours du procédé de fabrication des compotes (pasteurisation, cuisson). En conséquence, la dégradation thermique (80ʿC-120ʿC) des solutions pures de FOS (pH 4,0, 7,0 et 9,0) a été suivie. Elle est d'autant plus rapide que la température est élevée et le pH bas. A pH 4, un mécanisme réactionnel est proposé. Par ailleurs, une étude réalisée sur la lignée cellulaire cancéreuse colique humaine HT29, a montré que les FOS n'ont pas d'effets toxiques sur ces cellules
We describe the suitability of high-performance anion-exchange chromatography coupled with pulsed amperometric detection to identify and quantify fructan in fresh fruits as well as in commercial stewed fruits. Three fructooligosaccharides (FOS) were detected: 1-kestose, nystose and inulobiose. FOS contents vary with species, variety, maturity of fruit. Amount of 1-kestose decreases during stewed fruit manufacturing (pasteurization, cooking). Thermic degradation (80ʿC-120ʿC) of FOS solutions (pH 4. 0, 7. 0 and 9. 0) was studied. FOS hydrolysis decreases at increasing pH values and increases with temperature. At pH 4, a reaction mechanism was proposed. In addition, a study realised on a human colon carcinoma cell-line HT-29 shows no toxicity of FOS on these cells
4

Breyer, Sacha. "Etude du procédé de co-pyrolyse de déchets plastiques et d’huiles de lubrification usagées dans le but de produire un combustible liquide alternatif." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/238688.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette étude s’inscrit dans le cadre du projet MINERVE de la région wallonne quivise notamment à valoriser les anciens centres d’enfouissement technique et leur contenuau travers de la production de matières premières et de sources d’énergie. Plus particulièrement,l’objectif de ce travail est d’étudier un procédé de co-pyrolyse de déchetsplastiques et d’huiles de lubrification usagées, ayant pour finalité la production d’uncombustible alternatif liquide pour l’industrie, en vue d’une future montée en échelledu procédé.Pour ce faire, différentes approches ont été poursuivies. Premièrement, nous avonsmis en place un réacteur de 5 litres, agité et scellé hermétiquement, permettant demener des essais de co-pyrolyse. Des essais de co-pyrolyse d’un mélange de déchetsplastiques excavés et d’huiles de lubrification usagées ont été menés dans le réacteur.L’influence des paramètres clés du procédé, tels que la température maximale, la fractionmassique de plastiques dans le mélange ainsi que la vitesse de refroidissement, surle procédé et la qualité du produit fini a été étudiée. Nous avons été en mesure deproduire un combustible alternatif liquide, possédant un pouvoir calorifique d’environ30 MJ/kg, par la co-pyrolyse d’un mélange contenant 60% de plastiques, en chauffantle mélange durant 13 h, en atteignant une température maximale de 387°C et enlaissant la pression au sein du réacteur monter jusqu’environ 30 bars. Les besoins énergétiquesdu procédé ont été évalués à environ 8 MJ/kg de déchets à pyrolyser, grâce àun modèle de transferts thermiques développé pour le système constitué du réacteur deco-pyrolyse. Ensuite, une méthode a été développée pour déterminer le temps de fonted’une particule de plastique en fonction de sa plus petite dimension. L’application decette méthode nous a permis de déterminer que la plus petite dimension maximale quepeuvent avoir les particules de plastiques dans le mélange plastique/huile, pour queleur fusion ne limite pas le procédé de co-pyrolyse, est d’environ 3 cm. Deux analysesthermiques, la thermogravimétrie isotherme et la calorimétrie différentielle à balayage,ont été combinées pour caractériser le craquage thermique et son influence sur plusieurspolymères. L’influence du craquage thermique sur les polymères a été évaluée sur basede l’analyse de la fusion ou de la transition vitreuse du polymère. Les protocole et dispositifexpérimentaux de co-pyrolyse de déchets plastiques et d’huiles de lubrificationusagées à l’échelle du laboratoire ont été adaptés pour pouvoir co-pyrolyser un mélangecontenant du PVC. Différents essais de co-pyrolyse par étapes ont été menés pour évaluerl’influence des paramètres comme l’évolution de la température pendant l’essai, lecontenu en PVC du mélange et le plastique en mélange avec le PVC (LDPE ou PS).Enfin, les interactions qui prennent place entre le LDPE ou le PS et une huile, lorsde leur co-pyrolyse, ont été mises en évidence à l’aide d’essais de thermogravimétriehaute résolution. Nous avons tenté d’expliquer les interactions mises en évidence, grâceà une combinaison d’analyses thermiques permettant de caractériser, voire d’identifier,les produits de décomposition de l’échantillon, en continu ou en fin de chauffe.This study takes part in the MINERVE (Walloon region) which aims at enhancingthe old landfills and valorize their content through the production of raw materials andenergy sources. Specifically, the objective of this work is to study a co-pyrolysis processof waste plastics and used lubrication oils, whose purpose is the production of a liquidalternative fuel for industry, in order to future scaling up the process.To do so, different approaches have been pursued. First, we set up a 5 liter reactor,stirred and hermetically sealed for performing co-pyrolysis tests. Co-pyrolysis tests ofa mixture of excavated plastic wastes and used lubrication oils were performed in thereactor. The influence of key parameters, such as maximum temperature, the massfraction of plastics in the mixture and the cooling rate, on the process and the qualityof the fuel was investigated. We were able to produce a liquid alternative fuel, witha calorific value of about 30 MJ/kg by co-pyrolyzing a mixture containing 60 % ofplastic, heating the mixture for 13 h, reaching a maximum temperature of 387°C anda maximum pressure of about 30 bar. The energy requirements of the process wereevaluated at about 8 MJ per kg of waste through a heat transfer model developed forthe system consisting of the co-pyrolysis reactor. In addition, a method was developedto determine the time of melting of a plastic particle according to its smallest size.The application of this method allowed us to determine that the maximum smallestsize that can have plastic particles in plastic/oil mixture, so that their melting willnot limit the co-pyrolysis process, is about 3 cm. Two thermal analysis techniques,isothermal thermogravimetry and differential scanning calorimetry, were combined tocharacterize the thermal cracking and its influence on several polymers. The influence ofthermal cracking of the polymers was evaluated based on the analysis of the melting orglass transition of the polymer. The experimental protocol and device of waste plasticsand used lubricating oils co-pyrolysis have been adapted to co-pyrolyze a mixturecontaining PVC. Two-step co-pyrolysis tests were performed to evaluate the influenceof parameters such as the evolution of the temperature during the test, the PVCcontent of the mixture and the plastic that is mixed with PVC (LDPE or PS). Finally,interactions that take place between the LDPE or the PS and an oil, when co-pyrolyzed,have been identified with high resolution thermogravimetry experiments. We tried toexplain the identified interactions through a combination of thermal analyzes thatcharacterized or identified the sample decomposition products, continuously duringthe thermal decomposition or at its end.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
5

Lesueur, Dominique. "La RMN du carbone-13, outil d'analyse : contribution à l'étude d'huiles essentielles du Viet-Nam et d'un liquide de pyrolyse de la biomasse." Corte, 2005. http://www.theses.fr/2005CORT3089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Cette étude a pour objectif de contribuer au développement de la rmn du carbone-13 en tant qu'outil d'identification et de quantification des constituants des mélanges complexes naturels et d'appliquer cette technique a la caractérisation d'huiles essentielles du viet-nam et d'un liquide de pyrolyse de la biomasse. Les données chromatographiques et spectroscopiques (rmn du carbone-13) de composes linéaires non terpéniques diversement fonctionnalises (alcools, acetates et aldehydes, satures et insatures) ont ete determinees. Les valeurs de déplacements chimiques des carbones aliphatiques c4 et c5 des aldehydes α,β-insatures ont ete comparées a celles des alcools correspondants. Ces carbones présentent respectivement un léger deblindage et blindage du vraisemblablement a la conjugaison et indépendants de la longueur de la chaine carbonée. L'étude detaillee par rmn du carbone-13 d'une huile essentielle de piper bavinum du viet-nam a permis d'expliciter la méthode d'analyse. La composition chimique de diverses huiles essentielles vietnamiennes a ete déterminee par combinaison de la cpg(ir), de la cpg-sm et de la rmn du carbone-13. Certaines d'entre elles sont décrites pour la premiere fois et d'autres possedent une activité antibacterienne. Un liquide de pyrolyse de la biomasse a ete fractionne. Les fractions obtenues ont ete analysées par diverses techniques analytiques (analyse elementaire, ces, irtf, cpg-sm et rmn du carbone-13). La présence de trois grandes familles de composes a ete mise en évidence: des alcanes (satures et insatures), des sucres anhydres et des composes phénoliques (monomeres et oligomeres). Les oligomeres possedent une masse pouvant dépasser 5000 g. Mol-1. Enfin, une séquence quantitative par rmn du carbone-13 a ete mise en oeuvre pour déterminer la proportion d'hydroxyacetaldehyde (présent sous diverses formes monomeres et dimeres) dans les liquides de pyrolyse
The objective of this study was a contribution to the development of the 13c nmr as a tool for identification and quantitative determination of the components of natural mixtures. This technique was applied to the caracterization of essential oils from vietnam and a bio-oil. The chromatographic and spectroscopic data of acyclic, non terpenic compounds, bearing different fractions (alcohols, acetates and aldehydes, satured and unsatured) were determined. The signals of the c4 and c5 carbons of α,β-unsatured aldehydes were deshielded and shielded respectively, compared with those of the corresponding alcohols. These differences are probably the consequence of conjugation and are no dependant of the chain length. A detailed an alysis by 13c nmr of the essential oil of piper bavinum from vietnam allowed the direct identification of 38 components. The chemical composition of various essential oils from vietnam was determined by combination of gc(ri), gc-ms and 13c nmr. The composition of some of these oils was reported for the first time and some others oils exhibited an antibacterial activity. A bio-oil was fractionated and the fractions were analysed by complementary analytical techniques (gpc, irft, gc-ms and 13c nmr). Three families of components were distinguished: alcanes, anhydrosugars and phenolic compounds (monomers and oligomers). The oligomers have a mass up to 5000 g. Mol-1. Finally, a quantitative sequence was implemented to determine, by 13c nmr, the content of hydroxyacetaldehyde (monomeric and dimeric forms) in the bio-oils
6

Dez, Romuald. "Du précurseur liquide au matériau massif : Synthèse de nanopoudres SiCN & SiCNYAIO : Elaboration de nanocomposites Si(3)N(4)-SiC : Ductilité à haute température." Limoges, 2003. http://www.theses.fr/2003LIMO0026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
L'objectif de ce travail était de synthétiser par pyrolyse laser des nanopoudres permettant d'élaborer des nanocomposites céramiques Si(3)N(4)-SiC présentant une forte ductilité à haute température. La synthèse de nanopoudres SiCN et SiCNYAlO stables thermiquement a été mise au point à partir d'un mélange de précurseurs liquides à base d'haxamétyldisilazane. Des nanocomposites denses Si(3)N(4)-SiC ont été élaborés par pressage uniaxial à chaud, à partir d'un mélange de nanopoudres SiCN et d'ajouts de frittage [Al(2)O(3) et Y(2)O(3], ou à partir de nanopoudres préalliées SiCNYAlO. L'étude de la densification a montré que la poudre préalliée présente une meilleure aptitude au frittage. De plus, l'utilisation de poudre préalliée simplifie le procédé d'élaboration en éliminant l'étape délicate de mélange des nanopoudres. Les matériaux nanostructurés élaborés à partir du mélange de poudres sont ductiles à haute température ; une déformation atteignant 45% a été obtenue en compression sous 180 MPa à 1350°
7

Tsotetzo, Honore. "Valorisation des polysaccharides marins : élaboration de nanocomposites et synthèse de graphène dopé." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC216/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La chimie se doit de développer de nouveaux axes de recherche à la fois respectueux de la nature et s’inscrivant dans une démarche globale éco-compatible. Dans ce contexte, l’utilisation des polymères naturels, notamment les polysaccharides, permet de synthétiser des matériaux innovants des applications dans de nombreux secteurs industriels. L’objectif de ce travail est de valoriser les polysaccharides marins tels que le chitosane et le κ-carraghénane à travers l’exploration de deux axes de recherches. Le premier axe est consacré à l’amélioration des propriétés mécaniques, électriques et de sorption de biopolymères par l’incorporation de graphène. Un protocole original a permis de disperser très efficacement du graphène au sein du chitosane pour la conception de films et d’aérogels nanocomposites. L’analyse des films a mis en évidence une amélioration simultanée de la rigidité, de la résistance, et de l’élongation à rupture, pour de faibles teneurs en graphène. Le seuil de percolation permettant l’obtention d’une conductivité électrique n’a pas été atteint aux faibles taux de charges utilisés. L’étude des aérogels chitosane/graphène a, quant à elle, révélé que l’incorporation de graphène aux aérogels de chitosane permettait d’augmenter leur capacité d’adsorption de colorants.Le deuxième axe concerne l’introduction d’hétéroatomes dans la structure carbonée du graphène. Pour obtenir du graphène dopé en azote et en soufre, des aérogels de polysaccharides marins ont été synthétisés, puis pyrolysés dans des conditions contrôlées. Les aérogels carbonés obtenus sont ensuite exfoliés dans l’eau par l’utilisation d’ultrasons. Les groupements amine du chitosane ont permis d’obtenir avec un haut rendement un graphène dopé avec un taux de 5 % d’azote. De plus, il a été possible de moduler de 5 % à 11 %ce taux d’azote par l’emploi de liquide ionique tel que le [EMIm][dca]. De façon similaire, les groupements sulfate du κ-carraghénane ont permis de doper du graphène en soufre avec un taux d’atomes de soufre de 1,5 %
The chemistry have to develop new research axis both respectful of the nature and joining an eco-compatible global approach. In this context, use natural polysaccharides allow to synthesize innovative materials for applications in many industries fields. The aim of this work is add value to the marine polysaccharide such as chitosan and κ-carrageenan through two research axis.The first axis is consecrated to increase the mechanical, electrical and color sorption properties by introduce graphene filler in biopolymer matrice. An easy and original protocol allowed scattering very effectively graphene in chitosan to design films and aerogels nanocomposites. The analyse of nanocomposite films show an improvement of stiffness, tensile strength and elongation break at the same time with low content of graphene. However, the percolation threshold was not reach to bring electrics properties in films. The study of chitosan/graphene aerogel reveals that graphene allows an increase of color agent adsorbing power such as eosin Y compared with aerogels chitosan.The second axis concerns the introduction of heteroatom in graphene carbon structure. To obtain nitrogen-doped graphene and sulphur-doped graphene, it requires the synthesis of marine polysaccharide aerogel, and their pyrolysis under controlled conditions. The carbon aerogels are exfoliated in water with sonification. Amine groups in chitosan allowed through this process a nitrogen-doped graphene with high yield and nitrogen rate of 5 %. Moreover, it was possible to modulate nitrogen rate with ionic liquid such as [EMIm][dca]. So the nitrogen atom rate increases from 5% to 11%. In similar way, sulfate group in κ-carrageenan gives sulphur-doped graphene with sulphur rate of 1,5%
8

Castelbuono, Joseph. "THE IDENTIFICATION OF IGNITABLE LIQUIDS IN THE PRESENCE OF PYROLYSIS PRODUCTS: GENERATION OF A PYROLYSIS PRODUCT DATABASE." Master's thesis, Orlando, Fla. : University of Central Florida, 2008. http://purl.fcla.edu/fcla/etd/CFE0002429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Salter, Elizabeth H. "Catalytic pyrolysis of biomass for improved liquid fuel quality." Thesis, Aston University, 2001. http://publications.aston.ac.uk/9633/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kantarelis, Efthymios. "Catalytic Steam Pyrolysis of Biomass for Production of Liquid Feedstock." Doctoral thesis, KTH, Energi- och ugnsteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The current societal needs for fuels and chemical commodities strongly depend on fossil resources. This dependence can lead to economic instabilities, political problems and insecurity of supplies. Moreover, global warming, which is associated with the massive use of fossil resources, is a dramatic “collateral damage” that endangers the future of the planet. Biomass is the main renewable source available today that can, produce various liquid, gaseous and solid products. Due to their lignocellulosic origin are considered CO2 neutral and thus can generate CO2 credits. Biomass processing can meet to the challenge of reducing of fossil resources by producing a liquid feedstock that can lessen the “fossil dependence” and /or meet the increased demand via a rapidly emerging thermochemical technology: pyrolysis. The ultimate goal of this process is to produce liquid with improved properties that could directly be used as liquid fuel, fuel additive and/or feedstock in modern oil refineries and petrochemical complexes. However, the liquids derived from biomass thermal processing are problematic with respect to their handling and end use applications. Thus, alternative routes of advanced liquid feedstock production are needed. Heterogeneous catalysis has long served the oil refining and petrochemical industries to produce a wide range of fuels and products. The combination of biomass pyrolysis and heterogeneous catalysis (by bringing in contact the produced vapours/liquids with suitable catalysts) is a very promising route. In this dissertation, the exploitation of biomass to produce of liquid feedstock via pyrolysis over a multifunctional catalyst and in a steam atmosphere is investigated.  Steam pyrolysis in a fixed bed reactor demonstrated that steam can be considered a reactive agent even at lower temperatures affecting the yields and the composition of all the products. The devolatilisation accelerates and the amount of final volatile matter in the char. Fast pyrolysis in the presence of steam results in improved and controlled thermal decomposition of the biomass; higher liquid yields and slightly deoxygenated liquid products are also obtained. Steam pyrolysis over a bi-metallic Ni-V catalyst can produce liquids of improved quality (lower O content) and also provide routes for selective deoxygenation. However, a decrease in liquid yield was observed. The combination of metal and acid catalysts (Ni-V/HZSM5) shows enhanced deoxygenation activity and increased H preservation in the produced liquid. The final O content in the liquid was 12.83wt% at a zeolite (HZSM5) loading of~75wt%; however, the yield of the obtained liquid was substantially decreased. Moreover, increased coke formation on the catalyst was observed at highest zeolite rate. The increased catalyst space time (τ) results in a lower liquid yield with reduced oxygen (7.79 wt% at τ =2h) and increased aromatic content. The coke deposited per unit mass of catalyst is lower for longer catalyst space times, while the char yield seems to be unaffected. The evaluation of the stability of the hybrid catalyst showed no significant structural defects and activity loss when the catalyst was regenerated at a low temperature (550οC).
Det nuvarande samhällets behov av bränslen och kemiska produkter är starkt knutet till fossila resurser. Detta beroende kan leda till ekonomisk instabilititet, politiska svårigheter och osäker leveranssäkerhet. Dessutom riskeras allvarliga skador i framtiden på grund av global uppvärmning, vilket är relaterat till det ökande och massiva användandet av fossila bränslen.   Biomassa är en förnybar resurs som är tillgänglig idag, möjlig att utnyttja för produktion av diverse flytande, gasformiga och fasta produkter. Dessa produkter, beroende på biogeniskt ursprung, betraktas som koldioxidneutrala och kan därför generera koldioxidkrediter. Processande av biomassa kan möta utmaningen av minskad fossilbränsleanvändning, genom produktion av flytande råvara som kan reducera beroendet och/eller möta ökad efterfrågan, via en snabbt expanderande termokemisk teknik - pyrolys.    Det slutgiltiga målet med en sådan process är att producera en flytande produkt med förbättrade egenskaper som direkt skulle kunna användas som flytande bränslen, bränsleadditiv och/eller som råmaterial i moderna oljeraffinaderier och petrokemiska komplex. Vätskor som utvinns från termiska processer är problematiska med avseende på hantering och slutanvändningen i olika applikationer, därmed behövs olika spår för produktion av avancerade flytande råvaror. Heterogena katalysen har länge tjänat raffinaderi- och petrokemisk industri, som producerar ett brett utbud av bränslen och produkter, lämpliga för säker användning. Kombinationen av biomassapyrolys och heterogen katalys  (genom att bringa pyrolysångorna i kontakt med en lämplig katalysator) är ett väldigt lovande spår. I denna avhandling undersöks användningen av biomassa för produktion av flytande råvara, via pyrolys över en flerfunktionel katalysator i ångatmosfär. Ångpyrolys i en fastbäddsreaktor visade att ånga kan betraktas som ett reaktivt medium,  även vid låga temperaturer, som påverkar utbyten och sammansättning av alla produkter. Avgasningen sker snabbare och den slutliga flykthalten i kolresterna blir lägren vid användning av ånga. Snabbpyrolys i ångatmosfär resulterar i förbättrad och mer kontrollerad termisk nedbrytning av biomassa, vilket ger ett högre vätskeutbyte och en något deoxygenerad flytande produkten. ångpyrolys i kombination med bimetalliska NiV-katalysatorer, ger upphov till en flytande råvara med förbättrad kvalitet och selektiv deoxygenering. Dock med ett minskande utbyte som följd. Kombinationen av metall och en sur katalysator (Ni-V/HZSM5) visade förstärkt deoxygenering med bibehållen vätehalt i den flytande produkten. Den slutliga syrehalten i vätskan var 12.83 vikt% vid en zeolithalt (HZSM5) på 75 vikt%, dock med ett kraftigt minskande vätskeutbyte. Dessutom noterades ökad koksbildning på katalysatormaterialet med den högsta zeolithalten. Ökad rymd-tid  för katalysatorn (τ) ger ett lägre vätskeutbyte med reducerad syrehalt (7.79 vikt% vid τ=2h) och ökad aromathalt. Koksbildning på ytan, per massenhet katalysatormaterial, minskade vid längre rymd-tider medan utbytet av kolrester förblev opåverkat.  Undersökningen av stabiliteten hos hybridkatalysatorn visade inga strukturella defekter och ingen signifikant minskad aktivitet efter regenerering vid låg temperatur (550οC).
Οι σύγχρονες ανάγκες της κοινωνίας για παραγωγή υγρών καυσίμων και χημικών προϊόντων εξαρτώνται από τους ορυκτούς πόρους. Αυτή η εξάρτηση μπορεί να οδηγήσει σε οικονομικά προβλήματα, πολιτκή αστάθεια, όπως επίσης και αβεβαιότητα στις προμήθειες της ενεργειακής εφοδιαστικής αλυσίδας. Επιπροσθέτως, μια δραματική «παράπλευρη απώλεια» η οποία θέτει σε κίνδυνο το μέλλον του πλανήτη είναι η υπερθέρμανσή του, η οποία έχει συσχετισθεί με την εκτεταμένη χρήση ορυκτών πόρων. Σήμερα, η βιομάζα είναι η μόνη ανανεώσιμη πηγή από την οποία μπορούν να παραχθούν υγρά, αέρια και στερεά προϊόντα, που λόγω της λιγνοκυταρρινικής τους προελεύσεως, η συνεισφορά τους στις εκομπές CO2 θεώρειται μηδενική. Η θερμοχημική επεξεργασία της βιομάζας συνεισφέρει στον περιορισμό της χρήσης ορυκτών πόρων, με την παραγωγή υγρών προϊόντων, τα οποία μπορούν να μειώσουν την εξάρτηση ή /και την αυξημένη ζήτηση μέσω μιας ταχέως αναπτυσόμενης τεχνολογίας, της πυρόλυσης. Στόχος της διεργασίας είναι η παραγωγή υγρών προϊόντων με ιδιότητες, που επιτρέπουν την απευθείας χρήση τους ως υγρά καύσιμα ή ως πρώτη ύλη, για την παραγώγη χημικών προϊόντων σε συγχρονες μονάδες διύλισης πετρελαίου και σε πετροχημικά συγκτροτήματα. Εν τούτοις, τα υγρά προϊόντα της θερμικής διάσπασης (πυρόλυση) είναι προβληματικά στη διαχείρηση και στις τελικές τους εφαρμογές, λόγω της σύστασής τους. Ως εκ τούτου, απαιτούνται νέες τεχνικές για παραγωγή προηγμένων υγρών προοϊόντων. Η ετερογενής κατάλυση έχει επιτυχώς εφαρμοσθεί στην πετρελαϊκή και χημική βιομηχανία, παράγοντας ένα μεγάλο εύρος προϊόντων. Ο συνδυασμός της με την πυρόλυση (φέρνοντας σε επαφη τα υγρά/ατμούς με κατάλληλο καταλύτη) αποτελεί μια πολλά υποσχόμενη ενναλακτική. Στην παρούσα διατριβή μελετάται η αξιοποίηση βιομάζας για παραγωγή υγρών προϊόντων μέσω καταλυτικής πυρόλυσης, με χρήση πολυλειτουρικού καταλύτη (multi-functional catalyst) υπό την παρουσία ατμού. Η χρήση ατμου κατά τη διαρκειά πυρόλυσης βιομαζας σε αντιδραστήρα σταθερής κλίνης, μεταβάλει τη σύσταση των επιμέρους προϊόντων. Η παρουσία ατμού έχει ως αποτέλεσμα την ταχύτερη αποπτητικοποίηση του υλικού, ενώ παράλληλα η περιεκτικότητα του υπολειπόμενου εξανθρακώματος σε πτητικά είναι μικρότερη. Τα πειραματικά αποτελέσματα ταχείας πυρόλυσης σε αντιδραστήρα ρευστοστερεάς κλίνης δείχνουν ό,τι η χρήση ατμού βελτιώνει την θερμική διάσπαση της βιομαζας, αυξάνοντας την απόδοση σε υγρά προϊοντά, ενώ παράλληλα βοηθάει στην αποξυγόνωσή τους. Ο συνδυασμός της πυρόλυσης υπό την παρουσία ατμού και διμεταλλικού καταλύτη νικελίου–βαναδίου μπορεί να  βελτιώσει την ποιότητα των παραγόμενων υγρών (αποξυγόνωση) με παραλλήλη μείωση της απόδοσής τους, ενώ μπορεί να  παράγει προϊόντα εκλεκτικής αποξυγόνωσης. Συνδυασμός μεταλλικών και ζεολιθικών καταλυτών (Ni-V/HZSM5) εμφανίζει βελτιωμένη δραστικότητα στις αντιδράσεις αποξυγόνωσης, με παράλληλη συγκράτηση υδρογόνου (Η) στα υγρά προϊόντα. Η τελική περιεκτικότητα των υγρών προϊόντων σε οξυγόνου (Ο) μετά από 90 min αντίδρασης είναι 12.83 wt%, με περιεκτικότητα ζεόλιθου (ΗZSΜ5) ~75 wt% στον καταλύτη. Ωστόσο, η αυξηση της περεικτικότητας σε ζεόλιθο έχει ως αποτέλεσμα την αύξηση των επικαθήσεων άνθρακα επάνω στον κατάλυτη, καθώς και την σημαντική μειώση της απόδοσης των υγρών προϊόντων (24.35wt% επι ξηρής βιομάζας).  Η αύξηση του χώρου χρόνου του καταλύτη (τ) έχει ως αποτέλεσμα: τη μείωση των υγρών προϊόντων, τη μείωση του περιεχόμενου Ο στα υγρά προϊόντα (7.79 wt% at τ =2h), την αύξηση των αρωματικών υδρογονανθράκων και τη μείωση του επικαθήμενου κωκ ανά μονάδα μάζας καταλύτη. Η απόδοση του εξανθρακώματος παρέμεινε πρακτικά αμετάβλητη. Η αναγέννηση του υβριδικού καταλύτη σε χαμηλές θερμοκρασιές (550οC) δεν επέφερε σημαντικές δομικές αλλαγές και απώλεια δραστικότητας.

QC 20140306

Books on the topic "Liquide de pyrolyse":

1

Bridgwater, A. V., and G. Grassi, eds. Biomass Pyrolysis Liquids Upgrading and Utilization. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

V, Bridgwater A., Grassi G. 1929-, and Commission of the European Communities. Directorate-General for Science, Research, and Development. Biomass Unit., eds. Biomass pyrolysis liquids: Upgrading and utilisation. London: Elsevier Applied Science, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bridge, Sonia Alicia. Flash pyrolysis of biomass for liquid fuels. Birmingham: Aston University. Department of Chemical Engineering and Applied Chemistry, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Zhiru. The degradation effects of pyrolysis liquids on metals, plastics and elastomers. Ottawa: National Library of Canada, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Oasmaa, Anja. A guide to physical property characterisation of biomass-derived fast pyrolysis liquids. Espoo [Finland]: Technical Research Centre of Finland, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

(Editor), A. V. Bridgwater, and G. Grassi (Editor), eds. Biomass Pyrolysis Liquids Upgrading and Utilization. Springer, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bridgwater, A. V., and G. Grassi. Biomass Pyrolysis Liquids Upgrading and Utilization. Springer London, Limited, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Physical characterisation of biomass-based pyrolysis liquids: Application of standard fuel oil analyses. 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Liquid hydrocarbons from catalytic pyrolysis of sewage sludge lipid and canola oil: Evaluation of fuel properties. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Liquide de pyrolyse":

1

Bridgwater, Anthony V. "Upgrading Fast Pyrolysis Liquids." In Thermochemical Processing of Biomass, 157–99. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119990840.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Albrecht, Karl O., Mariefel V. Olarte, and Huamin Wang. "Upgrading Fast Pyrolysis Liquids." In Thermochemical Processing of Biomass, 207–55. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119417637.ch7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bridgwater, A. V., and S. A. Bridge. "A Review of Biomass Pyrolysis and Pyrolysis Technologies." In Biomass Pyrolysis Liquids Upgrading and Utilization, 11–92. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Solantausta, Yrjö, and Kai SipilÄ. "Pyrolysis in Finland." In Biomass Pyrolysis Liquids Upgrading and Utilization, 327–40. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bridgwater, A. V. "Integrated Liquid Fuel Processes." In Biomass Pyrolysis Liquids Upgrading and Utilization, 243–62. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rupp, Martin. "Utilisation of Pyrolysis Liquids in Refineries." In Biomass Pyrolysis Liquids Upgrading and Utilization, 219–25. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Grassi, G. "The European Energy from Biomass Programme." In Biomass Pyrolysis Liquids Upgrading and Utilization, 1–10. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mezerette, Corinne, and Philippe Girard. "Environmental Aspects of Gaseous Emissions from Wood Carbonisation and Pyrolysis Processes." In Biomass Pyrolysis Liquids Upgrading and Utilization, 263–87. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rupp, Martin. "Pilot Plant Requirements." In Biomass Pyrolysis Liquids Upgrading and Utilization, 289–98. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Luengo, Carlos A., and Mario O. Cencig. "Biomass Pyrolysis in Brazil: Status Report." In Biomass Pyrolysis Liquids Upgrading and Utilization, 299–309. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3844-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Liquide de pyrolyse":

1

Brown, Alexander L., Curtis D. Mowry, and Ted T. Borek. "Bench-Scale Pyrolysis of Wood Pellets." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-63718.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Past work has demonstrated the feasibility of pyrolyzing biomass and condensing the resulting vapor to form a low quality combustible liquid. The product, often termed pyrolysis oil, bio-oil, or bio-crude, can be refined to a transportation grade fuel. Because the pyrolysis process is comparatively simple, we speculate that a mobile pyrolysis system might be able to process the biomass at the site of harvest, generating a dense liquid for transportation. This would be expected to result in improved transportation economics compared to transporting the raw biomass fuel. This technology is being considered for northern New Mexico forests that are presently managed by periodic thinning efforts with little utilization of the products. We have designed a bench-scale system and pyrolyzed biomass pellets, which function in these tests as surrogate material for the forest trimmings. The system features controllable furnace temperatures, augur feed, gas recirculation, and multi-stage condensation. We have analyzed gases, chars, and liquids resulting from various operating conditions and report product quantities and qualities through various standard chemical methods. Good liquid mass yields of over 50% of the original material are typically found, with varying product quality and quantity depending on the operating temperature. Our results suggest the current configuration gives better yields and functions more optimally at pyrolysis temperatures around 525°C. For a practical system, combustion of the non-condensable fuel gases may be able to replace the electrically heated furnace used in these tests.
2

Martin-Lara, M., F. Ortega, H. J. Pula, P. Sanchez, M. Zamorano, and M. Calero. "CATALYTIC PYROLYSIS OF DISCARDED COVID-19 MASKS OVER SEPIOLITE." In 22nd SGEM International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/4.2/s18.06.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This research aims to develop a new strategy to valorize wasted COVID-19 masks based on pyrolysis to convert them into useful products. First, surgical and FFP2 masks were thermally pyrolyzed at temperatures of 450-550 ?C with the purpose of determining gas, liquid (oil) and solid (char) yields. At low temperatures, solid yield was high, while at high temperatures the gas product was enhanced. The highest yield of liquid was found at an operating temperature of 500 ?C in both surgical and FPP2 masks pyrolysis. The liquid product yields were 59.08% and 58.86%, respectively. Then, the volatiles generated during thermal pyrolysis of residual masks were cracked over sepiolite as catalyst at a temperature of 500 ?C. The catalytic pyrolysis increased the yield of gas product (43.89% against 39.52% for surgical masks and 50.53% against 39.41% for FFP2 masks) and decreased the viscosity of the liquid product. Finally, the effect of sepiolite regeneration and reuse in consecutive pyrolysis tests was examined. Results showed that, with the higher regeneration-reuse of sepiolite, the catalyst was degraded obtaining a liquid product with higher molecular mass. This effect was hardly noticeable in the case of FFP2 masks.
3

Colantoni, Simone, Alessandro Corradetti, Umberto Desideri, and Francesco Fantozzi. "Thermodynamic Analysis and Possible Applications of the Integrated Pyrolysis Fuel Cell Plant (IPFCP)." In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-27713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Biomass and waste are generally considered as a very promising option for fossil fuel substitution and greenhouse effect reduction in a sustainable energy scenario. This paper examines the possible lay-out and performance of an innovative energy system based on the integration of a high temperature fuel cell with a pyrolysis reactor. The pyrolyzer converts biomass or solid waste into syngas, which is cleaned from impurities and feeds a Solid Oxide Fuel Cell (SOFC), operating at 1000°C. A combustor supplies the energy required for pyrolysis, burning the solid and liquid fraction of the pyrolysis yield, as well as the un-oxidized fuel leaving the cell anode. Literature data have been used for determining pyrolysis yield as a function of reactor temperature and evaluating its effect on the plant thermodynamic efficiency. The coupling of the system to a gas turbine using the fuel cell as its combustion chamber is also evaluated. Results show that very interesting efficiencies are obtainable in the 20%–30% range.
4

Flatabø, Gudny Øyre, and Wenche Hennie Bergland. "Anaerobic Co-Digestion of Products from Biosolids Pyrolysis – Implementation in ADM1." In 63rd International Conference of Scandinavian Simulation Society, SIMS 2022, Trondheim, Norway, September 20-21, 2022. Linköping University Electronic Press, 2022. http://dx.doi.org/10.3384/ecp192059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Pyrolyzing biosolids can decrease volume and increase value of solids while anaerobic digestion of gas and liquids from the process could increase overall methane production. Prediction of process behavior and biogas yield through simulation is valuable when considering new substrates for anaerobic digestion. In this study, gas and liquids from biosolids pyrolysis were implemented in Anaerobic Digestion Model No 1 (ADM1) together with a stream of thermally hydrolyzed sludge/food waste used in an industrial biogas plant. Average operational data from the industrial plant was used to calibrate the base scenario in ADM1, achieving a good fit. Simulation scenarios evaluating two hydrolysis constants for the pyrolysis liquid showed minor differences at the load simulated and simulated variations in composition of the liquid showed minor differences. Simulation of adding a relevant stream of pyrolysis liquid and gas together increased methane production by 7 % but decreased overall methane yield from 63 % to 61 % compared to the base scenario.
5

Jua´rez, Jaime J., Victor R. Contreras, Gaston R. Haupert, Steven Hill, and Daren E. Daugaard. "Fast Pyrolysis of Distillated Ashe Juniper Biomass." In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Ashe Juniper is one of three major species of juniper native to Texas. Communities of Ashe Juniper occupy over 8 million acres of Texas rangelands and are responsible for herbage reduction, which adversely impacts the livestock carrying capacity. Ashe Juniper wood contains aromatic liquids called essential oils, which are economically beneficial for the personal care products industry. In order to exploit this benefit Texarome, Inc. of Leaky, Texas uses a large-scale steam distillation process to extract aromatic liquids from Ashe Juniper. This process results in a large quantity of Ashe Juniper woodchip waste for which there is few uses. A moderate temperature process known as fast pyrolysis was used to convert steam-distillated Ashe Juniper into a liquid known as bio-oil. An average liquid yield of 40.8% is reported for steam-distillated Ashe Juniper biomass and an average liquid yield of 47.3% is reported Ashe Juniper biomass that has not undergone the steam distillation process. This work demonstrates that the energy content of steam distillated Ashe Juniper can be extracted and the conversion to bio-oil is another potential use for Ashe Juniper woodchip waste. An economic model of Ashe Juniper biomass developed previously by Jua´rez and Daugaard was used to examine the economic impact of steam-distilled Ashe Juniper by simulating a 4,046-hectare (10,000 acre) Ashe Juniper energy plantation. It was found that bio-oil could be produced for as little as $5.20/GJ on a lower heating value basis if re-investment of profits made from the sale of essential oils extracted during the steam distillation process was assumed. Bio-oil from un-distillated Ashe Juniper could be produced for $13.21/GJ.
6

Putra, Putri Humairah Monashofian, Shaifulazuar Rozali, Muhamad Fazly Abdul Patah, and Aida Idris. "Microwave Pyrolysis of Polypropylene with Iron Susceptor." In International Technical Postgraduate Conference 2022. AIJR Publisher, 2022. http://dx.doi.org/10.21467/proceedings.141.29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The improper disposal of plastic waste and low recycling rate have caused various environmental issues around the world. Therefore, microwave metal pyrolysis approach is proposed to efficiently convert plastic waste into liquid fuel, wax and gaseous by-products. This study aims to investigate the effect of different parameters such as microwave power and mass of metal on the product formation of the pyrolysis of polypropylene (PP). The experimental study was conducted in a closed glass reactor with a capacity of 500 ml, in a modified 2.45 GHz microwave, at a pressure of 1 atm and nitrogen is flowed at 0.5 L/min. The plastic was mixed with iron (Fe) powder and pyrolysed for 30 min. The produced pyrolysis vapor was condensed in a two-stage condenser where the oil formed was subsequently collected in a flask. The increase in microwave power from 500 to 700 W increased the oil yield of PP with iron powder from 22.4 to 54.5 wt.% and decreased the wax yield from 40.2% to zero. The increase in mass of iron powder from 5 to 10 g improved the oil yield from 20.0 to 54.5 wt.%, while the oil yield slightly decreased to 50.1 wt.% at 15 g. The pyrolysis oil formed has high calorific value of 45-46 MJ/kg comparable with the commercial fuel, thus the fuel can be blended with pure diesel to reduce the portion of fossil fuel in diesel combustion engine application.
7

Polaert, Isabelle, Lilivet Ubiera, Lokmane Abdelouahed, and Bechara Taouk. "MICROWAVE PYROLYSIS OF BIOMASS IN A ROTATORY KILN REACTOR: DEEP CHARACTERIZATION AND COMPARATIVE ANALYSIS OF PYROLYTIC LIQUIDS PRODUCTS." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The pursuit of sustainable relationship between the production and consumption of energy has accelerated the research into new fuels alternatives, and mainly focused on new technologies for biomass based fuels. Microwave pyrolysis of biomass is a relatively new process which has been long recognized to provide better quality bio-products in shorter reaction time due to the direct sample heating and the particular heating profile resulting from the interaction of biomass with the electric field component of an electromagnetic wave [1,2]. During the course of this research, flax shives were pyrolysed using a rotatory kiln reactor inside a microwave single mode cavity using a range of power between 100 and 200 watts, to reach a temperature range between 450 °C and 650°C. The liquid bio-oil samples recovered in each case were analyzed though gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID) to identify and quantify the different molecules presents and paying a particular attention to the BTX’s concentration. More than two hundred compounds were identified and grouped into families such as carboxylic acids, alcools, sugars for a deep analysis of the results. The effect of the operating conditions on the proportion of gas, liquid and char produced were studied as well as some properties of the pyrolysis products. In most cases, carboxylic acids were the dominating chemical group present. It was also noticed that the increase of temperature enhanced the carboxylic acids production and diminished the production of other groups, as sugars. Finally, pyrolysis oils were produced in higher quantities by microwaves than in a classical oven and showed a different composition. The examination of the pyrolytic liquid products from different biomass components helped to determine the provenance of each molecule family. On the operational side, the rotatory kiln reactor provided a fast and homogeneous heating profile inside the reactor, desired for fast pyrolysis. The high temperature was maintained without making hot spots during the reaction time. The microwave irradiation setup consisted in a single-mode cavity, a system of plungers, incident and reflected power monitors, an isolator and a 2.45 GHz continuous microwave generator with a power upper limit of 2000 watts. The plunger system was calibrated to maintain a range of reflective wave between 5 and 15%, taking advantage of a minimum of 85 percent of the applied power. In conclusion, the developed microwave pyrolysis process gives a clear way to produce an exploitable bio-oil with enhanced properties. References Beneroso, D., Monti, T., Kostas, E., Robinson, J., CEJ, 2017.,316, 481- 498. Autunes E., Jacob M., Brodie, G., Schneider, A., JAAP, 2018,129, 93-100.
8

Zhang, Zhixiao, Xintian Zhao, Eilhann Kwon, and Marco J. Castaldi. "Experimental Research on Microwave Induced Thermal Decomposition of Printed Circuit Board Wastes." In 18th Annual North American Waste-to-Energy Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/nawtec18-3536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
As a result of electronic industry development in China, significant amount of Printed Circuit Board (PCBs) wastes are generated. The thermal decomposition via combustion or pyrolysis/gasification is considered to be a feasible disposal way for PCBs. To understand the consequences of pyrolysis, gasification or combustion in WTE facilities, thermo-gravimetric analysis (TGA) has been carried to characterize the thermal decomposition mechanisms and extract the kinetic parameters in various atmospheres (N2, CO2 and air) to simulate different regions in WTE applications. TGA tests in N2 atmosphere showed there was only one significant reaction in the low temperature range of 270∼350°C, which was the decomposition of epoxy resin in PCBs. The behavior in CO2 atmosphere was similar with that in N2. However, the PCBs oxidation process in air atmosphere showed two thermal decomposition steps. One was the thermal decomposition similar to the volatilization in N2 atmosphere and the second step showed oxidation behavior. Some pre-processing was investigated to explore possible benefits in WTE combustion. PCBs waste was pyrolyzed using a microwave tubular furnace. The liquid product were collected and then identified by means of gas chromatography–mass spectrometry (GC–MS). Most of the Br contained in PCBs was released into non-condensable gas in the form of HBr. The liquid product contained a large amount of phenolic compounds, bisphenol A and other aromatic compounds that can be used to produce related chemical products or used in WTE facilities. The experimental results including the thermal kinetic parameters and microwave induced pyrolysis indicate the complex mechanisms that take place during the pyrolysis of PCBs wastes.
9

Yi Wei and Hanwu Lei. "Advanced upgrading of pyrolysis oil via liquid-liquid extraction." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131594590.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Complex processing of liquid pyrolysis products." In Chemical technology and engineering. Lviv Polytechnic National University, 2021. http://dx.doi.org/10.23939/cte2021.01.098.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Liquide de pyrolyse":

1

Oyama, Ted, Foster Agblevor, Francine Battaglia, and Michael Klein. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids. Office of Scientific and Technical Information (OSTI), January 2013. http://dx.doi.org/10.2172/1060205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Diebold, J. P. A review of the toxicity of biomass pyrolysis liquids formed at low temperatures. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/468520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gajewski, J. J., and G. C. Paul. Gas and liquid phase pyrolysis of tetralin: A reconciliation of apparently contradictory data. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/7172244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gajewski, J. J., and G. C. Paul. Gas and liquid phase pyrolysis of tetralin: A reconciliation of apparently contradictory data. Office of Scientific and Technical Information (OSTI), December 1991. http://dx.doi.org/10.2172/10176955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Paulechka, Eugene, Vladimir Diky, and Abhijit Dutta. Evaluation of Experimental and Predicted Vapor-Liquid Equilibrium Data for Systems Relevant to Biomass Fast Pyrolysis and Catalytic Upgrading. National Institute of Standards and Technology, March 2021. http://dx.doi.org/10.6028/nist.ir.8357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Paulechka, Eugene, Vladimir Diky, and Abhijit Dutta. Evaluation of Experimental and Predicted Vapor-Liquid Equilibrium Data for Systems Relevant to Biomass Fast Pyrolysis and Catalytic Upgrading. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1776562.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography