Academic literature on the topic 'Liquid Xenon Compton telescope'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquid Xenon Compton telescope.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liquid Xenon Compton telescope"
Oger, T., W. T. Chen, J. P. Cussonneau, J. Donnard, S. Duval, J. Lamblin, O. Lemaire, et al. "A liquid xenon TPC for a medical imaging Compton telescope." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 695 (December 2012): 125–28. http://dx.doi.org/10.1016/j.nima.2011.12.004.
Full textChen, W. T., H. Carduner, J. P. Cussonneau, J. Donnard, S. Duval, A. F. Mohamad-Hadi, J. Lamblin, et al. "Measurement of the Transverse Diffusion Coefficient of Charge in Liquid Xenon." Defect and Diffusion Forum 326-328 (April 2012): 567–72. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.567.
Full textAprile, E., A. Curioni, K. L. Giboni, M. Kobayashi, U. G. Oberlack, and S. Zhang. "Compton imaging of MeV gamma-rays with the Liquid Xenon Gamma-Ray Imaging Telescope (LXeGRIT)." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 593, no. 3 (August 2008): 414–25. http://dx.doi.org/10.1016/j.nima.2008.05.039.
Full textAprile, E., V. Egorov, K. L. Giboni, T. Kozu, F. Xu, T. Doke, J. Kikuchi, et al. "The electronics read out and data acquisition system for a liquid xenon time projection chamber as a balloon-borne Compton telescope." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 412, no. 2-3 (August 1998): 425–36. http://dx.doi.org/10.1016/s0168-9002(98)00480-x.
Full textDuval, S., A. Breskin, H. Carduner, J.-P. Cussonneau, J. Lamblin, P. Le Ray, E. Morteau, T. Oger, J.-S. Stutzmann, and D. Thers. "MPGDs in Compton imaging with liquid-xenon." Journal of Instrumentation 4, no. 12 (December 10, 2009): P12008. http://dx.doi.org/10.1088/1748-0221/4/12/p12008.
Full textAprile, E., A. Bolotnikov, D. Chen, R. Mukherjee, and F. Xu. "The polarization sensitivity of the liquid xenon imaging telescope." Astrophysical Journal Supplement Series 92 (June 1994): 689. http://dx.doi.org/10.1086/192042.
Full textGonçalves, O. D., H. Schechter, M. I. Lopes, and V. Chepel. "Rayleigh to compton differential cross-section ratios in liquid xenon." X-Ray Spectrometry 28, no. 5 (September 1999): 384–87. http://dx.doi.org/10.1002/(sici)1097-4539(199909/10)28:5<384::aid-xrs369>3.0.co;2-j.
Full textBuuck, M., A. Mishra, E. Charles, N. Di Lalla, O. A. Hitchcock, M. E. Monzani, N. Omodei, and T. Shutt. "Low-energy Electron-track Imaging for a Liquid Argon Time-projection-chamber Telescope Concept Using Probabilistic Deep Learning." Astrophysical Journal 942, no. 2 (January 1, 2023): 77. http://dx.doi.org/10.3847/1538-4357/aca329.
Full textGiboni, K., E. Aprile, T. Doke, S. Suzuki, L. M. P. Fernandes, J. A. M. Lopes, and J. M. F. dos Santos. "Compton Positron Emission Tomography with a Liquid Xenon Time Projection Chamber." Journal of Instrumentation 2, no. 10 (October 9, 2007): P10001. http://dx.doi.org/10.1088/1748-0221/2/10/p10001.
Full textCussonneau, J. P., J. M. Abaline, S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier, et al. "3$\gamma $ Medical Imaging with a Liquid Xenon Compton Camera and $^{44}$Sc Radionuclide." Acta Physica Polonica B 48, no. 10 (2017): 1661. http://dx.doi.org/10.5506/aphyspolb.48.1661.
Full textDissertations / Theses on the topic "Liquid Xenon Compton telescope"
Mohamad, Hadi Abdul Fattah. "Simulation de l'imagerie à 3γ avec un télescope Compton au xénon liquide." Phd thesis, Ecole des Mines de Nantes, 2013. http://tel.archives-ouvertes.fr/tel-00847425.
Full textSemenov, Evgenii. "Experimental studies and evaluation of the implementation of 3γ-imaging and the new technology of XEMIS cameras adapted to the control of MOX fuel." Electronic Thesis or Diss., Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2024. http://www.theses.fr/2024IMTA0443.
Full textThe non-destructive control and imaging with γ-rays are well-known widely used in nuclear fuel production industry and nuclear medicine, respectively. The thesis is centered on new application of a state-of-the-art detector, based on single-phase liquid xenon 24-cm long field-of-view camera, XEMIS2. It is constructed in Nantes, France. Originally conceived for small animal medical 3-gamma imaging, the camera is now being scrutinized to explore new area of its’ application in non-destructive control and imaging of high-density (> 10 g/cm3) MOX fuel pellets or rods that emit a wide spectrum of γ-rays, which is a quite relevant and ambitious goal. XEMIS2 main goal is a significant dose reduction per scan while preserving the same image quality as in conventionnal cameras. MOX fuel γ-rays emission spectrum was studied, and high activity is expected, but the useful high-energy region of interest (ROI) that was selected for this work presents a challenge due to small statistics. It was shown that other ROI used in current passive non-destructive gamma-scanning control face difficulties due to strong self-absorbtion of γ-rays. The thesis will expound on the two methods that were developed and assessed for MOX Pu/(U+Pu) ratio control, including new contributions to algorithms in Compton imaging
Oger, Tugdual. "Développement expérimental d'un télescope Compton au xenon liquide pour l'imagerie médicale fonctionnelle." Phd thesis, Ecole des Mines de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00678767.
Full textGallego, Manzano Lucia. "Optimization of a single-phase liquid xenon Compton camera for 3γ medical imaging." Thesis, Nantes, Ecole des Mines, 2016. http://www.theses.fr/2016EMNA0276/document.
Full textThe work described in this thesis is focused on the characterization and optimization of a single-phaseliquid xenon Compton camera for medical imaging applications. The detector has been conceived to exploit the advantages of an innovative medical imaging technique called 3γ imaging, which aims to obtain aprecise 3D location of a radioactive source with high sensitivity and an important reduction of the dose administered to the patient. The 3γ imaging technique is based on the detection in coincidence of 3gamma rays emitted by a specific (+β, γ) emitter radionuclide,the 44Sc. A first prototype of a liquid xenon Compton camera has been developed by Subatech laboratory within the XEMIS (Xenon Medical Imaging System) project, to proof the feasibility of the 3γ imaging technique. This new detection framework is based on an advanced cryogenic system and an ultra-low noise front-end electronics operating at liquid xenon temperature. This work has contributed to the characterization of the detector response and the optimization of the ionization signal extraction. A particular interest has been given to the influence of the Frisch grid on the measured signals. First experimental evidences of the Compton cone reconstruction using asource of ²²Na (β+, Eγ = 1.274 MeV) are also reported in this thesis, which demonstrate the proof of concept of the feasibility of the 3γ imaging. The results reported in this thesis have been essential for the development of a larger scale liquid xenon Compton camera for small animal imaging. This new detector, called XEMIS2, is now in phase of construction
Lu, Philip Fei-Tung. "Monte-Carlo simulations of positron emission tomography based on liquid xenon detectors." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/595.
Full textBooks on the topic "Liquid Xenon Compton telescope"
United States. National Aeronautics and Space Administration., ed. A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics. [Washington, D.C: National Aeronautics and Space Administration, 1989.
Find full textAprile, Elena. Development of a high resolution liquid xenon imaging telescope for medium energy gamma-ray astrophysics: Annual status report for NASA grant NAGW-2013. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textUnited States. National Aeronautics and Space Administration., ed. Development of a high resolution liquid xenon imaging telescope for medium energy gamma-ray astrophysics: Annual status report for NASA grant NAGW-2013. [Washington, DC: National Aeronautics and Space Administration, 1992.
Find full textAprile, Elena. A high resolution liquid xenon imaging telescope for 0.3-10 MEV gamma-ray astrophysics: Construction, and initial balloon flights. [Washington, DC: National Aeronautics and Space Administration, 1993.
Find full textAprile, Elena. A high resolution liquid xenon imaging telescope for 0.3-10 MeV gamma-ray astrophysics: Construction and initial balloon flights : annual status report for NAGW-2013 : 1 January 1994 - 31 December 1994. Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textBook chapters on the topic "Liquid Xenon Compton telescope"
Xing, Y., M. Abaline, S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier, et al. "XEMIS: Liquid Xenon Compton Camera for 3γ Imaging." In Springer Proceedings in Physics, 154–58. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1316-5_29.
Full textAprile, E., A. Bolotnikov, D. Chen, H. Tawara, F. Xu, E. Chupp, P. Dunphy, et al. "The Imaging Liquid Xenon-Coded Aperture Telescope (LXe-CAT)." In Imaging in High Energy Astronomy, 333–38. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0407-4_55.
Full textZhu, Y., M. Abaline, S. Acounis, N. Beaupère, J. L. Beney, J. Bert, S. Bouvier, et al. "Scintillation Signal in XEMIS2, a Liquid Xenon Compton Camera with 3γ Imaging Technique." In Springer Proceedings in Physics, 159–63. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1316-5_30.
Full textConference papers on the topic "Liquid Xenon Compton telescope"
Lainé, Q., N. Beaupere, D. Cai, C. Lahuec, E. Morteau, F. Seguin, and D. Thers. "Multi Time-Over-Threshold System for Light Signal in a Liquid Xenon 3-Photon Compton Camera." In 2024 IEEE SENSORS, 1–4. IEEE, 2024. https://doi.org/10.1109/sensors60989.2024.10784579.
Full textAprile, E. "LXeGRIT: The liquid xenon gamma-ray imaging telescope." In Fifth compton symposium. AIP, 2000. http://dx.doi.org/10.1063/1.1303308.
Full textOberlack, Uwe G., Elena Aprile, Alessandro Curioni, Valeri Egorov, and Karl-Ludwig Giboni. "Compton scattering sequence reconstruction algorithm for the liquid xenon gamma-ray imaging telescope (LXeGRIT)." In International Symposium on Optical Science and Technology, edited by Ralph B. James and Richard C. Schirato. SPIE, 2000. http://dx.doi.org/10.1117/12.407578.
Full textAprile, Elena, Valeri Egorov, Karl-Ludwig Giboni, Steven M. Kahn, Tomotake Kozu, Uwe G. Oberlack, S. Centro, et al. "XENA: a liquid-xenon Compton telescope for gamma-ray astrophysics in the MeV regime." In SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, edited by F. P. Doty and Richard B. Hoover. SPIE, 1998. http://dx.doi.org/10.1117/12.312882.
Full textXing, Yajing, Mounir Abaline, Stephane Acounis, Nicolas Beaupere, Jean-Luc Beney, Julien Bert, Stephane Bouvier, et al. "Direct Measurement of Ionization Charges in Single-phase Liquid Xenon Compton Telescope for 3γ Medical Imaging." In 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2019. http://dx.doi.org/10.1109/nss/mic42101.2019.9059808.
Full textLemaire, Olivier, W. T. Chen, J. P. Cussonneau, E. Delagnes, J. Donnard, S. Duval, O. Gevin, et al. "Development of a readout electronic for the measurement of ionization in liquid xenon compton telescope containing micro-patterns." In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012. http://dx.doi.org/10.1109/nssmic.2012.6551226.
Full textMasbou, J., J. P. Cussonneau, J. Donnard, L. Gallego Manzano, O. Lemaire P. Leray, A. F. Mohamed Hadi, E. Morteau, et al. "XEMIS: A new Compton camera with liquid xenon." In 2014 IEEE 18th International Conference on Dielectric Liquids (ICDL). IEEE, 2014. http://dx.doi.org/10.1109/icdl.2014.6893166.
Full textBryman, Douglas, Leonid Kurchaninov, Philip Lu, Fabriece Retiere, and Vesna Sossi. "Simulation of compton reconstruction in liquid xenon PET." In 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007. http://dx.doi.org/10.1109/nssmic.2007.4437092.
Full textZhu, Yuwei, Stephane Acounis, Nicolas Beaupere, Jean-Luc Beney, Julien Bert, Stephane Bouvier, Clotilde Canot, et al. "XEMIS2: A liquid xenon Compton camera to image small animals." In 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL). IEEE, 2019. http://dx.doi.org/10.1109/icdl.2019.8796534.
Full textWahl, Christopher G., Ethan P. Bernard, Christopher Kachulis, Blair Edwards, Nicole A. Larsen, Brian Tennyson, Sidney B. Cahn, Daniel N. McKinsey, Nicholas E. Destefano, and Moshe Gai. "Status and design of two-phase liquid-Xenon compton-imaging detector." In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012. http://dx.doi.org/10.1109/nssmic.2012.6551369.
Full text