Academic literature on the topic 'Liquid phase epitaxy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquid phase epitaxy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Liquid phase epitaxy"

1

Kuphal, E. "Liquid phase epitaxy." Applied Physics A Solids and Surfaces 52, no. 6 (June 1991): 380–409. http://dx.doi.org/10.1007/bf00323650.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Görnert, P., A. Aichele, S. Bornmann, and C. Dubs. "Liquid-phase epitaxy of HTcsuperconductors." Acta Crystallographica Section A Foundations of Crystallography 52, a1 (August 8, 1996): C511. http://dx.doi.org/10.1107/s0108767396079160.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rogin, P., and J. Hulliger. "Liquid phase epitaxy of LiYF4." Journal of Crystal Growth 179, no. 3-4 (August 1997): 551–58. http://dx.doi.org/10.1016/s0022-0248(97)00163-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lendvay, E., V. A. Gevorkyan, L. Petrás, I. Pozsgai, T. Görög, and A. L. Tóth. "Liquid phase epitaxy of AlGaInSb." Journal of Crystal Growth 73, no. 1 (October 1985): 63–72. http://dx.doi.org/10.1016/0022-0248(85)90331-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bauser, E., P. O. Hansson, M. Albrecht, Horst P. Strunk, and Allen Gustafson. "Liquid Phase Epitaxy of SiGe Structures." Solid State Phenomena 32-33 (December 1993): 385–96. http://dx.doi.org/10.4028/www.scientific.net/ssp.32-33.385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baliga, B. Jayant. "Silicon Liquid Phase Epitaxy: A Review." Journal of The Electrochemical Society 133, no. 1 (January 1, 1986): 5C—14C. http://dx.doi.org/10.1149/1.2108542.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Eminov, Sh O., and A. A. Radjabli. "A device for liquid-phase epitaxy." Instruments and Experimental Techniques 53, no. 2 (March 2010): 298–300. http://dx.doi.org/10.1134/s0020441210020260.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Peña, Alexandra, Patrice Camy, Abdelmjid Benayad, Jean-Louis Doualan, Clément Maurel, Mélinda Olivier, Virginie Nazabal, and Richard Moncorgé. "Yb:CaF2 grown by liquid phase epitaxy." Optical Materials 33, no. 11 (September 2011): 1616–20. http://dx.doi.org/10.1016/j.optmat.2011.04.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaramillo-Cabanzo, Daniel F., Jacek B. Jasinski, and Mahendra K. Sunkara. "Liquid Phase Epitaxy of Gallium Nitride." Crystal Growth & Design 19, no. 11 (September 17, 2019): 6577–85. http://dx.doi.org/10.1021/acs.cgd.9b01011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Popov, V. P. "Nonconservative liquid-phase epitaxy of semiconductors." Soviet Physics Journal 31, no. 1 (January 1988): 45–50. http://dx.doi.org/10.1007/bf00896685.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Liquid phase epitaxy"

1

Gutmann, Roland. "Liquid phase epitaxy of para- and ferroelectric KTa₁-xNbxO₃ /." Zürich, 1993. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cheng, Yee Siau. "Development of (Re)BaCuO coated conductors by liquid phase epitaxy." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/104787.

Full text
Abstract:
Since the discovery of high-temperature superconductors, there has been a worldwide effort towards the development of processes for fabricating coated conductors for power applications. Most of these processes are based on vapour phase deposition techniques that have relatively low growth rates. A high-rate processing route was proposed based on the observation of high growth rate of (RE)Ba2Cu3O7- δ superconducting compounds (RE = rareearth element) from a flux supersaturated with one or more RE elements by liquid phase epitaxy (LPE). LPE has been successfully used to grow YBCO thick films with both c- and a,b-orientations on (110) NdGaO3 substrates and pure c-oriented films on YBCO seeded (100) MgO and (100) SrTiO3 under carefully controlled growth temperature and undercooling. The film growth mode (c- or a,b-oriented) is determined by the growth rate, which is directly related to the level of RE supersaturation that could be controlled by the undercooling used along with the amount of total RE solubility in the solution. The LPE grown films were highly epitaxial and biaxially aligned with good in-plane and out-of-plane textures. YBCO thick films grown on NdGaO3 by LPE showed high Tc of ~92 K and zero-field Jc at 77 K of 2.5x105 A/cm2. The initial growth of YBCO was found to be a multi-nucleation process. However, above a critical film thickness, dislocations started to form as a lattice-misfit stress relieving mechanism that led to step formation and spiral growth around dislocation cores. The growth kinetics from an unstirred solution was found to obey a
APA, Harvard, Vancouver, ISO, and other styles
3

Romanyuk, Yaroslav. "Liquid-phase epitaxy of doped KY(WO₄)₂ layers for waveguide lasers /." Lausanne, 2005. http://library.epfl.ch/theses/?nr=3390.

Full text
Abstract:
Thèse sciences, EPF Lausanne, no 3390 (2005), Faculté Sciences et techniques de l'ingénieur STI, Section de microtechnique (Institut d'imagerie et optique appliquée). Directeur: R.P. Salathé ; rapporteurs: B. Deveaud-Plédran ... et al.
APA, Harvard, Vancouver, ISO, and other styles
4

Kim-Hak, Olivier. "Étude de la nucléation du SiC cubique sur substrats de SiC hexagonaux à partir d’une phase liquide Si-Ge." Thesis, Lyon 1, 2009. http://www.theses.fr/2009LYO10140.

Full text
Abstract:
L'objectif de ce travail était de comprendre les mécanismes menant à la formation de SiC-3C sur substrats de SiC hexagonaux lors de la croissance par mécanisme Vapeur-Liquide-Solide (VLS) à partir d'une phase liquide Si-Ge. Notre étude s'est concentrée sur les premiers instants de l'interaction liquide/SiC, c'est-a-dire sans ajout de phase gazeuse réactive (propane). Nous avons montré qu'il se formait très rapidement des îlots de SiC-3C à la surface des germes. L'étude en fonction de divers paramètres (température et durée de plateau, vitesse de chauffage, nature du germe) a permis de mettre en évidence l'influence prononcée du creuset en graphite dans lequel est confinée la réaction. Les observations expérimentales associées à des calculs thermodynamiques ont permis de montrer que l'étape prépondérante, pour la formation du 3C, est sans doute la réaction transitoire entre un liquide très riche en germanium et le germe de SiC. Des considérations d'ordre cinétiques sont cependant à prendre en compte pour expliquer le caractère hors équilibre de la réaction
The aim of this work was to understand the mechanisms that lead to the 3C-SiC formation on hexagonal SiC substrates during the Vapor-Liquid-Solid (VLS) growth from a Si-Ge liquid phase. Our study focused on the early stages of the liquid/SiC interaction, i.e. without reactive gaseous phase (propane) addition. We have shown that 3C-SiC islands were very rapidly formed upon seeds surface. The study of several parameters (such as temperature and duration of the plateau, heating rate, nature of the seed) evidenced the huge influence of the graphite crucible that contains the reaction. Experimental observations combined with thermodynamic calculations show that the most important step for the 3C formation, is the transient reaction between a germanium very rich liquid and the SiC seed. Kinetic effects have to be taken into account to explain the out-of-equilibrium nature of the reaction
APA, Harvard, Vancouver, ISO, and other styles
5

Kutter, Michael [Verfasser], and Christian [Akademischer Betreuer] Rohde. "A two scale model for liquid phase epitaxy with elasticity / Michael Kutter. Betreuer: Christian Rohde." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2015. http://d-nb.info/1068810882/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jossen, David. "Flux growth of ZnO microcrystals and growth of doped homoepitaxial ZnO films by liquid phase epitaxy /." Sendai, 2008. http://doc.rero.ch/record/10798?ln=fr.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhou, Wencai [Verfasser], and C. [Akademischer Betreuer] Wöll. "Thin Films of Porphyrin-Based Metal-Organic Frameworks Grown by Liquid-Phase Epitaxy / Wencai Zhou. Betreuer: C. Wöll." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1110969651/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Son, Ji-Won. "Direct-write e-beam sub-micron domain engineering in lithium niobate thin films grown by liquid phase epitaxy /." May be available electronically:, 2004. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jaud, Alexandre. "Croissance homo-épitaxiale VLS et étude du dopage au magnésium de GaN pour la protection périphérique de composants de puissance." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1181/document.

Full text
Abstract:
Dans le contexte de la protection périphérique des composants de puissance en GaN, nous avons exploré une voie originale pour réaliser l'homo-épitaxie localisée de GaN de type p, reposant sur une approche Vapeur-Liquide-Solide (VLS). Le cycle de croissance comprend 3 étapes successives. Dans un premier temps, du Ga est déposé par MOCVD, formant un réseau de gouttelettes de diamètres submicrométriques. Puis, du Mg est incorporé aux gouttelettes à partir de la phase gazeuse, en utilisant le précurseur (MeCP)2Mg. Enfin, les gouttelettes de Ga-Mg sont nitrurées à 500-700°C sous un flux de NH3 dilué dans un gaz porteur. À l'issue d'un cycle complet de croissance, on obtient systématiquement un réseau de plots et/ou d'anneaux de GaN, bien séparés. L'augmentation de la teneur en Mg dans les gouttes favorise un mécanisme de croissance purement VLS, à l'interface Liq/Sol (formation de plots), plutôt qu'une croissance le long de la ligne triple (formation d'anneaux). Ces structures de GaN présentent un caractère homo-épitaxial, mais une plus forte défectuosité que leur germe. En utilisant une approche multi-cycles, nous avons pu élaborer des films de GaN:Mg présentant des concentrations en Mg très élevées, contrôlables entre 3.1019 cm-3 et 8.1021 cm-3. Cependant, de fortes concentrations en impuretés C, H et O ont également été détectées dans ces films. Diverses voies ont été explorées, sans succès, pour tenter de réduire la contamination en O, d'un niveau rédhibitoire pour l'obtention d'un dopage de type p. En pratique, les films de GaN:Mg obtenus apparaissent très conducteurs de type n, pour des dopages au Mg modérés, et semi-isolants aux plus forts dopages. Différents matériaux de masques ont été testés en vue de localiser la croissance
For peripheral protection of GaN power electronics devices, we have explored a new approach for performing localized homo-epitaxy of p-doped GaN, by implementing Vapor-Liquid-Solid (VLS) transport. The growth cycle includes three successive steps. At first, Ga is deposited onto the seed surface by MOCVD from TEG, resulting in an array of Ga droplets with submicrometric diameters. Then, Mg is incorporated into the droplets from the gas phase, using (MeCP)2Mg precursor. In the last step, Ga-Mg droplets are nitridated at 500-700°C in flowing ammonia diluted in a carrier gas.After one complete growth cycle, a network of well separated submicrometric GaN dots or ring-shaped features is systematically obtained. Increasing the Mg incorporation into the droplets drastically influences the growth mode, promoting a pure VLS growth mechanism, at the Liquid/Solid interface, versus growth at the triple line. Such GaN structures show a homo-epitaxial relationship with the seed, but a higher crystalline imperfection. Using a multi-cycles approach, GaN films could be obtained, with very high Mg concentrations tunable from 3.1019 to 8.1021 cm-3. Nevertheless, O, C and H impurities are also incorporated at high levels. Various approaches have been vainly investigated to try reducing O contamination level, prohibitive for obtaining p-type material. Actually, as-grown GaN:Mg films are n-type and highly conductive, for moderate Mg concentrations, and become semi-insulating at highest doping levels. Various masking materials have been tested for growth localization purpose
APA, Harvard, Vancouver, ISO, and other styles
10

Greenlee, Jordan Douglas. "Study of cation-dominated ionic-electronic materials and devices." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53401.

Full text
Abstract:
The memristor is a two-terminal semiconductor device that is able to mimic the conductance response of synapses and can be utilized in next-generation computing platforms that will compute similarly to the mammalian brain. The initial memristor implementation is operated by the digital formation and dissolution of a highly conductive filament. However, an analog memristor is necessary to mimic analog synapses in the mammalian brain. To understand the mechanisms of operation and impact of different device designs, analog memristors were fabricated, modeled, and characterized. To realize analog memristors, lithiated transition metal oxides were grown by molecular beam epitaxy, RF sputtering, and liquid phase electro-epitaxy. Analog memristors were modeled using a finite element model simulation and characterized with X-ray absorption spectroscopy, impedance spectroscopy, and other electrical methods. It was shown that lithium movement facilitates analog memristance and nanoscopic ionic-electronic memristors with ion-soluble electrodes can be key enabling devices for brain-inspired computing.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Liquid phase epitaxy"

1

Capper, Peter, and Michael Mauk, eds. Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470319505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Peter, Capper, and Mauk Michael, eds. Liquid phase epitaxy of electronic, optical, and optoelectronic materials. Chichester, West Sussex, England: Wiley, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Bristol: A. Hilger, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Capper, Peter, and Michael Mauk. Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials. Wiley & Sons, Limited, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Capper, Peter, and Michael Mauk. Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials. Wiley & Sons, Incorporated, John, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Shingmin. A nonlinear stability analysis of a model equation for liquid phase electro-epitaxial growth of a dilute binary substance. 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

(Editor), Peter Capper, and Michael Mauk (Editor), eds. Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (Wiley Series in Materials for Electronic & Optoelectronic Applications). Wiley-Interscience, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Liquid phase epitaxy"

1

Herman, Marian A., Wolfgang Richter, and Helmut Sitter. "Liquid Phase Epitaxy." In Epitaxy, 63–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-07064-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fave, Alain. "Liquid Phase Epitaxy." In Advances in Materials Research, 135–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02044-5_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Capper, P., T. Tung, and L. Colombo. "Liquid phase epitaxy." In Narrow-gap II–VI Compounds for Optoelectronic and Electromagnetic Applications, 30–70. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4613-1109-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Elwell, Dennis. "Liquid Phase Epitaxy (LPE)." In Inorganic Reactions and Methods, 80–81. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tolksdorf, W. "Liquid Phase Epitaxy of Garnets." In Crystal Growth in Science and Technology, 397–410. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0549-1_25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Scheel, Hans J. "Introduction to Liquid Phase Epitaxy." In Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, 1–19. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470319505.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hibiya, Taketoshi, and Peter Görnert. "Liquid Phase Epitaxy of Garnets." In Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, 305–39. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470319505.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Capper, P. "Liquid Phase Epitaxy of MCT." In Mercury Cadmium Telluride, 95–112. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669464.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Iga, Kenichi, and Susumu Kinoshita. "Liquid Phase Epitaxy and Growth Technology." In Process Technology for Semiconductor Lasers, 51–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-79576-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yakimova, R., and M. Syväjärvi. "Liquid Phase Epitaxy of Silicon Carbide." In Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials, 179–201. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470319505.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Liquid phase epitaxy"

1

Pena-Revellez, A., P. Camy, Abdelmjid Benayad, J. L. Doualan, C. Maurel, M. Olivier, V. Nazabal, and R. Moncorgé. "Yb:CaF2 grown by Liquid Phase Epitaxy." In Advances in Optical Materials. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/aiom.2011.aitha4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

POLEZHAEV, V., and N. VEREZUB. "Liquid phase epitaxy - Modelling and space experiments." In 30th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Starecki, Florent, Western Bolaños, Gurvan Brasse, Abdelmjid Benayad, Jean-Louis Doualan, Alain Braud, Richard Moncorgé, and Patrice Camy. "Fluoride waveguide lasers grown by liquid phase epitaxy." In SPIE LASE, edited by W. Andrew Clarkson and Ramesh Shori. SPIE, 2013. http://dx.doi.org/10.1117/12.2012510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mao, XiangJun, Yuen Chuen Chan, Yee Loy Lam, JingYi Zhu, and YunXi Shi. "New concept technology: pressure-variation liquid phase epitaxy." In Photonics Taiwan, edited by Yan-Kuin Su and Pallab Bhattacharya. SPIE, 2000. http://dx.doi.org/10.1117/12.392141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rutkowski, Jaroslaw, Jolanta Raczynska, Antoni Rogalski, Krzysztof Adamiec, and Waldemar Larkowski. "InAsSb heterojunction photodiodes grown by liquid phase epitaxy." In XII Conference on Solid State Crystals: Materials Science and Applications, edited by Antoni Rogalski, Jaroslaw Rutkowski, Andrzej Majchrowski, and Jerzy Zielinski. SPIE, 1997. http://dx.doi.org/10.1117/12.276232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Badratinova, L. G., V. V. Kuznetsov, A. G. Petrova, and V. V. Pukhnachov. "Direct and inverse problems of liquid-phase epitaxy." In [1987] NASECODE V: Fifth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits. IEEE, 1987. http://dx.doi.org/10.1109/nascod.1987.721133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Minemura, Tetsuroh, Yuji Yazawa, J. Asano, and T. Unno. "Molecular beam epitaxy/liquid phase epitaxy hybrid growth for GaAs-LED on Si." In Physical Concepts of Materials for Novel Optoelectronic Device Applications, edited by Manijeh Razeghi. SPIE, 1991. http://dx.doi.org/10.1117/12.24406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhu, JingYi, XiangJun Mao, Yuen Chuen Chan, and Yee Loy Lam. "Phase calculation of (100) oriented InGaAsP grown with liquid phase epitaxy." In Photonics Taiwan, edited by Yan-Kuin Su and Pallab Bhattacharya. SPIE, 2000. http://dx.doi.org/10.1117/12.392140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mao, XiangJun, Yuen Chuen Chan, and Yee Loy Lam. "Phase calculation of (100) oriented InGaAsSb grown with liquid phase epitaxy." In International Symposium on Photonics and Applications, edited by Marek Osinski, Soo-Jin Chua, and Shigefusa F. Chichibu. SPIE, 1999. http://dx.doi.org/10.1117/12.370354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, C. C. "Mercury cadmium telluride junctions grown by liquid phase epitaxy." In Physics and chemistry of mercury cadmium telluride and novel IR detector materials. AIP, 1991. http://dx.doi.org/10.1063/1.41085.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Liquid phase epitaxy"

1

White, Jeffrey O., and Carl E. Mungan. Low-cost Engineering of Laser Rods and Slabs with Liquid Phase Epitaxy. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Olsen, Christopher Sean. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy. Office of Scientific and Technical Information (OSTI), May 1998. http://dx.doi.org/10.2172/674712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography