Journal articles on the topic 'Liquid metal batteries'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Liquid metal batteries.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Horstmann, G. M., N. Weber, and T. Weier. "Coupling and stability of interfacial waves in liquid metal batteries." Journal of Fluid Mechanics 845 (April 20, 2018): 1–35. http://dx.doi.org/10.1017/jfm.2018.223.
Full textHerreman, W., C. Nore, L. Cappanera, and J. L. Guermond. "Tayler instability in liquid metal columns and liquid metal batteries." Journal of Fluid Mechanics 771 (April 15, 2015): 79–114. http://dx.doi.org/10.1017/jfm.2015.159.
Full textBojarevics, V., and A. Tucs. "Large scale liquid metal batteries." Magnetohydrodynamics 53, no. 4 (2017): 677–86. http://dx.doi.org/10.22364/mhd.53.4.9.
Full textOta, Hiroki. "(Invited) Application of Liquid Metals in Battery Technology." ECS Meeting Abstracts MA2024-02, no. 35 (November 22, 2024): 2502. https://doi.org/10.1149/ma2024-02352502mtgabs.
Full textWeber, N., P. Beckstein, V. Galindo, W. Herreman, C. Nore, F. Stefani, and T. Weier. "Metal pad roll instability in liquid metal batteries." Magnetohydrodynamics 53, no. 1 (2017): 129–40. http://dx.doi.org/10.22364/mhd.53.1.14.
Full textStefani, F., V. Galindo, C. Kasprzyk, S. Landgraf, M. Seilmayer, M. Starace, N. Weber, and T. Weier. "Magnetohydrodynamic effects in liquid metal batteries." IOP Conference Series: Materials Science and Engineering 143 (July 2016): 012024. http://dx.doi.org/10.1088/1757-899x/143/1/012024.
Full textTian, Yuhui, and Shanqing Zhang. "The Renaissance of Liquid Metal Batteries." Matter 3, no. 6 (December 2020): 1824–26. http://dx.doi.org/10.1016/j.matt.2020.10.031.
Full textBhardwaj, Ravindra Kumar, and David Zitoun. "Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries." Batteries 9, no. 2 (February 3, 2023): 110. http://dx.doi.org/10.3390/batteries9020110.
Full textArzani, Mehran, Sakshi Singh, and Vikas Berry. "Modified Liquid Electrolyte with Porous Liquid Type-II for Lithium-Metal Batteries." ECS Meeting Abstracts MA2024-01, no. 1 (August 9, 2024): 96. http://dx.doi.org/10.1149/ma2024-01196mtgabs.
Full textGodinez Brizuela, Omar Emmanuel, Daniel Niblett, and Kristian Etienne Einarsrud. "Pore-Scale Micro-Structural Analysis of Electrode Conductance in Metal Displacement Batteries." ECS Meeting Abstracts MA2022-01, no. 1 (July 7, 2022): 148. http://dx.doi.org/10.1149/ma2022-011148mtgabs.
Full textKim, Hojong, Dane A. Boysen, Jocelyn M. Newhouse, Brian L. Spatocco, Brice Chung, Paul J. Burke, David J. Bradwell, et al. "Liquid Metal Batteries: Past, Present, and Future." Chemical Reviews 113, no. 3 (November 27, 2012): 2075–99. http://dx.doi.org/10.1021/cr300205k.
Full textYang, Huicong, Juan Li, Zhenhua Sun, Ruopian Fang, Da-Wei Wang, Kuang He, Hui-Ming Cheng, and Feng Li. "Reliable liquid electrolytes for lithium metal batteries." Energy Storage Materials 30 (September 2020): 113–29. http://dx.doi.org/10.1016/j.ensm.2020.04.010.
Full textLi, Haomiao, Huayi Yin, Kangli Wang, Shijie Cheng, Kai Jiang, and Donald R. Sadoway. "Liquid Metal Electrodes for Energy Storage Batteries." Advanced Energy Materials 6, no. 14 (May 31, 2016): 1600483. http://dx.doi.org/10.1002/aenm.201600483.
Full textWu, Si, Xiao Zhang, Ruzhu Wang, and Tingxian Li. "Progress and perspectives of liquid metal batteries." Energy Storage Materials 57 (March 2023): 205–27. http://dx.doi.org/10.1016/j.ensm.2023.02.021.
Full textLiu, Xu, and Stefano Passerini. "Locally Concentrated Ionic Liquid Electrolytes for Lithium/Sulfurized Polyacrylonitrile Batteries." ECS Meeting Abstracts MA2023-02, no. 2 (December 22, 2023): 365. http://dx.doi.org/10.1149/ma2023-022365mtgabs.
Full textLee, Jiwhan, Haeseok Park, Seong Hoon Choi, Mun Seung Do, and Hansu Kim. "Enhanced Electrochemical Performance of Lithium Metal Batteries with Fluorine Doped SO2 Based Nonflammable Inorganic Electrolytes." ECS Meeting Abstracts MA2023-01, no. 4 (August 28, 2023): 829. http://dx.doi.org/10.1149/ma2023-014829mtgabs.
Full textKeating, Michael, Seungmin Oh, and Elizabeth J. Biddinger. "Physical and Electrochemical Properties of Pyrrolidinium-Based Ionic Liquid and Methyl Propionate Co-Solvent Electrolyte." ECS Meeting Abstracts MA2022-02, no. 55 (October 9, 2022): 2103. http://dx.doi.org/10.1149/ma2022-02552103mtgabs.
Full textLuo, Yusheng, Peizhi Mou, Wenlu Yuan, Laiping Li, Yongze Fan, Yong Chen, Xiumin Chen, Jie Shu, and Liyuan Zhang. "Anti-liquid metal permeation separator for stretchable potassium metal batteries." Chemical Engineering Journal 452 (January 2023): 139157. http://dx.doi.org/10.1016/j.cej.2022.139157.
Full textAhmad, Zeeshan, Zijian Hong, and Venkatasubramanian Viswanathan. "Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries." Proceedings of the National Academy of Sciences 117, no. 43 (October 9, 2020): 26672–80. http://dx.doi.org/10.1073/pnas.2008841117.
Full textMa, Junfeng, Zhiyan Wang, Jinghua Wu, Zhi Gu, Xing Xin, and Xiayin Yao. "In Situ Solidified Gel Polymer Electrolytes for Stable Solid−State Lithium Batteries at High Temperatures." Batteries 9, no. 1 (December 30, 2022): 28. http://dx.doi.org/10.3390/batteries9010028.
Full textNojabaee, M., J. Popovic, and J. Maier. "Glyme-based liquid–solid electrolytes for lithium metal batteries." Journal of Materials Chemistry A 7, no. 21 (2019): 13331–38. http://dx.doi.org/10.1039/c9ta03261d.
Full textWeber, Norbert, Carolina Duczek, Gleidys Monrrabal, William Nash, Martins Sarma, and Tom Weier. "Risk assessment for Na-Zn liquid metal batteries." Open Research Europe 4 (October 25, 2024): 236. http://dx.doi.org/10.12688/openreseurope.17733.1.
Full textAshour, Rakan F., Douglas H. Kelley, Alejandro Salas, Marco Starace, Norbert Weber, and Tom Weier. "Competing forces in liquid metal electrodes and batteries." Journal of Power Sources 378 (February 2018): 301–10. http://dx.doi.org/10.1016/j.jpowsour.2017.12.042.
Full textTucs, A., V. Bojarevics, and K. Pericleous. "Magnetohydrodynamic stability of large scale liquid metal batteries." Journal of Fluid Mechanics 852 (August 7, 2018): 453–83. http://dx.doi.org/10.1017/jfm.2018.482.
Full textXu, Cheng, Shijie Cheng, Kangli Wang, and Kai Jiang. "A Fractional-order Model for Liquid Metal Batteries." Energy Procedia 158 (February 2019): 4690–95. http://dx.doi.org/10.1016/j.egypro.2019.01.735.
Full textYin, Huayi, Brice Chung, Fei Chen, Takanari Ouchi, Ji Zhao, Nobuyuki Tanaka, and Donald R. Sadoway. "Faradaically selective membrane for liquid metal displacement batteries." Nature Energy 3, no. 2 (January 22, 2018): 127–31. http://dx.doi.org/10.1038/s41560-017-0072-1.
Full textWeier, T., A. Bund, W. El-Mofid, G. M. Horstmann, C.-C. Lalau, S. Landgraf, M. Nimtz, M. Starace, F. Stefani, and N. Weber. "Liquid metal batteries - materials selection and fluid dynamics." IOP Conference Series: Materials Science and Engineering 228 (July 2017): 012013. http://dx.doi.org/10.1088/1757-899x/228/1/012013.
Full textJie, Yulin, Xiaodi Ren, Ruiguo Cao, Wenbin Cai, and Shuhong Jiao. "Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries." Advanced Functional Materials 30, no. 25 (April 6, 2020): 1910777. http://dx.doi.org/10.1002/adfm.201910777.
Full textGodinez-Brizuela, Omar E., Carolina Duczek, Norbert Weber, William Nash, Martins Sarma, and Kristian E. Einarsrud. "A continuous multiphase model for liquid metal batteries." Journal of Energy Storage 73 (December 2023): 109147. http://dx.doi.org/10.1016/j.est.2023.109147.
Full textKaratrantos, Argyrios V., Md Sharif Khan, Chuanyu Yan, Reiner Dieden, Koki Urita, Tomonori Ohba, and Qiong Cai. "Ion Transport in Organic Electrolyte Solutions for Lithium-ion Batteries and Beyond." Journal of Energy and Power Technology 03, no. 03 (May 24, 2021): 1. http://dx.doi.org/10.21926/jept.2103043.
Full textFujimoto, Hikaru, Natsuka Usami, Moeka Kanto, Hiroki Ota, Masayoshi Watanabe, and Kazuhide Ueno. "Stretchable Li Ion Battery Electrodes Using Ga-Based Liquid Metal and Ionic Liquids." ECS Meeting Abstracts MA2024-02, no. 1 (November 22, 2024): 124. https://doi.org/10.1149/ma2024-021124mtgabs.
Full textIgberaese, Simon Ejededawe. "A review of electrochemical cells and liquid metal battery (LMB) parameter development." Journal of Polymer Science and Engineering 7, no. 2 (February 4, 2024): 4220. http://dx.doi.org/10.24294/jpse.v7i2.4220.
Full textBénard, Sabrina, Norbert Weber, Gerrit Maik Horstmann, Steffen Landgraf, and Tom Weier. "Anode-metal drop formation and detachment mechanisms in liquid metal batteries." Journal of Power Sources 510 (October 2021): 230339. http://dx.doi.org/10.1016/j.jpowsour.2021.230339.
Full textPopovic, J. "Review—Recent Advances in Understanding Potassium Metal Anodes." Journal of The Electrochemical Society 169, no. 3 (March 1, 2022): 030510. http://dx.doi.org/10.1149/1945-7111/ac580f.
Full textWang, Junzhang, Zhou Xu, Tengteng Qin, Jintian Wang, Rui Tian, Xingzhong Guo, Zongrong Wang, Zhongkuan Luo, and Hui Yang. "Constructing a Quasi-Liquid Interphase to Enable Highly Stable Zn-Metal Anode." Batteries 9, no. 6 (June 16, 2023): 328. http://dx.doi.org/10.3390/batteries9060328.
Full textProvazi, Kellie, Denise Crocce Romano Espinosa, and Jorge Alberto Soares Tenório. "Metal Recovery of Discarded Stacks and Batteries, Liquid-Liquid Extraction and Stripping Parameters Effect." Materials Science Forum 727-728 (August 2012): 486–90. http://dx.doi.org/10.4028/www.scientific.net/msf.727-728.486.
Full textChang, Wesley. "Operando Ultrasonic Characterization of Lithium Metal Batteries." ECS Meeting Abstracts MA2023-02, no. 3 (December 22, 2023): 468. http://dx.doi.org/10.1149/ma2023-023468mtgabs.
Full textCatalina, Sofia K., Jianbo Wang, William C. Chueh, and J. Tyler Mefford. "Advanced Characterization Development for Metal Anodes in Aqueous Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 570. http://dx.doi.org/10.1149/ma2023-024570mtgabs.
Full textGueon, Donghee, and Jung Hoon Yang. "Carboxylic Acid Functionalized Ionic Liquid Electrolyte Additives for Stable Zinc Metal Anodes." ECS Meeting Abstracts MA2024-02, no. 9 (November 22, 2024): 1349. https://doi.org/10.1149/ma2024-0291349mtgabs.
Full textKhani, Hadi, Somayyeh Kalami, and John B. Goodenough. "Micropores-in-macroporous gel polymer electrolytes for alkali metal batteries." Sustainable Energy & Fuels 4, no. 1 (2020): 177–89. http://dx.doi.org/10.1039/c9se00690g.
Full textKorf, Kevin S., Yingying Lu, Yu Kambe, and Lynden A. Archer. "Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries." J. Mater. Chem. A 2, no. 30 (2014): 11866–73. http://dx.doi.org/10.1039/c4ta02219j.
Full textAmanchukwu, Chibueze. "Solvent-Free Molten Salts for Next Generation Lithium Metal Batteries." ECS Meeting Abstracts MA2024-02, no. 7 (November 22, 2024): 904. https://doi.org/10.1149/ma2024-027904mtgabs.
Full textPeriyapperuma, Kalani, Laura Sanchez-Cupido, Jennifer M. Pringle, and Cristina Pozo-Gonzalo. "Analysis of Sustainable Methods to Recover Neodymium." Sustainable Chemistry 2, no. 3 (September 17, 2021): 550–63. http://dx.doi.org/10.3390/suschem2030030.
Full textRuiz-Martínez, Débora, Andras Kovacs, and Roberto Gómez. "Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries." Energy & Environmental Science 10, no. 9 (2017): 1936–41. http://dx.doi.org/10.1039/c7ee01735a.
Full textWang, Hansen, Zhiao Yu, Xian Kong, Sang Cheol Kim, David T. Boyle, Jian Qin, Zhenan Bao, and Yi Cui. "Liquid electrolyte: The nexus of practical lithium metal batteries." Joule 6, no. 3 (March 2022): 588–616. http://dx.doi.org/10.1016/j.joule.2021.12.018.
Full textWeber, Norbert, Carolina Duczek, Gerrit M. Horstmann, Steffen Landgraf, Michael Nimtz, Paolo Personnettaz, Tom Weier, and Donald R. Sadoway. "Cell voltage model for Li-Bi liquid metal batteries." Applied Energy 309 (March 2022): 118331. http://dx.doi.org/10.1016/j.apenergy.2021.118331.
Full textXing, Zerong, Junheng Fu, Sen Chen, Jianye Gao, Ruiqi Zhao, and Jing Liu. "Perspective on gallium-based room temperature liquid metal batteries." Frontiers in Energy 16, no. 1 (February 2022): 23–48. http://dx.doi.org/10.1007/s11708-022-0815-y.
Full textOuchi, Takanari, Hojong Kim, Xiaohui Ning, and Donald R. Sadoway. "Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries." Journal of The Electrochemical Society 161, no. 12 (2014): A1898—A1904. http://dx.doi.org/10.1149/2.0801412jes.
Full textPersonnettaz, Paolo, Pascal Beckstein, Steffen Landgraf, Thomas Köllner, Michael Nimtz, Norbert Weber, and Tom Weier. "Thermally driven convection in Li||Bi liquid metal batteries." Journal of Power Sources 401 (October 2018): 362–74. http://dx.doi.org/10.1016/j.jpowsour.2018.08.069.
Full textUe, Makoto, and Kohei Uosaki. "Recent progress in liquid electrolytes for lithium metal batteries." Current Opinion in Electrochemistry 17 (October 2019): 106–13. http://dx.doi.org/10.1016/j.coelec.2019.05.001.
Full text