Academic literature on the topic 'Liquid Fuel Generation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquid Fuel Generation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liquid Fuel Generation"
Zhang, Ji, Junling Yang, Huafu Zhang, Zhentao Zhang, and Yu Zhang. "Research status and future development of biomass liquid fuels." BioResources 16, no. 2 (April 8, 2021): 4523–43. http://dx.doi.org/10.15376/biores.16.2.zhang.
Full textAmbrose, M. J., R. F. Costello, and H. Schreiber. "Utility Combustion Turbine Evaluation of Coal Liquid Fuels." Journal of Engineering for Gas Turbines and Power 107, no. 3 (July 1, 1985): 714–25. http://dx.doi.org/10.1115/1.3239793.
Full textKuznetsov, Geniy, Dmitrii Antonov, Maxim Piskunov, Leonid Yanovskyi, and Olga Vysokomornaya. "Alternative Liquid Fuels for Power Plants and Engines for Aviation, Marine, and Land Applications." Energies 15, no. 24 (December 16, 2022): 9565. http://dx.doi.org/10.3390/en15249565.
Full textSankar, Vinay, Sreejith Sudarsanan, Sudipto Mukhopadhyay, Prabhu Selvaraj, Aravind Balakrishnan, and Ratna Kishore Velamati. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review." Energies 16, no. 10 (May 11, 2023): 4035. http://dx.doi.org/10.3390/en16104035.
Full textShi, Hong-Hui, and Kazuyoshi Takayama. "Generation of hypersonic liquid fuel jets accompanying self-combustion." Shock Waves 9, no. 5 (October 1, 1999): 327–32. http://dx.doi.org/10.1007/s001930050193.
Full textChen, Zhuo, Tingzhou Lei, Zhiwei Wang, Xueqin Li, and Peng Liu. "Environmental and Economic Impacts of Biomass Liquid Fuel Conversion and Utilization—A Review." Journal of Biobased Materials and Bioenergy 16, no. 2 (April 1, 2022): 163–75. http://dx.doi.org/10.1166/jbmb.2022.2172.
Full textWang, Changlong, and Didier Astruc. "Recent developments of nanocatalyzed liquid-phase hydrogen generation." Chemical Society Reviews 50, no. 5 (2021): 3437–84. http://dx.doi.org/10.1039/d0cs00515k.
Full textChen, Jun Jie, and De Guang Xu. "Review on Progress and Challenges of the Power Generation Systems at Micro-Scales." International Letters of Chemistry, Physics and Astronomy 47 (February 2015): 185–98. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.47.185.
Full textChen, Jun Jie, and De Guang Xu. "Review on Progress and Challenges of the Power Generation Systems at Micro-Scales." International Letters of Chemistry, Physics and Astronomy 47 (February 24, 2015): 185–98. http://dx.doi.org/10.56431/p-0c1h5o.
Full textDjurisic-Mladenovic, Natasa, Zlatica Predojevic, and Biljana Skrbic. "Conventional and advanced liquid biofuels." Chemical Industry 70, no. 3 (2016): 225–41. http://dx.doi.org/10.2298/hemind150311029d.
Full textDissertations / Theses on the topic "Liquid Fuel Generation"
Yun, Thomas. "Fuel reformation and hydrogen generation in variable volume membrane batch reactors with dynamic liquid fuel introduction." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53550.
Full textPianthong, Kulachate Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. "Supersonic liquid diesel fuel jets : generation, shock wave characteristics, auto-ignition feasibilities." Awarded by:University of New South Wales. School of Mechanical and Manufacturing Engineering, 2002. http://handle.unsw.edu.au/1959.4/20325.
Full textChang, Ai-Fu. "Process Modeling of Next-Generation Liquid Fuel Production - Commercial Hydrocracking Process and Biodiesel Manufacturing." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/58043.
Full textPh. D.
Han, Lijuan. "Electrochemical oxidation of water and formate promoted by prussian blue analogues for electricity storage and generation." Doctoral thesis, Universitat Rovira i Virgili, 2019. http://hdl.handle.net/10803/667656.
Full textComo una forma de energía, la electricidad es una de las formas principales para la utilización de fuentes de energía renovables, como la energía fotovoltaica, turbinas, hidroelectricidad, etc. Sin embargo, la electricidad no es la más práctica para muchas aplicaciones porque es difícil de almacenar y transportar de manera eficiente. Por lo tanto, las tecnologías de almacenamiento, transporte y extracción de electricidad de manera económica y eficiente se hacen necesarias para el uso generalizado. Un enfoque plausible es recolectar y almacenar electricidad en enlaces químicos como combustibles químicos, y luego extraer de manera sostenible la electricidad de los combustibles químicos en las celdas de combustible a demanda. Las tecnologías para la generación de combustibles químicos se basan en gran medida en la oxidación de agua en media celda para un suministro abundante de protones y electrones. Sin embargo, el desarrollo de electrocatalizadores de oxidación de agua escalables a partir de metales abundantes capaces de operar en ambientes neutros o ácidos y con bajos sobrepotenciales sigue siendo un desafío fundamental. En esta tesis, utilizamos varias rutas sintéticas para preparar complejos de PBAs como catalizadores electroquímicos de oxidación de agua y luego evaluamos su actividad catalítica, estabilidad y resistencia a la corrosión durante la oxidación del agua mediante estudios electroquímicos, espectroscópicos y estructurales. Además, el hexacianoferrato de cobalto (CoFePB) ha demostrado su excelente actividad y selectividad hacia la oxidación de ácido fórmico / formiato a CO2 con una eficiencia faradaica completa en medios acuosos en un amplio rango de pH. Aprovechando su actividad electrocatalítica, hemos desarrollado una celda de combustible de flujo de cerio / formiato, de bajo costo con un cátodo de felpa de carbono para la reducción de Ce4 + y con el ánodo de CoFePB para la oxidación de formiato. Esta simple celda de combustible sin metales nobles abre perspectivas prometedoras para la generación eficiente de electricidad en celdas de combustible acuosa a baja temperatura.
As a form of energy, electricity is one of the main forms for the utilization of renewable energy sources, such as photovoltaics, turbines, hydroelectricity and so on. However, electricity is not the most practical for many applications because it is difficult to store and transport efficiently. Thus, the storage, transport and extraction technologies of electricity in cheap and efficient ways becomes necessary for the widespread use. One plausible approach is to collect and store electricity in chemical bonds as chemical fuels, and then to sustainably extract electricity from chemical fuels in fuel cells on demand. The technologies for chemical fuels generation strongly relies on the half-cell water oxidation for an abundant supply of protons and electrons. However, the development of upscalable water oxidation electrocatalysts from earth–abundant metals able to operate in neutral or acidic environments and low overpotentials remains a fundamental challenge. In this thesis, we utilized various synthetic routes to prepare PBAs complexes as electrochemical water oxidation catalysts, and then assessed their catalytic activity, stability and corrosion resistance during water oxidation by electrochemical, spectroscopic and structural studies. Furthermore, cobalt hexacyanoferrate (CoFePB) has demonstrated its excellent activity and selectivity towards formic acid/formate oxidation to CO2 with full faradaic efficiency in aqueous media over a large pH range. Taking advantage of its electrocatalytic activity, we have developed an inexpensive cerium/formate liquid flow fuel cell with a carbon felt cathode for the Ce4+ reduction and with CoFePB anode for formate oxidation. This simple and noble-metal-free fuel cell opens promising perspectives for efficient electricity generation in the low-temperature aqueous fuel cell.
Abdelrahman, Hany Nabil Mohamed Amin. "Modelling the liquid breakup and vapour generation during accidental releases of liquid fuels." Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/10017/.
Full textHyde, Andrew Justin. "A Portable Generator Incorporating Mini-Tubular Solid Oxide Fuel Cells." The University of Waikato, 2008. http://hdl.handle.net/10289/2582.
Full textMartin, Stefan [Verfasser], and André [Akademischer Betreuer] Thess. "An investigation of hydrogen generation via steam reforming of liquid fuels / Stefan Martin ; Betreuer: André Thess." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2017. http://d-nb.info/1130656985/34.
Full textDuarte, Aires. "Dimensionamento de plantas Biomass-to-Liquids para produção de óleo diesel sintético no Brasil." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/86/86131/tde-26022014-101501/.
Full textThere is a global demand for the supply of less polluting vehicular fuels as much by energy issues as socio-environmental. A potential alternative meaning the possibility of a biofuel without the limitations from the First Generation is the technological route known as Biomass-to-Liquids (BTL) which via gasification and the Fischer-Tropsch synthesis turns possible to obtain liquid biofuels such synthetic diesel oil from modern biomass, in this study, the lignocellulosic biomass. For commercial-scale production of a Second Generation biofuel, a complex planning and high investments are required given its pioneering and absence of market history or precise models. A methodology developed in 2006 by researcher Harold Boerrigter proposes the ideal sizing for a BTL plant assuming a Gas-to-Liquids (GTL) plant; here are proposed corrections and updates for this methodology, suggesting a curve able to point the influence of economy of scale in BTL plants and a formula for the calculation of an estimated Total Capital Investment (TCI) of these plants by the present time Brazil has no plant operating by BTL route. The research follows up with issues regarding forest residues provision in the Brazilian territory and conlcuding that the same would be insufficient as a raw material to sustain large BTL plants, making necessary the use of planned crops in the form of energy forests. Once made such analysis, it is presented the history since its beginning until its closing for the first plant to operate by the BTL route and to produce the designer fuel called SunDiesel®: built in Germany, the CHOREN Industritechnik contributes with its experience of years and also with the gasification technology Carbo-V® for researches with synthetic biofuels. Such example may indicates an alert regarding the expenditure of efforts on projects of this nature, given the economic uncertainties that surround the Second Generation fuels technological frontiers.
Méjean, Aurélie. "Liquid fuels in a carbon-constrained world : modelling the costs and supply of first generation ethanol and petrol from conventional and non-conventional crude oil." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609788.
Full textMin, Zhenhua. "Catalytic steam reforming of biomass tar using iron catalysts." Thesis, Curtin University, 2010. http://hdl.handle.net/20.500.11937/184.
Full textBooks on the topic "Liquid Fuel Generation"
Sidorenko, Oleg. Biological systems in the processing of secondary products and agricultural waste. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1102076.
Full textSerebryakov, Andrey, Tat'yana Smirnova, Valentina Mercheva, and Elena Soboleva. Chemistry of combustible minerals. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1041945.
Full textTitenok, Aleksandr, V. Sidoro, and A. V. Kirichek. Ensuring the operational reliability of mechanical systems. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1096388.
Full textYudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.
Full textOakey, John. Fuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels. Elsevier Science & Technology, 2015.
Find full textFuel Flexible Energy Generation: Solid, Liquid and Gaseous Fuels. Woodhead Publishing, 2015.
Find full textRez, Peter. Agriculture—Things That Are Grown. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198802297.003.0014.
Full textBook chapters on the topic "Liquid Fuel Generation"
Serrano-Ruiz, Juan Carlos, and James A. Dumesic. "Catalytic Production of Liquid Hydrocarbon Transportation Fuels." In Catalysis for Alternative Energy Generation, 29–56. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0344-9_2.
Full textKatiyo, Munashe, Loice Gudukeya, Mufaro Kanganga, and Nita Sukdeo. "Techno-Economic Assessment of Biogas to Liquid Fuel Conversion via Fischer-Tropsch Synthesis: A Case Study of Biogas Generated from Municipal Sewage." In Lecture Notes in Mechanical Engineering, 729–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_82.
Full textLewerenz, Hans J. "Semiconductor–Liquid Junction: From Fundamentals to Solar Fuel Generating Structures." In Encyclopedia of Applied Electrochemistry, 1893–924. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4419-6996-5_42.
Full textWlodarz, Marta, and Bruce A. McCarl. "An Economic Assessment of Second-Generation Liquid Fuels Production Possibilities." In Lecture Notes in Energy, 135–48. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6482-1_7.
Full textBermejo, M. Dolores, Ángel Martín, Joao Paulo Silva Queiroz, Pablo Cabeza, Fidel Mato, and M. José Cocero. "Supercritical Water Oxidation (SCWO) of Solid, Liquid and Gaseous Fuels for Energy Generation." In Biofuels and Biorefineries, 401–26. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8923-3_15.
Full textWang, Weixiang, WenPei Feng, KeFan Zhang, Guangliang Yang, Tao Ding, and Hongli Chen. "A Moose-Based Neutron Diffusion Code with Application to a LMFR Benchmark." In Springer Proceedings in Physics, 490–502. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_43.
Full textAlma, M. Hakkı, and Tufan Salan. "Alternative Fuels." In Energy: Concepts and Applications, 327–446. Turkish Academy of Sciences, 2022. http://dx.doi.org/10.53478/tuba.978-625-8352-00-9.ch06.
Full textKumar Poddar, Maneesh, Pritam Kumar Dikshit, and Sankar Chakma. "Basic Concepts of Ultrasound and its Effects on Fuel Processing." In Ultrasound Technology for Fuel Processing, 1–34. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049848123010006.
Full textBaechler, Serbia Maria Antonieta Rodulfo, Sergio Gonzalez-Cortes, Tiancun Xiao, Hamid A. Al-Megren, and Peter P. Edwards. "Perspective on the Deep Hydrotreating of Renewable and Non-Renewable Oils." In Advanced Solid Catalysts for Renewable Energy Production, 61–94. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3903-2.ch003.
Full textKumar Chourasia, Ritesh, Nitesh K. Chourasia, Ankita Srivastava, and Narendra Bihari. "Photonic Nanostructured Bragg Fuel Adulteration Sensor." In Photonic Materials: Recent Advances and Emerging Applications, 237–64. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815049756123010015.
Full textConference papers on the topic "Liquid Fuel Generation"
Moliere, Michel, Matthieu Vierling, and Rich Symonds. "Interest for Liquid Fuels in Power Generation Gets Renewed." In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22149.
Full textStalder, Jean-Pierre, and Phil Roberts. "Firing Low Viscosity Liquid Fuels in Heavy Duty Gas Turbines." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38691.
Full textEskin, Leo D., Michael S. Klassen, Richard J. Roby, Richard G. Joklik, and Maclain M. Holton. "Low-Emissions Renewable Power Generation Using Liquid Fuels." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44615.
Full textLindman, Olle, Mats Andersson, Magnus Persson, and Erik Munktell. "Development of a Liquid Fuel Combustion System for SGT-750." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25380.
Full textSantin, Marco, Alberto Traverso, and Aristide Massardo. "Solid Oxide Fuel Cell Hybrid Systems Fed by Liquid Fuels for Distributed Power Generation." In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50615.
Full textZavahir, Fathima Sifani, Tasneem ElMakki, Mona Gulied, Khulood Logade, Konstantinos Kakosimos, and Dong Suk Han. "Sustainable Hybrid System for Simultaneous Desalting of Liquid Fertilizer and Fuel Generation." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0032.
Full textConlon, William M., Milton J. Venetos, and Scott Hume. "Liquid Salt Combined Cycle." In ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-82343.
Full textJain, Naman, and Vaibhav Arghode. "Development of a Standalone, Liquid Fuelled Miniature Power Generation System." In ASME 2017 Power Conference Joint With ICOPE-17 collocated with the ASME 2017 11th International Conference on Energy Sustainability, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/power-icope2017-3327.
Full textLee, J. Y., E. Lubarsky, and B. T. Zinn. "Suppression of Instabilities in Liquid Fueled Combustors by Variation of Fuel Spray Properties." In ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/gt2003-38169.
Full textEmara, Ahmed. "Effect of Chemical Fuel Additives on Liquid Fuel Saving, and Emissions for Heavy Fuel Oil." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65717.
Full textReports on the topic "Liquid Fuel Generation"
Muelaner, Jody E. Decarbonized Fuel Options for Civil Aviation. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, June 2023. http://dx.doi.org/10.4271/epr2023012.
Full textElshurafa, Amro, Marie Petitet, and Frank Felder. How Firm Capacity and Forced Outage Rate Assumptions of Renewables Impact Capacity Expansion Model Results. King Abdullah Petroleum Studies and Research Center, March 2023. http://dx.doi.org/10.30573/ks--2023-dp01.
Full textHertel, Thomas, Jevgenijs Steinbuks, and Uris Lantz Baldos. Competition for Land in the Global Bioeconomy. GTAP Working Paper, September 2012. http://dx.doi.org/10.21642/gtap.wp68.
Full textSteinbuks, Jevgenijs, and Thomas Hertel. Forest, Agriculture, and Biofuels in a Land use model with Environmental services (FABLE). GTAP Working Paper, October 2012. http://dx.doi.org/10.21642/gtap.wp71.
Full text