Academic literature on the topic 'Liquid Fuel Conversion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liquid Fuel Conversion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liquid Fuel Conversion"
Tshiteya, Mukuna. "Conversion of wood to liquid fuel." Energy 10, no. 5 (May 1985): 581–88. http://dx.doi.org/10.1016/0360-5442(85)90089-1.
Full textLeonardo, Adam, and Semin. "Effect of CNG Engine Conversion on Performance Characteristic: A Review." IOP Conference Series: Earth and Environmental Science 972, no. 1 (January 1, 2022): 012028. http://dx.doi.org/10.1088/1755-1315/972/1/012028.
Full textChen, Zhuo, Tingzhou Lei, Zhiwei Wang, Xueqin Li, and Peng Liu. "Environmental and Economic Impacts of Biomass Liquid Fuel Conversion and Utilization—A Review." Journal of Biobased Materials and Bioenergy 16, no. 2 (April 1, 2022): 163–75. http://dx.doi.org/10.1166/jbmb.2022.2172.
Full textKler, Aleksandr, Elina Tyurina, and Aleksandr Mednikov. "Comparative efficiency of technologies for conversion and transportation of energy resources of Russia’s eastern regions to NEA countries." E3S Web of Conferences 27 (2018): 02005. http://dx.doi.org/10.1051/e3sconf/20182702005.
Full textZhang, Lei, Bo Zhou, Peigao Duan, Feng Wang, and Yuping Xu. "Hydrothermal conversion of scrap tire to liquid fuel." Chemical Engineering Journal 285 (February 2016): 157–63. http://dx.doi.org/10.1016/j.cej.2015.10.001.
Full textDegueldre, Claude A., Richard J. Dawson, and Vesna Najdanovic-Visak. "Nuclear fuel cycle, with a liquid ore and fuel: toward renewable energy." Sustainable Energy & Fuels 3, no. 7 (2019): 1693–700. http://dx.doi.org/10.1039/c8se00610e.
Full textKong, Si Fang, Hui Liu, Fu Shuan Ma, and Hui Zeng. "Research Progress on Biomass Liquid-Fuel Products by Thermo-Chemical Conversion." Advanced Materials Research 860-863 (December 2013): 472–78. http://dx.doi.org/10.4028/www.scientific.net/amr.860-863.472.
Full textShah, M. S., P. K. Halder, A. S. M. Shamsuzzaman, M. S. Hossain, S. K. Pal, and E. Sarker. "Perspectives of Biogas Conversion into Bio-CNG for Automobile Fuel in Bangladesh." Journal of Renewable Energy 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/4385295.
Full textCliment, Maria J., Avelino Corma, and Sara Iborra. "Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels." Green Chemistry 16, no. 2 (2014): 516. http://dx.doi.org/10.1039/c3gc41492b.
Full textTao, Thomas, Linda Bateman, Jeff Bentley, and Michael Slaney. "Liquid Tin Anode Solid Oxide Fuel Cell for Direct Carbonaceous Fuel Conversion." ECS Transactions 5, no. 1 (December 19, 2019): 463–72. http://dx.doi.org/10.1149/1.2729026.
Full textDissertations / Theses on the topic "Liquid Fuel Conversion"
Anders, Mark. "Technoeconomic modelling of coal conversion processes for liquid fuel production." Thesis, Aston University, 1991. http://publications.aston.ac.uk/10240/.
Full textMinami, Eiji. "Chemical conversion of lignocellulosics in supercritical methanol to liquid fuel." Kyoto University, 2003. http://hdl.handle.net/2433/148644.
Full text0048
新制・課程博士
博士(エネルギー科学)
甲第10326号
エネ博第62号
新制||エネ||19(附属図書館)
UT51-2003-H747
京都大学大学院エネルギー科学研究科エネルギー社会・環境科学専攻
(主査)教授 坂 志朗, 教授 塩路 昌宏, 助教授 河本 晴雄
学位規則第4条第1項該当
Zhang, Yusheng. "Development of a bench scale single batch biomass to liquid fuel facility." Thesis, University of Fort Hare, 2014. http://hdl.handle.net/10353/811.
Full textLuo, Siwei. "Conversion of Carbonaceous Fuel to Electricity, Hydrogen, and Chemicals via Chemical Looping Technology - Reaction Kinetics and Bench-Scale Demonstration." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397573499.
Full textSuárez, París Rodrigo. "Catalytic conversion of biomass-derived synthesis gas to liquid fuels." Doctoral thesis, KTH, Kemisk teknologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182690.
Full textKlimatförändringarna är ett av de största globala hoten under det tjugoförsta århundradet. Fossila bränslen utgör den helt dominerande energikällan för transporter och många länder börjar stödja användning av renare bränslen. Bränslen baserade på biomassa är ett lovande alternativ för att diversifiera råvarorna, reducera beroendet av fossila råvaror och undvika växthusgaser. Forskningsintresset har snabbt skiftat från första generationens biobränslen som erhölls från mat-råvaror till andra generationens biobränslen producerade från icke ätbara-råvaror. Ämnet för denna doktorsavhandling är produktion av andra generationens biobränslen via termokemisk omvandling. Biomassa förgasas först till syntesgas, en blandning av i huvudsak vätgas och kolmoxid; syntesgasen kan sedan katalytiskt omvandlas till olika bränslen. Detta arbete sammanfattar sex publikationer som fokuserar på steget för syntesgasomvandling. Två processer är i huvudsak undersökta i denna sammanfattning. Den första delen av doktorsavhandlingen ägnas åt syntes av etanol och högre alkoholer som kan användas som bränsle eller bränsletillsatser. Mikroemulsionstekniken har använts vid framställningen av molybden-baserade katalysatorer, vilket gav en höjning av utbytet. Tillsatsen av metanol har också studerats som ett sätt att försöka få en högre koncentration av högre alkoholer, men en negativ effekt erhölls: huvudeffekten av metanoltillsatsen är en ökad metanproduktion. Den andra delen av doktorsavhandlingen handlar om vätebehandling av vaxer som ett viktigt upparbetningssteg vid framställning av mellandestillat från Fischer-Tropsch processen. Bifunktionella katalysatorer som består av ädelmetaller deponerade på silica-alumina valdes. Deaktiveringen av en platinabaserad katalysator undersöktes. Sintring och koksning var huvudorsakerna till deaktiveringen. En jämförelse mellan platina och palladium som funktionella metaller genomfördes också med resultatet att det var en ganska stor skillnad mellan materialens katalytiska egenskaper vilket gav olika omsättning och selektivitet, mycket sannolikt beroende på olika reaktionsmönster hos metallerna vid vätebehandling. Slutligen föreslås en kinetisk modell baserad på en Langmuir-Hinshelwood-Hougen-Watson modell för att beskriva reaktionerna vid vätebehandling. Denna modell ger en god anpassning till experimentella data.
El cambio climático es una de las mayores amenazas del siglo XXI. Los combustibles fósiles constituyen actualmente la fuente de energía más importante para el transporte, por lo que los diferentes gobiernos están empezando a tomar medidas para promover el uso de combustibles más limpios. Los combustibles derivados de biomasa son una alternativa prometedora para diversificar las fuentes de energía, reducir la dependencia de los combustibles fósiles y disminuir las emisiones de efecto invernadero. Los esfuerzos de los investigadores se han dirigido en los últimos años a los biocombustibles de segunda generación, producidos a partir de recursos no alimenticios. El tema de esta tesis de doctorado es la producción de biocombustibles de segunda generación mediante conversión termoquímica: en primer lugar, la biomasa se gasifica y convierte en gas de síntesis, una mezcla formada mayoritariamente por hidrógeno y monóxido de carbono; a continuación, el gas de síntesis puede transformarse en diversos biocombustibles. Este trabajo resume seis publicaciones, centradas en la etapa de conversión del gas de síntesis. Dos procesos se estudian con mayor detalle. En la primera parte de la tesis se investiga la producción de etanol y alcoholes largos, que pueden ser usados como combustible o como aditivos para combustible. La técnica de microemulsión se aplica en la síntesis de catalizadores basados en molibdeno, consiguiendo un incremento del rendimiento. Además, se introduce metanol en el sistema de reacción para intentar aumentar la producción de alcoholes más largos, pero los efectos obtenidos son negativos: la principal consecuencia es el incremento de la producción de metano. La segunda parte de la tesis estudia la hidroconversión de cera, una etapa esencial en la producción de destilados medios mediante Fischer-Tropsch. Los catalizadores estudiados son bifuncionales y consisten en metales nobles soportados en sílice-alúmina. La desactivación de un catalizador de platino se investiga, siendo la sinterización y la coquización las principales causas del problema. El uso de platino y paladio como componente metálico se compara, obteniendo resultados catalíticos bastante diferentes, tanto en conversión como en selectividad, probablemente debido a su diferente capacidad de hidrogenación. Finalmente, se propone un modelo cinético, basado en el formalismo de Langmuir-Hinshelwood-Hougen-Watson, que consigue un ajuste satisfactorio de los datos experimentales.
QC 20160308
Adam, Judit. "Catalytic conversion of biomass to produce higher quality liquid bio-fuels." Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1739.
Full textKent, Ryan Alexander. "Conversion of Landfill Gas to Liquid Hydrocarbon Fuels: Design and Feasibility Study." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6102.
Full textNaqi, Ahmad. "Conversion of Biomass to Liquid Hydrocarbon Fuels via Anaerobic Digestion: A Feasibility Study." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7639.
Full textDaza, Yolanda Andreina. "Closing a Synthetic Carbon Cycle: Carbon Dioxide Conversion to Carbon Monoxide for Liquid Fuels Synthesis." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6079.
Full textCorsaro, Agnieszka. "Optimization of a Single Reactor Process for the Selective Conversion of Coal to Liquid Fuels." OpenSIUC, 2011. https://opensiuc.lib.siu.edu/dissertations/429.
Full textBooks on the topic "Liquid Fuel Conversion"
Oasmaa, Anja. Thermochemical conversion of black liquor organics into fuels. Espoo, Finland: VTT, Technical Research Centre of Finland, 1992.
Find full textNATO Advanced Research Workshop on the Conversion of Liquid Rocket Fuels (2003 Baku, Azerbaijan). The conversion of liquid rocket fuels: Risk assessment, technology and treatment options for the conversion of abandoned liquid ballistic missile propellants (fuels and oxidizers) in Azerbaijan / edited by Wolfgang P.W. Spyra and Kay Winkelmann. Dordrecht: Kluwer Academic Publishers, 2004.
Find full textAnders, Mark. Technoeconomic modelling of coal conversion processes for liquid fuel production. Birmingham: Aston University. Department of Chemical Engineering and Applied Chemistry, 1991.
Find full textKerstetter, James D. Assessment of potential for conversion of pulp and paper sludge to ethanol fuel in the Pacific Northwest. Olympia, WA: Washington State University, Cooperative Extension Energy Program, 1997.
Find full textInc, Xenergy, Energetic Management Associates, and Northeast Regional Biomass Program, eds. Toward a renewable power supply: The use of bio-based fuels in stationary fuel cells. Burlington, MA: Xenergy, 2002.
Find full textSpyra, Wolfgang P. W., and Kay Winkelmann, eds. The Conversion of Liquid Rocket Fuels. Dordrecht: Kluwer Academic Publishers, 2005. http://dx.doi.org/10.1007/1-4020-2381-2.
Full textMills, G. Alex. Status and future opportunities for conversion of synthesis gas to liquid energy fuels. [London?: s.n., 1992.
Find full textCrocker, Mark, ed. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals. Cambridge: Royal Society of Chemistry, 2010. http://dx.doi.org/10.1039/9781849732260.
Full textRoyal Society of Chemistry (Great Britain), ed. Thermochemical conversion of biomass to liquid fuels and chemicals. Cambridge: Royal Society of Chemistry, 2010.
Find full textA, Herod A., and Bartle Keith D, eds. Solid fuels and heavy hydrocarbon liquids: Thermal characterization and analysis. Amsterdam: Elsevier, 2006.
Find full textBook chapters on the topic "Liquid Fuel Conversion"
Kuester, James L., Carmo M. Fernandez, Ta-Ching Wang, and Gary Heath. "Liquid Hydrocarbon Fuel Potential of Agricultural Materials." In Fundamentals of Thermochemical Biomass Conversion, 875–95. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-4932-4_48.
Full textYusup, Suzana, Murni Melati Ahmad, Anita Ramli, Khan Zakir, and Mas Fatiha Mohamad. "Biomass Conversion to Fuel (Solid, Liquid and Gas Fuel)." In Advances in Biofuels, 29–39. Boston, MA: Springer US, 2012. http://dx.doi.org/10.1007/978-1-4614-6249-1_3.
Full textYokoyama, Shin-Ya, Tomoko Ogi, Katsuya Koguchi, Tomoaki Minowa, Masanori Murakami, and Akira Suzuki. "Liquid Fuel Production from Ethanol Fermentation Stillage by Thermochemical Conversion." In Research in Thermochemical Biomass Conversion, 792–803. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_60.
Full textArastoopour, Hamid, Dimitri Gidaspow, and Robert W. Lyczkowski. "Synthetic Gas Conversion to Liquid Fuel Using Slurry Bubble Column Reactors." In Mechanical Engineering Series, 149–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68578-2_6.
Full textKatiyo, Munashe, Loice Gudukeya, Mufaro Kanganga, and Nita Sukdeo. "Techno-Economic Assessment of Biogas to Liquid Fuel Conversion via Fischer-Tropsch Synthesis: A Case Study of Biogas Generated from Municipal Sewage." In Lecture Notes in Mechanical Engineering, 729–37. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-28839-5_82.
Full textSonal, Virendra Kumar Saharan, Suja George, Rohidas Bhoi, and K. K. Pant. "Recent Advancements and Detailed Understanding of Kinetics for Synthesis Gas Conversion into Liquid Fuel." In Catalysis for Clean Energy and Environmental Sustainability, 459–501. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65021-6_15.
Full textElliott, D. C., and G. G. Neuenschwander. "Liquid Fuels by Low-Severity Hydrotreating of Biocrude." In Developments in Thermochemical Biomass Conversion, 611–21. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1559-6_48.
Full textBridgwater, A. V., and J. M. Double. "A Strategic Assessment of Liquid Fuels from Biomass." In Research in Thermochemical Biomass Conversion, 98–110. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_8.
Full textWan, Edward I., and Malcolm D. Fraser. "Economic Potential of Producing Liquid Transportation Fuels from Biomass." In Research in Thermochemical Biomass Conversion, 61–76. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_6.
Full textSivakumar, Palaniraja, Heon Jung, John W. Tierney, and Irving Wender. "Coprocessing of Lignocellulosic Wastes and Coal to Liquid Fuels." In Conversion And Utilization Of Waste Materials, 199–219. Boca Raton: Routledge, 2023. http://dx.doi.org/10.1201/9781315140360-17.
Full textConference papers on the topic "Liquid Fuel Conversion"
Parnell, L. A., D. L. Katz, J. T. Gilchrist, L. E. Bryant, J. P. Lucero, and W. D. Zerwekh. "Radiography of Liquid Metal Fuel Combustion." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9389.
Full textPlummer, Mitty C., Carlos A. Ordonez, and Richard F. Reidy. "Liquid Nitrogen as a Non-Polluting Vehicle Fuel." In 34th Intersociety Energy Conversion Engineering Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-2517.
Full textAuld, D. L., C. L. Peterson, and R. A. Korus. "Vegetable Oil as an Alternative Liquid Fuel for American Agriculture." In 22nd Intersociety Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-9010.
Full textStoffel, B., and L. Reh. "Conversion of Liquid to Gaseous Fuels for Lean Premixed Combustion." In ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/95-gt-412.
Full textAhmad, N., F. Abnisa, and W. M. A. W. Daud. "Synthesis of liquid fuel through hydrothermal conversion of natural rubber." In PROCEEDINGS OF THE 4TH INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES (ISCPMS2018). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5132485.
Full textAjibade, Frank D., and Emmanuel O. Ogedengbe. "Efficient Liquid Fuel Consumption in Household Cooking Appliances without Back-flow Tendencies." In 14th International Energy Conversion Engineering Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-4617.
Full textPradipta, Ilham Zulfa, Rochmadi, and Chandra Wahyu Purnomo. "High Grade Liquid Fuel from Plastic Waste Pyrolysis Oil by Column Distillation." In 2019 IEEE Conference on Energy Conversion (CENCON). IEEE, 2019. http://dx.doi.org/10.1109/cencon47160.2019.8974811.
Full textWang, Y., L. Reh, D. Pennell, D. Winkler, and K. Döbbeling. "Conversion of Liquid to Gaseous Fuel for Prevaporised Premixed Combustion in Gas Turbines." In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-225.
Full textBentley, Jeffrey, and Thomas Tao. "Liquid Tin Anode Solid Oxide Fuel Cell Direct JP-8 Applications." In 5th International Energy Conversion Engineering Conference and Exhibit (IECEC). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-4766.
Full textKuo, Cheng-Chan, Luke Neal, William Lear, Oscar Crisalle, and James Fletcher. "Effect of Liquid Barrier Layer on Open-Cathode Direct Methanol Fuel Cell Systems." In 9th Annual International Energy Conversion Engineering Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5873.
Full textReports on the topic "Liquid Fuel Conversion"
Foral, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5065231.
Full textForal, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5100302.
Full textForal, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5100307.
Full textForal, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5128207.
Full textForal, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/5128208.
Full textForal, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5128223.
Full textKaplan, R., and M. Foral. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), May 1992. http://dx.doi.org/10.2172/6913762.
Full textForal, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6566015.
Full textForal, M. J. Direct conversion of light hydrocarbon gases to liquid fuel. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6506177.
Full textKrause, Theodore. Intermediate Temperature Hybrid Fuel Cell System for the Conversion of Natural to Electricity and Liquid Fuels. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1414283.
Full text