Journal articles on the topic 'Liquid Crystalline Behavior'

To see the other types of publications on this topic, follow the link: Liquid Crystalline Behavior.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Liquid Crystalline Behavior.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hu, Tianhui, Helou Xie, Li Chen, Sheng Chen, and Hailiang Zhang. "Intriguing liquid crystalline behavior of liquid crystalline polyrotaxane containing azobenzene mesogens." Polymer Bulletin 67, no. 6 (December 31, 2010): 937–50. http://dx.doi.org/10.1007/s00289-010-0426-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yamada, Takashi, Reiko Azumi, Hiroaki Tachibana, Hideki Sakai, Masahiko Abe, Peter Bäuerle, and Mutsuyoshi Matsumoto. "Liquid Crystalline Behavior ofα-Substituted Oligothiophenes." Chemistry Letters 30, no. 10 (October 2001): 1022–23. http://dx.doi.org/10.1246/cl.2001.1022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yatabe, Tetsuo, Akira Kaito, and Yoshikazu Tanabe. "Liquid Crystalline Behavior of Linear Permethyloligosilanes." Chemistry Letters 26, no. 8 (August 1997): 799–800. http://dx.doi.org/10.1246/cl.1997.799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Honerkamp, J., and R. Seitz. "Transient behavior of liquid crystalline polymers." Journal of Chemical Physics 87, no. 5 (September 1987): 3120–26. http://dx.doi.org/10.1063/1.453049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Metselaar, Gerald A., Sander J. Wezenberg, Jeroen J. L. M. Cornelissen, Roeland J. M. Nolte, and Alan E. Rowan. "Lyotropic liquid-crystalline behavior of polyisocyanodipeptides." Journal of Polymer Science Part A: Polymer Chemistry 45, no. 6 (2007): 981–88. http://dx.doi.org/10.1002/pola.21891.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shoji, Yu, Ryohei Ishige, Tomoya Higashihara, Junji Watanabe, and Mitsuru Ueda. "Thermotropic Liquid Crystalline Polyimides with Siloxane Linkages: Synthesis, Characterization, and Liquid Crystalline Behavior." Macromolecules 43, no. 6 (March 23, 2010): 3123. http://dx.doi.org/10.1021/ma100132y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Shoji, Yu, Ryohei Ishige, Tomoya Higashihara, Junji Watanabe, and Mitsuru Ueda. "Thermotropic Liquid Crystalline Polyimides with Siloxane Linkages: Synthesis, Characterization, and Liquid Crystalline Behavior." Macromolecules 43, no. 2 (January 26, 2010): 805–10. http://dx.doi.org/10.1021/ma9021828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kihara, H., R. Kishi, T. Miura, T. Kato, and H. Ichijo. "Phase behavior of liquid-crystalline copolymer/liquid crystal blends." Polymer 42, no. 3 (February 2001): 1177–82. http://dx.doi.org/10.1016/s0032-3861(00)00428-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ogiri, Sayuri, Hiroyuki Nakamura, Akihiko Kanazawa, Takeshi Shiono, and Tomiki Ikeda. "Photopolymerization Behavior of Ferroelectric Liquid-Crystalline Monomers." Journal of Photopolymer Science and Technology 11, no. 2 (1998): 193–98. http://dx.doi.org/10.2494/photopolymer.11.193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jin, Jung-Il. "Liquid Crystalline Behavior of Novel Dimesogenic Compounds." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 267, no. 1 (October 1995): 249–65. http://dx.doi.org/10.1080/10587259508034002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Swager, Timothy M., and Hanxing Zheng. "Liquid Crystalline Behavior in Octahedral Metal Complexes." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 260, no. 1 (February 1995): 301–6. http://dx.doi.org/10.1080/10587259508038703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nakano, Makoto, Yanlei Yu, Atsushi Shishido, Osamu Tsutsumi, Akihiko Kanazawa, Takeshi Shiono, and Tomiki Ikeda. "Photoresponsive Behavior of Azobenzene Liquid-Crystalline Gels." Molecular Crystals and Liquid Crystals 398, no. 1 (January 2003): 1–9. http://dx.doi.org/10.1080/15421400390220827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Menczel, J. D., M. Jaffe, and C. K. Saw. "Phase behavior in HIQ40 liquid crystalline polymers." Journal of Thermal Analysis 46, no. 3-4 (March 1996): 733–52. http://dx.doi.org/10.1007/bf01983599.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Miller, Clarence A., Olina Ghosh, and William J. Benton. "Behavior of dilute lamellar liquid-crystalline phases." Colloids and Surfaces 19, no. 2-3 (August 1986): 197–223. http://dx.doi.org/10.1016/0166-6622(86)80336-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Escobedo, Fernando A., and Zhong Chen. "Liquid crystalline behavior of a semifluorinated oligomer." Journal of Chemical Physics 121, no. 22 (2004): 11463. http://dx.doi.org/10.1063/1.1811071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Poeti, Giovanni, Enzo Fanelli, Laurent Delamare, Benoǐt Heinrich, Daniel Guillon, and Antoine Skoulios. "Liquid Crystalline Behavior of Racemic Azobenzene Derivatives." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 213, no. 1 (March 1992): 145–51. http://dx.doi.org/10.1080/10587259208028726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kudla, Petra, Tobias Sokolowski, Bernhard Blümich, and Klaus-Peter Wittern. "Phase behavior of liquid–crystalline emulsion systems." Journal of Colloid and Interface Science 349, no. 2 (September 2010): 554–59. http://dx.doi.org/10.1016/j.jcis.2010.05.085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Skarp, Kent, Gunnar Andersson, Fathi Gouda, Sven T. Lagerwall, Holger Poths, and Rudolf Zentel. "Antiferroelectric behavior in a liquid crystalline polymer." Polymers for Advanced Technologies 3, no. 5 (August 1992): 241–48. http://dx.doi.org/10.1002/pat.1992.220030508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Nge, Thi T., Naruhito Hori, Akio Takemura, Hirokuni Ono, and Tsunehisa Kimura. "Phase Behavior of Liquid Crystalline Chitin/Acrylic Acid Liquid Mixture." Langmuir 19, no. 4 (February 2003): 1390–95. http://dx.doi.org/10.1021/la020764n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

RAGAB E., ABOU-ZEID, NAHLA A. EL-WAKIL, AHMED ELGENDY, YEHIA FAHMY, and ALAIN DUFRESNE. "LIQUID CRYSTALLINE PROPERTIES OF HYDROXYPROPYL CELLULOSE PREPARED FROM DISSOLVED EGYPTIAN BAGASSE PULP." Cellulose Chemistry and Technology 55, no. 1-2 (February 12, 2021): 13–22. http://dx.doi.org/10.35812/cellulosechemtechnol.2021.55.02.

Full text
Abstract:
"Egyptian agricultural wastes were used for preparing advanced cellulosic derivatives possessing liquid crystalline properties. Cellulose was successfully isolated in pure form from Egyptian bagasse pulp. Hydroxypropylation was carried out on the obtained cellulose and the liquid crystalline properties were investigated. The prepared hydroxypropyl cellulose (HPC) was esterified with 4-alkyloxybenzoic acids, giving products with liquid crystalline properties. The molecular structure of HPC and a series of its esters – 4-alkoxybenzoloxypropyl cellulose (ABPC-m) – was confirmed by Fourier transform infrared (FT-IR) and 1H NMR spectroscopy. The liquid crystalline (LC) phases and transition behaviors were investigated using differential scanning calorimetry (DSC) and polarized light microscopy (PLM). The lyotropic behavior in dimethyl acetamide (DMA) was investigated using an Abee refractometer, and the critical concentration was determined by measuring the refractive index of the solutions in DMA."
APA, Harvard, Vancouver, ISO, and other styles
21

S., Manu, Fyna Francis, and Tobin Scaria. "Investigation on Liquid Crystalline Systems." Mapana - Journal of Sciences 5, no. 2 (December 15, 2006): 57–70. http://dx.doi.org/10.12723/mjs.9.6.

Full text
Abstract:
The results of experiments carried out by us on two samples exhibiting a macroscopic helical structure.While one of them shows a direct transition from chiral orientationally ordered fluid(referred to an N* phase) to a phase with one dimensional layer structure,the second sample exhibits a liquid crystal analog of the Abrikosov flux lattice of super conductors,between the N* and layered phase.The chapter compares and contrasts the differences in the behavior of the two compounds.
APA, Harvard, Vancouver, ISO, and other styles
22

Yu, Yanlei, M. Nakano, and T. Ikeda. "Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers." Pure and Applied Chemistry 76, no. 7-8 (January 1, 2004): 1467–77. http://dx.doi.org/10.1351/pac200476071467.

Full text
Abstract:
Liquid-crystalline gels and elastomers were prepared by polymerization of mixtures containing azobenzene monomers and cross linkers with azobenzene moieties. Oriented liquid-crystalline gels and elastomer films were found to undergo anisotropic bending and unbending behavior only along the rubbing direction, when exposed to alternate irradiation of unpolarized UV and visible light. In the case of polydomain liquid-crystalline elastomer films, the bending and unbending were induced exactly along the polarization direction of incident linearly polarized light. By altering the polarization direction of light, a single film could be bent repeatedly and precisely along any chosen direction.
APA, Harvard, Vancouver, ISO, and other styles
23

Reyes-Mayer, A., B. Alvarado-Tenorio, A. Romo-Uribe, O. Flores, B. Campillo, and M. Jaffe. "Fracture behavior of heat treated liquid crystalline polymers." MRS Proceedings 1485 (2012): 137–42. http://dx.doi.org/10.1557/opl.2013.282.

Full text
Abstract:
ABSTRACTThermotropic polymers are thermally treated in air at temperatures Ta, where ΔT =Ta- Ts→n=40°C, and Ts→n is the solid-to-nematic transition. Samples are extruded thin films of a series of thermotropic random copolyesters termed B-N, COTBP and RD1000. The thermal treatment produces a second endotherm without changing Ts→n for B-N and RD1000. However, for COTBP Ts→n is significantly increased. Regardless of the complex thermal behavior exhibited by the thermotropes, the thermal treatment produces a significant increase in Young's modulus, more than 30% for B-N and over 100% for COTBP. The increase in mechanical modulus is correlated with a thermally-induced fiber-like morphology.
APA, Harvard, Vancouver, ISO, and other styles
24

Gallani, J. L., L. Hilliou, P. Martinoty, F. Doublet, and M. Mauzac. "Mechanical Behavior of Side-Chain Liquid Crystalline Networks." Journal de Physique II 6, no. 3 (March 1996): 443–52. http://dx.doi.org/10.1051/jp2:1996190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ujiie, Seiji, Taiki Watanabe, Genichiro Shimada, Shiori Tomitaka, and Masanori Nata. "Liquid-crystalline behavior of reactive main-chain polyurethanes." Molecular Crystals and Liquid Crystals 647, no. 1 (April 13, 2017): 223–27. http://dx.doi.org/10.1080/15421406.2017.1289598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Song, Hyun Hoon, Jee-Young Han, Loon-Seng Tan, and Derrick Dean. "Thermotropic Liquid Crystalline Behavior of Dihydroxyphenylene Benzobisthiazole Derivatives." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 327, no. 1 (February 1999): 161–64. http://dx.doi.org/10.1080/10587259908026804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Yoshino, Katsumi, Kentaro Kobayashi, Katsunori Myojin, Tsuyoshi Kawai, Hiroshi Moritake, Masanori Ozaki, Kazuo Akagi, Hiromasa Goto, and Hideki Shirakawa. "Unique Liquid Crystalline Behavior of Conducting Polyacetylene Derivatives." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 261, no. 1 (March 1995): 637–47. http://dx.doi.org/10.1080/10587259508033504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Tabushi, Iwao, Kazuo Yamamura, and Kazuhiko Kominami. "Electric stimulus-response behavior of liquid-crystalline viologen." Journal of the American Chemical Society 108, no. 20 (October 1986): 6409–10. http://dx.doi.org/10.1021/ja00280a059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cozan, Vasile, Mariana Gaspar, Elena Butuc, and Aurel Stoleriu. "Azomethine sulfone macromers with thermotropic liquid crystalline behavior." European Polymer Journal 37, no. 1 (January 2001): 1–8. http://dx.doi.org/10.1016/s0014-3057(00)00100-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Greer, Douglas R., Michael A. Stolberg, Sunting Xuan, Xi Jiang, Nitash P. Balsara, and Ronald N. Zuckermann. "Liquid-Crystalline Phase Behavior in Polypeptoid Diblock Copolymers." Macromolecules 51, no. 23 (November 19, 2018): 9519–25. http://dx.doi.org/10.1021/acs.macromol.8b01952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Jiang, Zhao, Ting Ouyang, Xiangdong Yao, and Youqing Fei. "Die swell behavior of liquid crystalline mesophase pitch." Journal of Materials Science 51, no. 15 (May 9, 2016): 7361–69. http://dx.doi.org/10.1007/s10853-016-0025-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Cozan, V., E. Butuc, A. Stoleriu, M. Rusa, M. Rusu, Yushan Ni, and Mengxian Ding. "Poly(Azomethine Sulfones) with Thermotropic Liquid Crystalline Behavior." Journal of Macromolecular Science, Part A 32, no. 7 (July 1995): 1243–62. http://dx.doi.org/10.1080/10601329508009352.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Matsen, M. W., and C. Barrett. "Liquid-crystalline behavior of rod-coil diblock copolymers." Journal of Chemical Physics 109, no. 10 (September 8, 1998): 4108–18. http://dx.doi.org/10.1063/1.477011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Escalante, J. I., J. F. A. Soltero, F. Bautista, J. E. Puig, and O. Manero. "Time-Dependent Rheological Behavior of Liquid Crystalline Dispersions." Materials Science Forum 509 (March 2006): 177–86. http://dx.doi.org/10.4028/www.scientific.net/msf.509.177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Moon, Hee Jung, and Seung Hyun Cho. "Thermal Degradation Behavior of Liquid Crystalline Thermoset Composites." Textile Science and Engineering 51, no. 3 (June 30, 2014): 122–27. http://dx.doi.org/10.12772/tse.2014.51.122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Matsunaga, Y., and T. Tsujimura. "The Thermotropic Liquid-Crystalline Behavior of Alkylammonium Naphthalenesulfonates." Molecular Crystals and Liquid Crystals 200, no. 1 (May 1991): 103–8. http://dx.doi.org/10.1080/00268949108044234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Han, Mina, Giancarlo Galli, Lachezar Komitov, Kunihiro Ichimura, and Emo Chiellini. "Photoisomerization Behavior of Smectic Liquid Crystalline AZO Polymers." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 365, no. 1 (July 1, 2001): 459–66. http://dx.doi.org/10.1080/10587250108025325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Jang, Jyongsik, and Jun Yeob Lee. "Curing behavior of liquid crystalline epoxy/DGEBA blend." Journal of Applied Polymer Science 106, no. 4 (2007): 2198–203. http://dx.doi.org/10.1002/app.25117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Chang, Jenq Sheng, Ke Liang B. Chang, and Min Lang Tsai. "Liquid-crystalline behavior of chitosan in malic acid." Journal of Applied Polymer Science 105, no. 5 (2007): 2670–75. http://dx.doi.org/10.1002/app.26475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Arai, Kenichiro, and Hidetoshi Satoh. "Liquid crystalline phase-formation behavior of cellulose cinnamate." Journal of Applied Polymer Science 45, no. 3 (May 25, 1992): 387–90. http://dx.doi.org/10.1002/app.1992.070450302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Riley, A. E., G. W. Mitchell, P. A. Koutentis, M. Bendikov, P. Kaszynki, F. Wudl, and S. H. Tolbert. "Liquid-Crystalline Phase Behavior in a Zwitterionic Tetraazapentacene." Advanced Functional Materials 13, no. 7 (July 4, 2003): 531–40. http://dx.doi.org/10.1002/adfm.200304223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Xiuzhen, Haishan Bu, and Robert R. Luise. "Synthesis and eutectic behavior of liquid crystalline copolyesters." Journal of Polymer Science Part B: Polymer Physics 47, no. 22 (October 6, 2009): 2171–77. http://dx.doi.org/10.1002/polb.21804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kondo, Mizuho, Satoka Yanai, Syouma Shirata, Takeshi Kakibe, Jun-ichi Nishida, and Nobuhiro Kawatsuki. "Multichromic Behavior of Liquid Crystalline Composite Polymeric Films." Crystals 13, no. 5 (May 9, 2023): 786. http://dx.doi.org/10.3390/cryst13050786.

Full text
Abstract:
In this study, we describe the synthesis of a cholesterol-linked cyanostilobazole salt dye and the tuning of its luminescence by physical stimuli such as electricity and grinding. The dyes exhibited liquid-crystalline properties at temperatures above 170 °C. Some of the solutions were transformed into orange luminescent gels upon the addition of poor solvents. When the solvent was evaporated, the resulting solid xerogel exhibited mechanochromism, its color changed, and its luminescent color changed from orange to red. Furthermore, we investigated the construction of functional gels (mechanochromic gels) that can respond to two stimuli, damage detection by abrasive responsiveness, and electrical response using ionic liquid complexes of polymers as dispersing media. This study provides a new strategy for tuning and switching luminescence using non-chemical stimuli in a single-component system using aggregation.
APA, Harvard, Vancouver, ISO, and other styles
44

Lin, Chih-Hung. "Synthesis and Liquid Crystalline Behavior of Photoreactive Side Chain Liquid Crystalline Polyoxetanes Containing Cinnamoyl Biphenyl Mesogen." Asian Journal of Chemistry 27, no. 4 (2015): 1495–500. http://dx.doi.org/10.14233/ajchem.2015.18540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ji, Liangliang, Xiaofang Chen, Yanhong Wu, Xiaoming Yang, and Yingfeng Tu. "Influence of liquid crystalline formation on the phase behavior of side-chain liquid crystalline block copolymers." Polymer 61 (March 2015): 147–54. http://dx.doi.org/10.1016/j.polymer.2015.01.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zhou, Yuxiang, Suk-kyun Ahn, Rubinder Kaur Lakhman, Manesh Gopinadhan, Chinedum O. Osuji, and Rajeswari M. Kasi. "Tailoring Crystallization Behavior of PEO-Based Liquid Crystalline Block Copolymers through Variation in Liquid Crystalline Content." Macromolecules 44, no. 10 (May 24, 2011): 3924–34. http://dx.doi.org/10.1021/ma102922u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Yan, Miao, Jun Tang, He-Lou Xie, Bin Ni, Hai-Liang Zhang, and Er-Qiang Chen. "Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block." Journal of Materials Chemistry C 3, no. 33 (2015): 8526–34. http://dx.doi.org/10.1039/c5tc01603g.

Full text
Abstract:
Self-healing liquid crystalline elastomers were fabricated by hydrogen-bonding and the hydrogen bonds in this system played an important role both in self-healing property and the liquid crystalline phase behavior.
APA, Harvard, Vancouver, ISO, and other styles
48

Amanuma, Ryoma, Ayumi Kobayashi, Kohei Iritani, and Takashi Yamashita. "Thermal Response Behavior of a Photo-Crosslinked Liquid Crystalline Polymer and a Side Chain Liquid Crystalline Polymer." Journal of Photopolymer Science and Technology 33, no. 1 (July 1, 2020): 71–76. http://dx.doi.org/10.2494/photopolymer.33.71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yakacki, C. M., M. Saed, D. P. Nair, T. Gong, S. M. Reed, and C. N. Bowman. "Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction." RSC Advances 5, no. 25 (2015): 18997–9001. http://dx.doi.org/10.1039/c5ra01039j.

Full text
Abstract:
A methodology is introduced to synthesize main-chain liquid-crystalline elastomers (LCEs) using a thiol–acrylate-based reaction. This method can program an aligned LCE monodomain and offer spatio-temporal control over liquid-crystalline behavior.
APA, Harvard, Vancouver, ISO, and other styles
50

Liu, Dan Qing, Casper Van Oosten, Cees W. M. Bastiaansen, and Dirk J. Broer. "Photoresponsive Liquid Crystalline Polymeric Materials." Advances in Science and Technology 77 (September 2012): 325–32. http://dx.doi.org/10.4028/www.scientific.net/ast.77.325.

Full text
Abstract:
In-situ photopolymerization of liquid crystalline (LC) monomers has proven to be a valuable technique for the formation of well-ordered polymer networks. Their anisotropic properties led to a variety of applications in optics, electronics and mechanics. The use of light to initiate polymerization enables lithographic patterning. In addition the LC behavior enables formation of complex morphologies on molecular level. Controlling the director profile of an LC network film in transversal direction gives geometrical morphing upon minor changes in order parameter. Examples of suited profiles of molecular orientation are twisted or splayed director configurations tied up in the network configuration. Reversible order parameter changes can be induced by light using the photo-activated trans-cis isomerization of a copolymerized azobenzene monomer. This is demonstrated in photoresponsive cilia inkjet printed on a substrate. The cilia possess a splayed molecular organization and show well-controlled bending when addressed by light. We demonstrate a patterned film with alternating helicoidal and perpendicular-uniaxial molecular orientation. When applied as coating on glass, photo-activation in this case leads to a dynamically switching surface topology
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography