Academic literature on the topic 'Lipidic model membranes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lipidic model membranes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lipidic model membranes"
Le Goff, Thomas, Tung B. T. To, and Olivier Pierre-Louis. "Shear dynamics of confined membranes." Soft Matter 17, no. 22 (2021): 5467–85. http://dx.doi.org/10.1039/d1sm00322d.
Full textSejwal, Kushal, Mohamed Chami, Paul Baumgartner, Julia Kowal, Shirley A. Müller, and Henning Stahlberg. "Proteoliposomes – a system to study membrane proteins under buffer gradients by cryo-EM." Nanotechnology Reviews 6, no. 1 (February 1, 2017): 57–74. http://dx.doi.org/10.1515/ntrev-2016-0081.
Full textBrémaud, Erwan, Cyril Favard, and Delphine Muriaux. "Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes." Membranes 12, no. 5 (April 19, 2022): 441. http://dx.doi.org/10.3390/membranes12050441.
Full textWrobel, Dominika, Dietmar Appelhans, Marco Signorelli, Brigitte Wiesner, Dimitrios Fessas, Ulrich Scheler, Brigitte Voit, and Jan Maly. "Interaction study between maltose-modified PPI dendrimers and lipidic model membranes." Biochimica et Biophysica Acta (BBA) - Biomembranes 1848, no. 7 (July 2015): 1490–501. http://dx.doi.org/10.1016/j.bbamem.2015.03.033.
Full textCastelli, Francesco, Sebastiana Caruso, and Nicola Uccella. "Biomimesis of Linolenic Acid Transport through Model Lipidic Membranes by Differential Scanning Calorimetry." Journal of Agricultural and Food Chemistry 51, no. 4 (February 2003): 851–55. http://dx.doi.org/10.1021/jf020582z.
Full textGallová, J., K. Želinská, and P. Balgavý. "Partial molecular volumes of cholesterol and phosphatidylcholine in mixed bilayers." European Pharmaceutical Journal 64, no. 2 (November 27, 2017): 1–3. http://dx.doi.org/10.1515/afpuc-2017-0012.
Full textParra, Elisa, Lara H. Moleiro, Ivan López-Montero, Antonio Cruz, Francisco Monroy, and Jesús Pérez-Gil. "A combined action of pulmonary surfactant proteins SP-B and SP-C modulates permeability and dynamics of phospholipid membranes." Biochemical Journal 438, no. 3 (August 26, 2011): 555–64. http://dx.doi.org/10.1042/bj20110681.
Full textTrombetta, Domenico, Francesco Castelli, Maria Grazia Sarpietro, Vincenza Venuti, Mariateresa Cristani, Claudia Daniele, Antonella Saija, Gabriela Mazzanti, and Giuseppe Bisignano. "Mechanisms of Antibacterial Action of Three Monoterpenes." Antimicrobial Agents and Chemotherapy 49, no. 6 (June 2005): 2474–78. http://dx.doi.org/10.1128/aac.49.6.2474-2478.2005.
Full textCastanho, M. A. R. B., S. Lopes, and M. Fernandes. "Using UV-Vis. Linear Dichroism to Study the Orientation of Molecular Probes and Biomolecules in Lipidic Membranes." Spectroscopy 17, no. 2-3 (2003): 377–98. http://dx.doi.org/10.1155/2003/801452.
Full textMori, Kenichi, Yosuke Imai, Tsubasa Takaoka, Koji Iwamoto, Hideyoshi Fuji, and Tyuji Hoshino. "2P270 Database of Lipid Membrane Structures : Computational Analyses of Model Membranes(40. Membrane structure,Poster Session,Abstract,Meeting Program of EABS & BSJ 2006)." Seibutsu Butsuri 46, supplement2 (2006): S363. http://dx.doi.org/10.2142/biophys.46.s363_2.
Full textDissertations / Theses on the topic "Lipidic model membranes"
Oldham, Alexis Jean. "Modulation of lipid domain formation in mixed model systems by proteins and peptides." View electronic thesis, 2008. http://dl.uncw.edu/etd/2008-1/r1/oldhama/alexisoldham.pdf.
Full textAzouz, Mehdi. "Alzheimer's disease neurotoxic peptides : towards a comprehension of their modes of action on model membranes." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0419.
Full textAlzheimer’s disease is a complex neuropathological disorder that constitutes the prime form of dementia. Intimately related to ageing, it is associated to the gradual loss of memory and cognitive functions in individual suffering from the pathology. With nearly 30 million people concerned today, and the alarming trends predicting this figure to increase fourfold by 2050, Alzheimer’s disease will constitute a major burden for our societies in the upcoming decades. The cerebral atrophy occurring within the brain results from slow and progressive neurodegenerative mechanisms triggered many years before the appearance of the first symptoms. Two histopathological markers have been identified as strongly associated to the neurodegeneration: the senile plaques, majorly composed of the amyloid peptide Abeta, and the neurofibrillary tangles, constituted of the abnormally phosphorylated form of Tau protein. These two molecules, hence considered as the main culprits of the disease, are therefore under the spotlight of researchers who try to better understand the respective roles in the neurodegeneration process and uncover therapeutic solutions to a still uncurable disease.One of the promising research axis is focusing on the interplay between these molecules and the plasma membrane as potential interactions could convincingly rationalize the neural cell deaths if they happened to be deleterious. Therefore, investigate these interactions in detail is of primary importance to identify the factors that might drive Abeta and Tau to cause damages on membranes. A strong body of evidences has demonstrated that certain lipids could promote these interactions and are then suspected to be involved into detrimental phenomena. However, numerous results appear to be contradicting and consensual conclusions are still lacking.This PhD was dedicated to the investigation of the effects of Abeta and K18, a key peptide fragment of Tau protein, on membranes with a particular focus on the influence of lipids. The aim of this work was to elucidate the action mechanisms of these peptides.To first comprehend how membrane damages can be induced, we first focused on the solubilising ability of extensively used amphiphile agents: detergents. As a first study, we revealed that the membrane composition and the physicochemical properties of lipids play an important role in driving the solubilisation of the bilayer, a process that can even lead to a selectivity during the lipid extraction.The core part of the project was to visualize the effects of the amyloid peptides Abeta and K18 on supported lipid bilayers as membrane models, using atomic force microscopy as an investigation technique. With its high spatial resolution and its ability to operate in physiological milieu, this approach has shown that the membrane composition could promote membrane disruption induced by Abeta oligomers in a lipid-dependent manner. More importantly, we propose that packing defects at the interface of membrane domains act as adsorption and nucleation sites leading to membrane damages.Using the same strategy, we observed that K18 could also induce solubilisation phenomenon and demonstrated to be sensitive to the aspect of lipid order in membranes.In both cases, we highlighted that these peptides could be detrimental to supported lipid bilayers and that their disruptive abilities, associated to detergent-like mechanisms, were intimately dependent of lipids. We also show that the aggregation, a phenomenon that can lead to the peptides fibrillation can only be triggered in presence of certain lipids.This work provides important insights about the decisive role of membrane composition in modulating interactions with the Abeta and K18. This interplay could constitute one of the numerous factors that promote neurotoxic phenomena, taking part in the complex neurodegenerative processes associated to Alzheimer’s disease
Ury-Thiery, Vicky. "Agrégation in vitro de la protéine amyloïde Tau et étude de son impact sur des modèles membranaires par différentes méthodes biophysiques." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0440.
Full textNeurodegenerative diseases, such as Alzheimer’s and Parkinson’s, affect cognitive and motor functions. They are characterized by a progressive loss of neurons, with no possibility of regeneration. With an aging population, these predominantly age-related diseases represent a major societal challenge. The lack of early diagnosis, effective treatments, and understanding of the underlying mechanisms highlights the need for further investigation. Patients suffering from these diseases exhibit abnormal protein accumulations in the form of insoluble aggregates, within or near brain cells. Although each proteinopathy presents specific aggregates, they share common features, notably their amyloid structure. These amyloids, formed by the misfolded protein monomers’ self-assembly through stacking, adopt a characteristic cross-β structure. Several pathogenic amyloid proteins have been identified and are associated with various neurodegenerative diseases. The Tau protein, implicated in Alzheimer’s disease and more broadly in a group of dementias known as tauopathies, is primarily located in neurons, where it stabilizes microtubules, structural elements of the cellular cytoskeleton. However, under pathological conditions, Tau dissociates from the microtubules, becomes hyperphosphorylated, and forms fibrillar amyloid aggregates. The exact mechanisms of this aggregation remain poorly understood. The study of Tau aggregation relies on the in vitro production of amyloid fibers. Due to its high solubility associated with its positive charge, fiber formation requires the addition of polyanionic molecules, called cofactors, such as heparin (a polysaccharide), RNA, or lipids. However, uncertainties remain regarding the exact role of these cofactors: do they simply catalyze aggregation, or are they integrated into the fiber structure? If so, what impact does this have on the morphology of the aggregates? Tau's ability to aggregate in the presence of lipids raises questions about its behavior in relation to the different membranes of neurons. Tau’s interaction with plasma membranes has been demonstrated and may play a role in both physiological and pathological processes. Does Tau, in the presence of anionic lipids, compromise membrane integrity? What about non-anionic lipids? To address these questions, this thesis project combines several biophysical approaches: attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), transmission electron microscopy (TEM), and plasmon waveguide resonance (PWR). The study is structured around two main axes: (i) characterizing Tau aggregation in the presence of different anionic cofactors (heparin, RNA, phospholipids) and studying their impact on fiber morphology; (ii) assessing the effect of Tau's interaction with lipid membranes of varying compositions on membrane integrity. The results of this thesis provide new insights into the pathogenic mechanisms of Tau and may contribute to a better understanding of tauopathies as well as the development of therapeutic strategies
Polozov, Ivan V. "Interactions of class A and class L amphipathic helical peptides with model membranes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0006/NQ30110.pdf.
Full textDannehl, Claudia. "Fragments of the human antimicrobial LL-37 and their interaction with model membranes." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6814/.
Full textAufgrund der steigenden Resistenzen von Zellstämmen gegen traditionelle Therapeutika sind alternative medizinische Behandlungsmöglichkeiten für bakterielle Infektionen und Krebs stark gefragt. Antimikrobielle Peptide (AMPs) sind Bestandteil der unspezifischen Immunabwehr und kommen in jedem Organismus vor. AMPs lagern sich von außen an die Zellmembran an und zerstören ihre Integrität. Das macht sie effizient und vor allem schnell in der Wirkung gegen Bakterien, Viren, Pilzen und sogar Krebszellen. Das Ziel dieser Arbeit lag in der physikalisch-chemischen Charakterisierung zweier Peptidfragmente die unterschiedliche biologische Aktivität aufweisen. Die Peptide LL-32 und LL-20 waren Teile des humanen LL-37 aus der Kathelizidin-Familie. LL-32 wies eine stärke Aktivität als das Mutterpeptid auf, während LL-20 kaum aktiv gegen die verschiedenen Zelltypen war. In dieser Arbeit wurde die Wechselwirkung der Peptide mit Zellmembranen systematisch anhand von zweidimensionalen Modellmembranen in dieser Arbeit untersucht. Dafür wurden Filmwaagenmessungen mit IR-spektroskopischen und Röntgenstreumethoden gekoppelt. Circulardichroismus-Spektroskopie im Volumen komplementierte die Ergebnisse. In der ersten Näherung wurde die Struktur der Peptide in Lösung mit der Struktur an der Wasser/Luft-Grenzfläche verglichen. In wässriger Lösung sind beide Peptidfragmente unstrukturiert, nehmen jedoch eine α-helikale Sekundärstruktur an, wenn sie an die Wasser/Luft-Grenzfläche adsorbiert sind. Das biologisch unwirksamere LL-20 bleibt dabei teilweise ungeordnet. Das steht im Zusammenhang mit einer geringeren Grenzflächenaktivität des Peptids. In der Zweiten Näherung wurden Versuche mit Lipidmonoschichten als biomimetisches Modell für die Wechselwirkung mit der Zellmembran durchgeführt. Es konnte gezeigt werden, dass sich die Peptide fluidisierend auf negativ geladene Dipalmitylphosphatidylglycerol (DPPG) Monoschichten auswirken, was einer Membranverdünnung an Bakterienzellen entspricht. Eine Interaktion der Peptide mit zwitterionischem Phosphatidylcholin (PC), das als Modell für Säugetierzellen verwendet wurde, konnte nicht klar beobachtet werden, obwohl biologische Experimente das hämolytische Verhalten zumindest von LL-32 zeigten. In der dritten Näherung wurde das Membranmodell näher an die Membran von humanen Erythrozyten angepasst, indem gemischte Monoschichten aus Sphingomyelin (SM) und PC hergestellt wurden. Die physikalisch-chemischen Eigenschaften der Lipidfilme wurden zunächst ausgearbeitet und anschließend der Einfluss der Peptide untersucht. Es konnte anhand verschiedener Versuche gezeigt werden, dass die Wechselwirkung von LL-32 mit der Modellmembran verstärkt ist, wenn eine Koexistenz von fluiden und Gelphasen auftritt. Zusätzlich wurde die Wechselwirkung der Peptide mit der Membran von Krebszellen imitiert, indem ein geringer Anteil negativ geladener Lipide in die Monoschicht eingebaut wurde. Das hatte allerdings keinen nachweislichen Effekt, so dass geschlussfolgert werden konnte, dass die hohe Aktivität von LL-32 gegen Krebszellen ihren Grund in der veränderten Fluidität der Membran hat und nicht in der veränderten Oberflächenladung. Darüber hinaus wurden Ähnlichkeiten zu Melittin, einem AMP aus dem Bienengift, dargelegt. Die Ergebnisse dieser Arbeit sprechen für einen Detergenzien-artigen Wirkmechanismus des Peptids LL-32 an der Zellmembran.
Lambert, Eléonore. "Apports de la Microscopie à Force Atomique à l’étude de phénomènes dynamiques en biologie et développement instrumental associé." Thesis, Reims, 2018. http://www.theses.fr/2018REIMS014/document.
Full textOur laboratory recently acquired a high-speed atomic force microscope (HS-AFM) which enables us to visualize in real time a wide range of biological samples and their dynamics of interaction at nanoscale. Several research fields require the development of new techniques in order to get high resolution imaging and dynamic imaging at the same time. This is why HS-AFM was developed. Its current limitation is that the only data it provides are about the surface which means we can’t get access to what occurs beneath. This is limiting the knowledge we could get about the underlying dynamics of some biomolecular system. In order to overcome this issue, we propose to upgrade this nanocharacterization tool by combining optical microscopy and force spectroscopy. This project of instrumental development will be in two major steps: - the adding of conventional optical microscopy : fluorescence, TIRFM, FRAP, FRET, FLIM. The aim is to nanocharacterize sample with highly spatiotemporal data combined in combination with integral data (fundamental to respond to biological issues) - the development of tip functionalization protocols in order to achieve force spectroscopy and get mechanical properties of biological samples This project will take place at the Laboratory of Research in Nanosciences, EA 4682, University of Reims Champagne Ardennes, under the supervision of Pr. Michael Molinari and Dr. Maxime Ewald who started HS-AFM among our team. We will collaborate with Pr. T. Ando from the Biophysics Lab of Kanazawa University (Japan) for the instrumental part and with Dr. Gabriel Paës for the biological samples. The samples used during this thesis will be linked to an ANR project called Lignoprog directed by Dr. Gabriel Paës (INRA, UMR FARE, Reims) and started on the first of November, 2014. In the project, the dynamical aspect of the biological samples is essential. Indeed, lignocellulosic biomass is a complex network of polymers composing plant cell wall. Its architectural and chemical complexity prevents its industrial conversion. In order to be cost-effective, bio refineries need to valorize all the fractions: cellulose, hemicelluloses and lignins. The major challenge is the high cost and low efficiency of the enzymatic hydrolysis of the lignocellulosic biomass. Our aim is to bring some answer to understand better and improve enzymatic hydrolysis thanks to the HS-AFM and the combination of new functionalities. By the way, the disposal might be validated on other biological samples in parallel, such as live cells in order to characterize them, enlighten their reactivity in response to physiological parameters of the medium (pH, concentration, composition) and correlate the results with mechanical properties
Bechtella, Leïla. "Molecular analysis of the interactions of the cell-penetrating peptide Penetratin and lipid membranes. Contributions of the lipid PIP2, biophysical approaches and benzophenone photoreactivity in model membranes." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS045.
Full textCell-penetrating peptides (CPP) can cross cell membranes and deliver biologically active molecules into cells. Previous work showed that CPPs could remodel the actin cytoskeleton, interacted strongly with negatively charged lipids and PIP2 could play a role in Penetratin internalization. Our DSC experiments showed that Penetratin interacts with polar head groups and impacts the lipid bilayer fluidity of PIP2-containing liposomes. It indicated that presence of PIP2 in liposomes triggers Penetratin-lipid interaction. Moreover, Penetratin binding affinity for PIP2-containing lipid vesicles, estimated by tryptophan fluorescence, pointed out that Penetratin has a higher affinity for PIP2 than for PS. Affinity photocrosslinking coupled to mass spectrometry, using benzophenone (Bzp)-functionalized peptides, was used to study the non-covalent interactions of CPPs and lipid membranes at a molecular level. PIP2 was found to be a good interaction partner for Penetratin and was preferably labelled in liposomes containing PC, PS and PIP2. We revealed highly informative secondary reactions occurring during UV irradiation that can occur concomitantly in a single biological system: a membrane-active peptide inserted within a phospholipid bilayer. This work shows how to exploit in an original way the different reactivities of Bzp in the context of a lipid membrane, giving access to information on the CPP/lipid interaction at a molecular level such as depth of insertion or membrane fluidity in the CPP vicinity
Veatch, Sarah Louise. "Liquid immiscibility in model bilayer lipid membranes /." Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/9772.
Full textNomura, Daniela Akiko. "Caracterização estrutural de dispersões aquosas de lipídios aniônicos." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-08052018-005348/.
Full textIt is known that the ionic strength plays a fundamental role in the structure of DMPG (dimyristoyl phosphatidylglycerol) anionic vesicles in water medium. At low ionic strength (~ 6 mM), DMPG dispersions display several anomalous characteristics, which were interpreted as the opening of bilayer pores along the wide bilayer gel-fluid transition region (from ~ 18°C to 30°C). Here, we revisit DMPG in buffer at low ionic strength, but with dispersions obtained after the extrusion by 100 nm filters, thus less polydisperse. To emphasize electrostatic interactions between the polar head-groups, which will not be shielded by ions in solution, we studied DMPG dispersions in pure water to monitor the aggregates in the dispersion and their interactions. Water dispersions were characterized before and after extrusion. For such, we used several experimental techniques, at different temperatures: light scattering, both static (SLS) and dynamic (DLS); differential scanning calorimetry (DSC); electron spin resonance (ESR) of spin labels incorporated into the aggregates, Small and Wide Angle X-Ray Scattering (SAXS and WAXS); and viscosity, turbidity, electrophoretic mobility and electrical conductivity measurements. Several techniques with extruded dispersions of DMPG in buffer showed that the anomalous behavior is also observed. However, the SAXS peak at very low angles is seen from 5 to 45°C, and not only in the phase transition region, therefore it should not be modeled as the distance of correlated pores in the lipid bilayer that would open in this region. The repeating distance related to this peak decreases in the phase transition region, and with increasing lipid concentration. DSC indicates that, in water, the bilayer gel-fluid transition is even wider, starting around 10oC but still ending ~ 30oC. However, high electric conductivity, viscosity, electrophoretic mobility, effective radius and low turbidity found only in the gel-fluid transition region for DMPG in buffer, are found at higher temperatures in water, when lipid bilayers are already in the fluid state. ESR and WAXS measurements evidenced the transition of the membrane from a more rigid/immobile/organized phase to a more soft/mobile phase. Light scattering, ESR and SAXS data showed that, similar to DMPG in buffer, in water, DMPG is organized as spherical unillamelar vesicles, but possibly smaller, highly charged, displaying strong vesicle-vesicle interactions. With SAXS the Bragg peak at very low angles was seen at all temperatures (from 5 to 60°C) with the repetition distance decreasing at temperatures higher than 10 ° C. The results obtained for water dispersions reinforce the anomalous behavior previously observed for buffer at low ionic strength dispersions. According to them, we propose the existence of highly deformed and ionized vesicles from a certain temperature, T1 for DMPG in water and Tmon in buffer at low ionic strength. In water the strong PG- - PG- electrostatic repulsion would lead to strong deformations and vesicle-vesicle interactions, over a wide range of temperatures.
De, Ghellinck D'Elseghem Alexis. "Natural and model membranes: structure and interaction with bio-active molecules via neutron reflection." Doctoral thesis, Universite Libre de Bruxelles, 2013. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209550.
Full textLa structure de bicouches composées des lipides de levures a été étudiée par réflectivité de neutrons. La bicouche composée de lipides deutérés polaires a une épaisseur similaire aux bicouches faites de phosphocholines C18:1 synthétiques. En présence de stérols, la rugosité aux interfaces entre les têtes polaires et les chaînes augmente. La bicouche composée de lipides polaires hydrogénés est plus mince que celle deutérée. Ceci est dû à la composition en acides gras beaucoup plus variée et du plus grand nombre d’insaturations. En présence de stérols, l’épaisseur de la bicouche hydrogénée augmente.
L’interaction de ces bicouches avec l’amphotéricine B (AmB) a été étudiée. L’AmB est un antifongique qui interagit fortement avec les membranes contenant de l’ergostérol et moins fortement avec des membranes contenant du cholestérol. Dans tous les cas, les molécules d’AmB forment une couche épaisse et diluée au dessus de la bicouche lipidique. En présence de stérols, les molécules d’AmB pénètrent dans la bicouche et change sa structure selon la composition en acide gras.
La structure de bicouches lipidiques de plante et leurs interactions avec des intermédiaires de synthèse ont aussi été étudiées par réflectivité de neutrons. Des mélanges ternaires de plantes étaient déposés sur silicium et des mélanges quaternaires sur saphir. L’épaisseur de la bicouche composée de mélange ternaire est de 38 Å, tandis que celle du mélange ternaire est de 28 Å, la différence venant probablement d’un effet de substrat. La présence de diacylglycérol (DAG) a comme conséquence d’augmenter l’aire par lipide, et ainsi de changer la conformation des têtes polaires. L’interaction des bicouches de lipide de plante avec l’acide phosphatidique (PA) dans le but d’observer un flip-flop possible a aussi été étudiée mais le PA a tendance à désorbé les bicouches du substrat et aucun mécanisme de flip flop n’a été détecté.
Finalement, la localisation d’une petite molécule, le resvératrol, dans des bicouches modèles a été étudiée. Le resvératrol est connu pour être responsable du « paradoxe français » qui est une corrélation inverse entre la consommation d’aliment gras et un faible taux de maladie cardiaque. Quand le resvératrol est adsorbé à partir de la phase liquide, il induit une réorganisation des têtes polaires. Quand il est déposé sur le substrat en présence des lipides, il est présent à l’interface entre les têtes polaires et les chaines.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Books on the topic "Lipidic model membranes"
Derek, Marsh, ed. Phospholipid bilayers: Physical principles and models. New York: Wiley, 1987.
Find full textL, Longo Marjorie, Risbud Subhash H, Jue Thomas, and SpringerLink (Online service), eds. Biomembrane Frontiers: Nanostructures, Models, and the Design of Life. Totowa, NJ: Humana Press, 2009.
Find full textCholesterol in membrane models. Boca Raton, Fla: CRC Press, 1992.
Find full textKatsaras, John, Georg Pabst, Norbert Kucerka, and Mu-Ping Nieh. Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application. Taylor & Francis Group, 2014.
Find full textPabst, Georg. Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application. Taylor & Francis Group, 2014.
Find full textKatsaras, J., Georg Pabst, Norbert Kucerka, and Mu-Ping Nieh. Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application. Taylor & Francis Group, 2016.
Find full textKatsaras, John, Georg Pabst, Norbert Kucerka, and Mu-Ping Nieh. Liposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application. Taylor & Francis Group, 2014.
Find full textLiposomes, Lipid Bilayers and Model Membranes: From Basic Research to Application. Taylor & Francis Group, 2014.
Find full textElectrical Properties of Model Lipid Membranes. MDPI, 2022. http://dx.doi.org/10.3390/books978-3-0365-4057-3.
Full textNaumowicz, Monika. Electrical Properties of Model Lipid Membranes. Mdpi AG, 2022.
Find full textBook chapters on the topic "Lipidic model membranes"
Grancelli, A., J. Cladera, J. Villaverde, J. Trias, and A. Morros. "Interactions of Fluoroquinolone Antibiotics with Model Lipidic Membranes: An FT-IR Study." In Spectroscopy of Biological Molecules: Modern Trends, 321–22. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5622-6_143.
Full textBienvenüe, A., J. Sainte-Marie, and L. Maurin. "Protein-Lipid and Lipid-Lipid interactions in model systems and in biological membranes." In Trafficking of Intracellular Membranes:, 1–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79547-3_1.
Full textProsser, R. Scott, and Charles R. Sanders. "Solid State NMR Approaches to the Study of Membrane Proteins in Magnetically Aligned Model Membranes." In Lipid Bilayers, 207–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04496-4_10.
Full textStegmann, Toon, Justin Teissie, and Mathias Winterhalter. "Fusion and Rupture of Lipid Model Membranes." In Lipid Bilayers, 265–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04496-4_12.
Full textRaleigh, J. A. "Radiation Peroxidation in Model Membranes." In Prostaglandin and Lipid Metabolism in Radiation Injury, 3–27. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5457-4_1.
Full textTilcock, C., S. Eastman, and D. Fisher. "Determination of Lipid Asymmetry and Exchange in Model Membrane Systems." In Cell and Model Membrane Interactions, 1–14. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3854-7_1.
Full textMcIntosh, Thomas J., Alan D. Magid, and Sidney A. Simon. "Short-Range Repulsive Interactions between the Surfaces of Lipid Membranes." In Cell and Model Membrane Interactions, 249–65. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3854-7_15.
Full textSkolnick, Jeffrey, and Mariusz Milik. "Monte Carlo Models of Spontaneous Insertion of Peptides into Lipid Membranes." In Biological Membranes, 535–54. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4684-8580-6_16.
Full textVerkleij, A. J., R. Van Venetië, J. Leunissen-Bijvelt, B. de Kruijff, M. Hope, and P. R. Cullis. "Membrane Fusion and Lipid Polymorphism." In Physical Methods on Biological Membranes and Their Model Systems, 179–92. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-7538-8_13.
Full textKimelberg, H. K. "Membrane Fluidity and Lipid Composition." In Physical Methods on Biological Membranes and Their Model Systems, 261–76. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-7538-8_19.
Full textConference papers on the topic "Lipidic model membranes"
Kononova, P. A., O. Yu Selyutina, V. V. Fomenko, and N. E. Polyakov. "INTERACTION OF ANTIVIRAL TRITERPENOIDS WITH THE TRANSMEMBRANE DOMAIN OF THE SARS-COV-2 E-PROTEIN IN A MODEL MEMBRANE." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-186.
Full textLykotrafitis, George, and He Li. "Two-Component Coarse-Grain Model for Erythrocyte Membrane." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-62133.
Full textEl-Beyrouthy, Joyce, and Eric C. Freeman. "Rapid and Real-Time Measurement of Membrane Potential Through Intramembrane Field Compensation." In ASME 2020 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/smasis2020-2352.
Full textZhelev, Doncho V., and David Needham. "Pore Formation and Pore Dynamics in Bilayer Membranes." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0750.
Full textZakharova, A. A., S. S. Efimova, and O. S. Ostroumova. "RESEARCH OF THE ABILITY OF ANIDULAFUNGIN TO FORM PORES IN MODEL MEMBRANES OF VARIOUS COMPOSITION." In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-176.
Full textFreeman, Eric C., Michael K. Philen, and Donald J. Leo. "Combined Modeling of Bilayer Networks for Sensing Applications." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-8115.
Full textKarlsson, Jens O. M., and Mehmet Toner. "Thermally-Induced Pore Formation in Cell Membranes." In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0745.
Full textAlapati, Raghava, Dorel Moldovan, and Ram V. Devireddy. "Asymmetry of Structural Characteristics of Lipid Bilayers Induced by Dimethylsulfoxide: An Atomistic Simulation Study." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192813.
Full textZlochevskiy, I. I., and D. V. Zav’yalov. "INVESTIGATION OF THE RESPONSE OF A DPPC MEMBRANE IN AN AQUEOUS SOLUTION OF NACL TO AN ALTERNATING ELECTRIC FIELD USING THE METHOD OF CLASSICAL MOLECULAR DYNAMICS." In Actual problems of physical and functional electronics. Ulyanovsk State Technical University, 2023. http://dx.doi.org/10.61527/appfe-2023.218-220.
Full textZhu, Qiang, Zhangli Peng, and Robert J. Asaro. "Investigation of RBC Remodeling With a Multiscale Model." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13121.
Full textReports on the topic "Lipidic model membranes"
Wang, X. F., and M. Schuldiner. Systems biology approaches to dissect virus-host interactions to develop crops with broad-spectrum virus resistance. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134163.bard.
Full textEpel, Bernard, and Roger Beachy. Mechanisms of intra- and intercellular targeting and movement of tobacco mosaic virus. United States Department of Agriculture, November 2005. http://dx.doi.org/10.32747/2005.7695874.bard.
Full textKanner, Joseph, Edwin Frankel, Stella Harel, and Bruce German. Grapes, Wines and By-products as Potential Sources of Antioxidants. United States Department of Agriculture, January 1995. http://dx.doi.org/10.32747/1995.7568767.bard.
Full textFallik, Elazar, Robert Joly, Ilan Paran, and Matthew A. Jenks. Study of the Physiological, Molecular and Genetic Factors Associated with Postharvest Water Loss in Pepper Fruit. United States Department of Agriculture, December 2012. http://dx.doi.org/10.32747/2012.7593392.bard.
Full textO'Neill, Sharman, Abraham Halevy, and Amihud Borochov. Molecular Genetic Analysis of Pollination-Induced Senescence in Phalaenopsis Orchids. United States Department of Agriculture, 1991. http://dx.doi.org/10.32747/1991.7612837.bard.
Full textGrumet, R., J. Burger, Y. Tadmor, A. Gur, C. Barry, A. Schäffer, and M. Petreikov. Cucumis fruit surface biology: Genetic analysis of fruit exocarp features in melon (C. melo) and cucumber (C. sativus). Israel: United States-Israel Binational Agricultural Research and Development Fund, 2020. http://dx.doi.org/10.32747/2020.8134155.bard.
Full text