Academic literature on the topic 'Liouville theorems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Liouville theorems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Liouville theorems"
Korniłowicz, Artur, Adam Naumowicz, and Adam Grabowski. "All Liouville Numbers are Transcendental." Formalized Mathematics 25, no. 1 (March 28, 2017): 49–54. http://dx.doi.org/10.1515/forma-2017-0004.
Full textGlagoleva, R. Ya. "Phragmen-Liouville-type theorems and Liouville theorems for a linear parabolic equation." Mathematical Notes of the Academy of Sciences of the USSR 37, no. 1 (January 1985): 67–70. http://dx.doi.org/10.1007/bf01652519.
Full textTuna, Hüseyin, and Aytekin Eryilmaz. "Livšic’s theorem for q-Sturm—Liouville operators." Studia Scientiarum Mathematicarum Hungarica 53, no. 4 (December 2016): 512–24. http://dx.doi.org/10.1556/012.2016.53.4.1348.
Full textAraya, Ataklti, and Ahmed Mohammed. "On Cauchy–Liouville-type theorems." Advances in Nonlinear Analysis 8, no. 1 (August 24, 2017): 725–42. http://dx.doi.org/10.1515/anona-2017-0158.
Full textBear, H. S. "Liouville theorems for heat functions." Communications in Partial Differential Equations 11, no. 14 (January 1986): 1605–25. http://dx.doi.org/10.1080/03605308608820476.
Full textJin, Zhiren. "Liouville theorems for harmonic maps." Inventiones Mathematicae 108, no. 1 (December 1992): 1–10. http://dx.doi.org/10.1007/bf02100594.
Full textAwadalla, Muath, Muthaiah Subramanian, Kinda Abuasbeh, and Murugesan Manigandan. "On the Generalized Liouville–Caputo Type Fractional Differential Equations Supplemented with Katugampola Integral Boundary Conditions." Symmetry 14, no. 11 (October 29, 2022): 2273. http://dx.doi.org/10.3390/sym14112273.
Full textChen, Wenxiong, and Leyun Wu. "Liouville Theorems for Fractional Parabolic Equations." Advanced Nonlinear Studies 21, no. 4 (October 14, 2021): 939–58. http://dx.doi.org/10.1515/ans-2021-2148.
Full textGol'dshtein, Vladimir, and Alexander Ukhlov. "On the functional properties of weak (p,q)-quasiconformal homeomorphisms." Ukrainian Mathematical Bulletin 16, no. 3 (October 21, 2019): 329–44. http://dx.doi.org/10.37069/1810-3200-2019-16-3-2.
Full textZhu, Meijun. "Liouville theorems on some indefinite equations." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 129, no. 3 (1999): 649–61. http://dx.doi.org/10.1017/s0308210500021569.
Full textDissertations / Theses on the topic "Liouville theorems"
Fazly, Mostafa. "m-Liouville theorems and regularity results for elliptic PDEs." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43751.
Full textD'Ambrosio, Lorenzo. "Hardy Inequalities and Liouville Type Theorems Associated to Degenerate Operators." Doctoral thesis, SISSA, 2002. http://hdl.handle.net/20.500.11767/4170.
Full textMastrolia, P. "GRADIENT ESTIMATES AND LIOUVILLE THEOREMS FOR DIFFUSION-TYPE OPERATORS ON COMPLETE RIEMANNIAN MANIFOLDS." Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/153097.
Full textCunha, Antonio Wilson Rodrigues da. "Sobre hipersuperfÃcies mÃnimas, aplicaÃÃes do princÃpio do mÃximo fraco e de teoremas tipo-Liouville." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15135.
Full textConselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
In this work we approach four research lines, where we began with the study of isometrically immersed hypersurfaces in a horoball. Next we studied Liouville type theorems in a complete Riemannian manifold for general operators. After we studied hypersurfaces f-minimal closed on a manifold with density, and nally we studied properly embedded minimal hypersurfaces with free boundary in a n-dimensional compact Riemannian manifold. Continuing, we obtain under a more general class operator than '-Laplacian, a Liouville type theorem for a complete Riemannian manifold, so that, prove a classication theorem for Killing graph of a foliation. Firstly, we are going to assume a weak maximum principle and that immersion is contained in a horoball, i.e., the set of bounded above Bussemann functions . We obtain an estimate for the highest quotient of r-curvatures. Moreover, under certain conditions on sectional curvature and assuming that the immersion is contained in a horoball, we forced the validity of the weak maximum principle and obtain the same estimates. Next, we establish a Choi-Wang type estimate for the rst eigenvalue of the weighter Laplacian on spaces with density in responding partially to Yau's conjecture for the rst eigenvalue weighter Laplacian for spaces with density, and moreover, we obtain an inequality Poincare type. With the estimates obtained, we establish an estimate of volume for a closed surface immersed in a space with density. Still following the study of spaces with density, we obtain a type Hientze-Karcher inequality for a compact manifold with nonempty boundary , so that, we obtain that if holds the equality than the manifold is isometric to a Euclidian ball. As consequence, we obtain under same conditions that if the f-mean curvature satisfy a bounded below than the manifold is isometric to a Euclidian ball. Finally, we obtain an estimate for the nonzero rst Steklov eigenvalue, where we are giving a answer partial to a conjecture by Fraser and Li. Moreover, as a consequence we establish an estimate for the total length of the boundary of the properly embedded minimal surfaces with free boundary in terms of its topology, thus, we proved the same when the surface is embedded in the Euclidean ball 3-dimensional.
Neste trabalho, abordamos quatro linhas de estudo, onde iniciamos com o estudo de hipersuperfcies isometricamente imersas sobre uma horobola. Em seguida estudamos Teoremas tipo Liouville para uma variedade Riemanniana completa em operadores mais gerais que o Laplaciano. Alem disso, estudamos hipersuperfcies f-mÃnimas fechadas em uma variedade com densidade e, por fim, estudamos hipersuperfÃcies mÃnimas com bordo livre, propriamente imersas em uma variedade Riemanniana compacta n-dimensional. Primeiramente, assumindo um princpio do maximo fraco e que a imersÃo està contida em uma horobola, i.e., um conjunto em que a funcÃo de Busemann à limitada superiormente, obtemos uma estimativa para o supremo do quociente das r-Ãsimas curvaturas. AlÃm disso, sob certas condiÃÃes sobre as curvaturas seccionais e assumindo que a imersÃo està contida em uma horobola, forÃamos a validade do princÃpio do mÃximo fraco e obtemos as mesmas estimativas. Prosseguindo, obtemos, para um operador mais geral que o '-Laplaciano, um teorema tipo-Liouville para uma variedade Riemanniana completa. Como aplicaÃÃo provamos um teorema de classificaÃÃo para grÃficos de Killing de uma folheaÃÃo. Em seguida, estabelecemos uma estimativa tipo Choi e Wang para o primeiro autovalor do f-Laplaciano em espaÃos com densidade, no sentido de responder parcialmente à conjectura de Yau para o primeiro autovalor do Laplaciano; alÃm disso, obtemos uma desigualdade tipo Poincarà para esse operador. Com a estimativa obtida, pudemos estabelecer uma estimativa de volume para uma superfÃcie fechada mergulhada em um espaÃo com densidade. Ainda seguindo o estudo de espaÃos com densidade, obtemos uma desigualdade tipo Heintze-Karcher para uma variedade compacta com bordo e verificamos que, se vale a igualdade, entÃo a variedade à isomÃtrica a uma bola Euclidiana. Como consequÃncia, obtemos que, nas mesmas condiÃÃes, e se a f-curvatura mÃdia satisfizer uma certa limitaÃÃo inferior, entÃo a variedade ainda à isometrica a uma bola Euclidiana. Finalmente, obtemos uma estimativa para o primeiro autovalor de Steklov, dando uma resposta parcial a uma conjectura devida a Fraser e Li. AlÃm disso, como consequÃncia, estabelecemos uma estimativa para o comprimento do bordo de uma superfÃcie mÃnima, compacta e propriamente megulhada com bordo livre em termos de sua topologia; assim, provamos o mesmo resultado quando a superfÃcie està mergulhada em uma bola Euclidiana 3-dimensional.
Afonso, Rafaela Ferreira. "Um estudo do comportamento dos zeros dos Polinômios de Gegenbauer." Universidade Federal de Uberlândia, 2016. https://repositorio.ufu.br/handle/123456789/16825.
Full textIn this dissertation, we study the Sturm Liouvile's theorems for the zeros of the solutions of linear differential equations of second order. These classical theorems are applied to analysis of the monotonicity of functions involving the zeros of classical orthogonal polynomials. in particular, Gegenbauer polynomials.
Neste trabalho estudamos os Teoremas de Sturm Liouville para zeros de soluções de equações diferenciais lineares de segunda ordem. Estes teoremas clássicos são aplicados para análise do crescimento e decrescimento de certas funções que envolvem os zeros de Polinômios Ortogonais Clássicos, como os Polinômios de Gegenbauer.
Mestre em Matemática
Tupia, Martín Dionisio Arteaga. "A função de três pontos nas teorias de Liouville e N = 1 super Liouville." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24092015-135051/.
Full textIn this dissertation we present some basic features about Liouville and N=1 Super Liouville Theory, and focus in the computation of their three point functions. Additionally, we include an introduction to Conformal Field Theories (CFT) and Supersymmetry, which are the basic tools of the present research.
Bär, Christian. "Some properties of solutions to weakly hypoelliptic equations." Universität Potsdam, 2012. http://opus.kobv.de/ubp/volltexte/2012/6006/.
Full textNeves, Rui Gomes Mendona. "Conformal field theories on random surfaces and the non-critical string." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4750/.
Full textLima, Jalman Alves de. "Teoremas Tipo Liouville e Desigualdades Tipo Harnack para Equações Elípticas Semilineares via Método Moving Spheres." Universidade Federal da Paraíba, 2011. http://tede.biblioteca.ufpb.br:8080/handle/tede/7400.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
In this work, we will do some applications of the Moving Spheres method, a variant of the method of Moving Planes, in order to obtain some Liouville-type theorems and some Harnack-type inequalities in Rn, as well as in the Euclidian half space Rn +. Our study focuses on, mostly, in the article written by Yan Yan Li and Lei Zhan [32], as well as some references of the same article. We concentrate in studying some properties of positive solutions of some semilinear elliptic partial differential equations with critical exponent and giving different proofs, improvements, and extensions of some previously established Liouville-type theorems and Harnack-type inequalities.
Neste trabalho, faremos algumas aplicações do método Moving Spheres, uma variante do método Moving Planes, na obtenção de alguns teoremas tipo Liouville e de algumas desigualdades tipo Harnack em Rn, bem como no semi-espaço euclidiano Rn +. Nosso estudo se concentra, marjoritariamente, no artigo do Yan Yan Li e Lei Zhang [32], bem como algumas referências do mesmo. Nos concentramos em estudar propriedades de soluções positivas de algumas equações diferenciais parciais elípticas semilineares com expoente crítico e dar provas diversificadas, refinamentos e extensões de alguns Teoremas tipo Liouville e desigualdades tipo Harnack já estabelecidos.
COLOMBO, GIULIO. "GLOBAL GRADIENT BOUNDS FOR SOLUTIONS OF PRESCRIBED MEAN CURVATURE EQUATIONS ON RIEMANNIAN MANIFOLDS." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/813095.
Full textBooks on the topic "Liouville theorems"
Kha, Minh, and Peter Kuchment. Liouville-Riemann-Roch Theorems on Abelian Coverings. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67428-1.
Full textGwynne, Ewain. Percolation on uniform quadrangulations and SLE6 on √8/3-Liouville quantum gravity. Paris: Société mathématique de France, 2021.
Find full textKha, Minh, and Peter Kuchment. Liouville-Riemann-Roch Theorems on Abelian Coverings. Springer International Publishing AG, 2021.
Find full textMann, Peter. Hamilton-Jacobi Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0019.
Full textHorii, Zene. Nonlinear Lattice Statistical Mechanics: The Liouville-Horii Theorem. BookSurge Publishing, 2007.
Find full textHorii, Zene. Nonlinear Lattice Statistical Mechanics: The Liouville-Horii Theorem. BookSurge Publishing, 2007.
Find full textMann, Peter. Liouville’s Theorem & Classical Statistical Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0020.
Full textMann, Peter. Classical Electromagnetism. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0027.
Full textMann, Peter. Autonomous Geometrical Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0022.
Full textMann, Peter. Canonical & Gauge Transformations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0018.
Full textBook chapters on the topic "Liouville theorems"
Wu, H. "Liouville theorems." In Lecture Notes in Mathematics, 331–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078254.
Full textFarina, Alberto. "I.6. Liouville Theorems." In James Serrin. Selected Papers, 363–428. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0845-3_6.
Full textKha, Minh, and Peter Kuchment. "Specific Examples of Liouville-Riemann-Roch Theorems." In Liouville-Riemann-Roch Theorems on Abelian Coverings, 55–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_4.
Full textKha, Minh, and Peter Kuchment. "The Main Results." In Liouville-Riemann-Roch Theorems on Abelian Coverings, 23–33. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_2.
Full textKha, Minh, and Peter Kuchment. "Proofs of the Main Results." In Liouville-Riemann-Roch Theorems on Abelian Coverings, 35–53. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_3.
Full textKha, Minh, and Peter Kuchment. "Auxiliary Statements and Proofs of Technical Lemmas." In Liouville-Riemann-Roch Theorems on Abelian Coverings, 67–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_5.
Full textKha, Minh, and Peter Kuchment. "Preliminaries." In Liouville-Riemann-Roch Theorems on Abelian Coverings, 1–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-67428-1_1.
Full textXin, Y. L. "Liouville type theorems and regularity of harmonic maps." In Lecture Notes in Mathematics, 198–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077691.
Full textHua, Bobo, Matthias Keller, Daniel Lenz, and Marcel Schmidt. "On $$L^p$$ Liouville Theorems for Dirichlet Forms." In Springer Proceedings in Mathematics & Statistics, 201–21. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4672-1_12.
Full textSouplet, Philippe. "Liouville-Type Theorems for Nonlinear Elliptic and Parabolic Problems." In 2018 MATRIX Annals, 303–25. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38230-8_21.
Full textConference papers on the topic "Liouville theorems"
BREZIS, H., M. CHIPOT, and Y. XIE. "SOME REMARKS ON LIOUVILLE TYPE THEOREMS." In Proceedings of the International Conference on Nonlinear Analysis. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812709257_0003.
Full textYU, CHII-HUEI. "APPLICATIONS OF TWO IMPORTANT THEOREMS OF FRACTIONAL CALCULUS." In 2021 INTERNATIONAL CONFERENCE ON ADVANCED EDUCATION AND INFORMATION MANAGEMENT (AEIM 2021). Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/dtssehs/aeim2021/36005.
Full textWinston, Roland. "Beating the optical Liouville theorem." In Optics and Photonics for Advanced Energy Technology. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/energy.2009.wd8.
Full textFrederico, Gastao S. F., and Delfim F. M. Torres. "Fractional Noether's theorem with classical and Riemann-Liouville derivatives." In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426162.
Full textYAMANO, TAKUYA, and OSAMU IGUCHI. "ON CLASSICAL NO-CLONING THEOREM UNDER LIOUVILLE DYNAMICS AND DISTANCES." In Summer School on Mathematical Aspects of Quantum Computing. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814487_0011.
Full textJannson, Tomasz, and Joel Ng. "Nonimaging optics and the Liouville theorem in the XUV region." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/oam.1987.thpo24.
Full textOKAYASU, TAKASHI. "A LIOUVILLE THEOREM FOR HARMONIC MAPS WITH FINITE TOTAL N-ENERGY." In Proceedings in Honor of Professor K Sekigawa's 60th Birthday. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701701_0016.
Full textKlimek, Malgorzata. "Fractional Sturm-Liouville Problem and 1D Space-Time Fractional Diffusion With Mixed Boundary Conditions." In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46808.
Full textWinston, Roland, Chunhua Wang, and Weiya Zhang. "Beating the optical Liouville theorem: How does geometrical optics know the second law of thermodynamics?" In SPIE Optical Engineering + Applications, edited by Roland Winston and Jeffrey M. Gordon. SPIE, 2009. http://dx.doi.org/10.1117/12.836029.
Full textGonzález, Diego, and Sergio Davis. "Liouville’s theorem from the principle of maximum caliber in phase space." In TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES. Author(s), 2016. http://dx.doi.org/10.1063/1.4959044.
Full textReports on the topic "Liouville theorems"
Moses, Joel, and Jamil Baddoura. A Dilogarithmic Extension of Liouville's Theorem on Integration in Finite Terms. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada206681.
Full text