Dissertations / Theses on the topic 'Lines detection and segmentation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Lines detection and segmentation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Li, Yaqian. "Image segmentation and stereo vision matching based on declivity line : application for vehicle detection." Thesis, Rouen, INSA, 2010. http://www.theses.fr/2010ISAM0010.
Full textIn the framework of driving assistance systems, we contributed to stereo vision approaches for edge extraction, matching of stereoscopic pair of images and vehicles detection. Edge extraction is performed based on the concept of declivity line we introduced. Declivity line is constructed by connecting declivities according to their relative position and intensity similarity. Edge extraction is obtained by filtering constructed declivity lines based on their characteristics. Experimental results show that declivity line method extracts additional useful information compared to declivity operator which filtered them out. Edge points of declivity lines are then matched using dynamic programming, and characteristics of declivity line reduce the number of false matching. In our matching method, declivity line contributes to detailed reconstruction of 3D scene. Finally, symmetrical characteristic of vehicles are exploited as a criterion for their detection. To do so, we extend the monocular concept of symmetry map to stereo concept. Consequently, by performing vehicle detection on disparity map, a (axis; width; disparity) symmetry map is constructed instead of an (axis; width) symmetry map. In our stereo concept, obstacles are examined at different depths thus avoiding disturbance of complex scene from which monocular concept suffers
Bonakdar, Sakhi Omid. "Segmentation of heterogeneous document images : an approach based on machine learning, connected components analysis, and texture analysis." Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00912566.
Full textKhairallah, Mahmoud. "Flow-Based Visual-Inertial Odometry for Neuromorphic Vision Sensors." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST117.
Full textRather than generating images constantly and synchronously, neuromorphic vision sensors -also known as event-based cameras- permit each pixel to provide information independently and asynchronously whenever brightness change is detected. Consequently, neuromorphic vision sensors do not encounter the problems of conventional frame-based cameras like image artifacts and motion blur. Furthermore, they can provide lossless data compression, higher temporal resolution and higher dynamic range. Hence, event-based cameras conveniently replace frame-based cameras in robotic applications requiring high maneuverability and varying environmental conditions. In this thesis, we address the problem of visual-inertial odometry using event-based cameras and an inertial measurement unit. Exploiting the consistency of event-based cameras with the brightness constancy conditions, we discuss the availability of building a visual odometry system based on optical flow estimation. We develop our approach based on the assumption that event-based cameras provide edge-like information about the objects in the scene and apply a line detection algorithm for data reduction. Line tracking allows us to gain more time for computations and provides a better representation of the environment than feature points. In this thesis, we do not only show an approach for event-based visual-inertial odometry but also event-based algorithms that can be used as stand-alone algorithms or integrated into other approaches if needed
Wigington, Curtis Michael. "End-to-End Full-Page Handwriting Recognition." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7099.
Full textTorr, Philip Hilaire Sean. "Motion segmentation and outlier detection." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308173.
Full textDeng, Jingjing (Eddy). "Adaptive learning for segmentation and detection." Thesis, Swansea University, 2017. https://cronfa.swan.ac.uk/Record/cronfa36297.
Full textHastings, Joseph R. 1980. "Incremental Bayesian segmentation for intrusion detection." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/28399.
Full textIncludes bibliographical references (leaves 131-133).
This thesis describes an attempt to monitor patterns of system calls generated by a Unix host in order to detect potential intrusion attacks. Sequences of system calls generated by privileged processes are analyzed using incremental Bayesian segmentation in order to detect anomalous activity. Theoretical analysis of various aspects of the algorithm and empirical analysis of performance on synthetic data sets are used to tune the algorithm for use as an Intrusion Detection System.
by Joseph R. Hastings.
M.Eng.
Nedilko, Bohdan. "Seismic detection of rockfalls on railway lines." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58097.
Full textScience, Faculty of
Earth, Ocean and Atmospheric Sciences, Department of
Graduate
Torrent, Palomeras Albert. "Simultaneous detection and segmentation for generic objects." Doctoral thesis, Universitat de Girona, 2013. http://hdl.handle.net/10803/117736.
Full textEn aquesta tesi s'estudia la detecció i segmentació simultània d'objectes genèrics en imatges. La proposta està basada en un diccionari de parts de l'objecte que el defineixen i, alhora, ens permet extreure les característiques de detecció i segmentació per entrenar el classificador. A més, dins l'entrenament del classificador s'inclou la possibilitat de creuar informació entre la detecció i la segmentació, de tal manera que una bona detecció pugui ajudar a segmentar i viceversa. L'algorisme s'ha validat adaptant-lo al reconeixement d'objectes en imatge mèdica i imatge astronòmica. Aquest punt reforça el principal objectiu de la tesi: proposar un sistema genèric capaç de tractar amb objectes de qualsevol tipus de naturalesa
HEGSTAM, BJÖRN. "Defect detection and segmentation inmultivariate image streams." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-142069.
Full textOptoNova är en världsledande leverantör av inspektionssystem for kvalitetskontroll av ytor och kanter i hög hastighet. Företaget utvecklar egna sensorsystem och mjukvara, och är intresserade av att undersöka möjligheten att bättre utnyttja tillgänglig sensordata genom att använda metoder baserade på maskininlärning. Syftet med det här projektet var att utveckla en metod för att upptäcka ytdefekter i multivariata bilder. Ett tidigare examensarbete gjort hos OptoNova visade på lovande resultat vid inspektion av kanter på köksluckor. Modellen som utvecklades i det projektet använde sig av ett Difference of Gaussians-skalrum. Den modellen användes som utgångspunkt för det här arbetet med vissa förändringar gjorda för att lägga fokus på texturdefekter i plana ytor. Den utvecklade modellen tar in en multivariat bild och genererar en Laplacepyramid. Varje nivå i pyramiden skickas sedan igenom en tränad bildmodell som i sin tur producerar en gråskalebild där möjliga defekter är markerade. Samtliga bildmodellers resultat skalas upp till samma storlek som ursprungsbilden och en medelvärdesbild beräknas. Detta ger den slutliga defektbilden som visar vilka delar av det inlästa provet som är defekta. Varje bildmodell består dels av en modul som extraherar särdragsvektorer och dels av en modul som modellerar hur vektorer från oskadade ytor är fördelade i rummet av särdragsvektorer. För det senare användes en Gaussian mixture model (GMM). Modellens modullära design gör det enkelt att använda olika typer av särdragsvektorer och modeller för dessa. Tester visade att pyramidmodellen kan prestera bättre än den tidigare utvecklade modellen. Utmärkta resultat uppnåddes vid detektion av defekter som karaktäriserades av tydliga avvikelser i textur. Defekter som däremot endast utgjordes av mindre variationer i intensitet hittades generellt sett inte. Det konstaterades att den nya modellen visar på potential till att fungera väl, men att mer arbete fortfarande behöver göras. Framförallt måste fler tester göras med fler prover, samt prover med varierande ytmönster, såsom träytor.
Beare, Richard. "Image segmentation based on local motion detection /." Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09PH/09phb3684.pdf.
Full textHegstam, Björn. "Defect detection and segmentation inmultivariate image streams." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150456.
Full textOptoNova är en världsledande leverantör av inspektionssystem for kvali-tetskontroll av ytor och kanter i hög hastighet. Företaget utvecklar egnasensorsystem och mjukvara, och är intresserade av att undersöka möj-ligheten att bättre utnyttja tillgänglig sensordata genom att användametoder baserade på maskininlärning.Syftet med det här projektet var att utveckla en metod för att upp-täcka ytdefekter i multivariata bilder. Ett tidigare examensarbete gjorthos OptoNova visade på lovande resultat vid inspektion av kanter påköksluckor. Modellen som utvecklades i det projektet använde sig av ettDifference of Gaussians-skalrum. Den modellen användes som utgångs-punkt för det här arbetet med vissa förändringar gjorda för att läggafokus på texturdefekter i plana ytor.Den utvecklade modellen tar in en multivariat bild och genereraren Laplacepyramid. Varje nivå i pyramiden skickas sedan igenom entränad bildmodell som i sin tur producerar en gråskalebild där möjligadefekter är markerade. Samtliga bildmodellers resultat skalas upp tillsamma storlek som ursprungsbilden och en medelvärdesbild beräknas.Detta ger den slutliga defektbilden som visar vilka delar av det inlästaprovet som är defekta. Varje bildmodell består dels av en modul somextraherar särdragsvektorer och dels av en modul som modellerar hurvektorer från oskadade ytor är fördelade i rummet av särdragsvektorer.För det senare användes en Gaussian mixture model (GMM). Modellensmodullära design gör det enkelt att använda olika typer av särdragsvek-torer och modeller för dessa.Tester visade att pyramidmodellen kan prestera bättre än den tidi-gare utvecklade modellen. Utmärkta resultat uppnåddes vid detektionav defekter som karaktäriserades av tydliga avvikelser i textur. Defektersom däremot endast utgjordes av mindre variationer i intensitet hittadesgenerellt sett inte.Det konstaterades att den nya modellen visar på potential till attfungera väl, men att mer arbete fortfarande behöver göras. Framföralltmåste fler tester göras med fler prover, samt prover med varierandeytmönster, såsom träytor.
Eltayef, Khalid Ahmad A. "Segmentation and lesion detection in dermoscopic images." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/16211.
Full textStröm, Bartunek Josef. "FINGERPRINT IMAGE ENHANCEMENT, SEGMENTATION AND MINUTIAE DETECTION." Doctoral thesis, Blekinge Tekniska Högskola, Institutionen för tillämpad signalbehandling, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11149.
Full textZhang, Jingdan McMillan Leonard. "Object detection and segmentation using discriminative learning." Chapel Hill, N.C. : University of North Carolina at Chapel Hill, 2009. http://dc.lib.unc.edu/u?/etd,2181.
Full textTitle from electronic title page (viewed Jun. 26, 2009). "... in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science." Discipline: Computer Science; Department/School: Computer Science.
Wang, Qiong. "Salient object detection and segmentation in videos." Thesis, Rennes, INSA, 2019. http://www.theses.fr/2019ISAR0003/document.
Full textThis thesis focuses on the problem of video salient object detection and video object instance segmentation which aim to detect the most attracting objects or assign consistent object IDs to each pixel in a video sequence. One approach, one overview and one extended model are proposed for video salient object detection, and one approach is proposed for video object instance segmentation. For video salient object detection, we propose: (1) one traditional approach to detect the whole salient object via the adjunction of virtual borders. A guided filter is applied on the temporal output to integrate the spatial edge information for a better detection of the salient object edges. A global spatio-temporal saliency map is obtained by combining the spatial saliency map and the temporal saliency map together according to the entropy. (2) An overview of recent developments for deep-learning based methods is provided. It includes the classifications of the state-of-the-art methods and their frameworks, and the experimental comparison of the performances of the state-of-the-art methods. (3) One extended model further improves the performance of the proposed traditional approach by integrating a deep-learning based image salient object detection method For video object instance segmentation, we propose a deep-learning approach in which the warping confidence computation firstly judges the confidence of the mask warped map, then a semantic selection is introduced to optimize the warped map, where the object is re-identified using the semantics labels of the target object. The proposed approaches have been assessed on the published large-scale and challenging datasets. The experimental results show that the proposed approaches outperform the state-of-the-art methods
Mallu, Mallu. "Fashion Object Detection and Pixel-Wise Semantic Segmentation : Crowdsourcing framework for image bounding box detection & Pixel-Wise Segmentation." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234691.
Full textTekniken har förnyat alla aspekter av vårt liv, en av de olika fasetterna är modeindustrin. Massor av djupa inlärningsarkitekturer tar form för att öka modeupplevelser för alla. Det finns många möjligheter att förbättra modetekniken med djup inlärning. En av de viktigaste idéerna är att skapa modestil och rekommendation med hjälp av artificiell intelligens. På samma sätt är en annan viktig egenskap att samla pålitlig information om modetrender, vilket inkluderar analys av befintliga moderelaterade bilder och data. När det specifikt handlar om bilder är lokalisering och segmentering väl kända för att ta itu med en djupgående studie om pixlar, objekt och etiketter som finns i bilden. I denna masterprojekt presenteras en komplett ram för att utföra lokalisering och segmentering på fashionista bilder. Detta arbete är en del av ett intressant forskningsarbete relaterat till Fashion Style detektering och rekommendation. Utvecklad lösning syftar till att utnyttja möjligheten att lokalisera modeartiklar i en bild genom att rita avgränsande lådor och märka dem. Tillsammans med det tillhandahåller det även pixel-wise semantisk segmenteringsfunktionalitet som extraherar dataelementetikett-pixeldata. Samlad data kan fungera som grundsannelse samt träningsdata för den riktade djuplärarkitekturen. En studie relaterad till lokalisering och segmentering av videor har också presenterats i detta arbete. Det utvecklade systemet har utvärderats med avseende på flexibilitet, utskriftskvalitet och tillförlitlighet jämfört med liknande plattformar. Det har visat sig vara en fullt fungerande lösning som kan tillhandahålla viktiga lokaliseringsoch segmenteringstjänster samtidigt som kärnarkitekturen är enkel och utvidgbar.
Gandhi, Tarak L. "Image sequence analysis for object detection and segmentation." Adobe Acrobat reader required to view the full dissertation, 2000. http://www.etda.libraries.psu.edu/theses/approved/PSUonlyIndex/ETD-18/index.html.
Full textDonnelley, Martin, and martin donnelley@gmail com. "Computer Aided Long-Bone Segmentation and Fracture Detection." Flinders University. Engineering, 2008. http://catalogue.flinders.edu.au./local/adt/public/adt-SFU20080115.222927.
Full textFu, Guoyi. "Data driven low-level object detection and segmentation." Thesis, University of Kent, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.498827.
Full textBruce, Jacob Robert. "Mathematical Expression Detection and Segmentation in Document Images." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/46724.
Full textMaster of Science
Munnangi, Anirudh. "Innovative Segmentation Strategies for Melanoma Skin Cancer Detection." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1510916097483278.
Full textSilva, Daniel Torres Couto Coimbra e. "LIDAR target detection and segmentation in road environment." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11774.
Full textIn this project a comparative and exhaustive evaluation of several 2D laser data segmentation algorithms in road scenarios is performed. In a first stage, the segmentation algorithms are implemented using the ROS programming environment; the algorithms are applied to the raw laser scan data in order to extract groups of measurement points which share similar spatial properties and that probably will belong to one single object. Each algorithm has at least one threshold condition parameter that is configurable, and one of the goals is to try to determine the best value of that parameter for road environments. The following stage was the definition of the Ground-truth where multiple laser scans were hand-labelled. The next step was the comparison between the Ground-truth and the segmentation algorithms in order to test their validity. With the purpose of having a quantitative evaluation of the methods' performance, six performance measures were created and compared.
Neste trabalho é feita uma avaliação exaustiva e comparativa de diversos algoritmos de segmentação de dados laser 2D em ambiente de estrada. Numa primeira fase, os algoritmos de segmentação são implementados usando o ambiente ROS; estes algoritmos têm a função de juntar pontos adquiridos pelo laser e agrupar os pontos de acordo com as suas propriedades espaciais e que idealmente irão pertencer ao mesmo objeto. Tendo cada algoritmo pelo menos um parâmetro variável na sua condição de separação, um dos objetivos do projeto é determinar o seu valor optimo em varias situações de estrada. A etapa seguinte foi definir um Ground-truth: diversos laser scans foram manualmente segmentados. Por fim, é feita a comparação entre os resultados dos algoritmos com o Ground-truth, testando assim a validade de cada algoritmo. Com o intuito de se realizar uma avaliação quantitativa, foram criadas seis medidas de desempenho da segmentação dos algoritmos que penalizam casos de má segmentação.
Stainton, John Joseph. "Detection of signatures of selection in commercial chicken lines." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/21057.
Full textPont, Tuset Jordi. "Image segmentation evaluation and its application to object detection." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/134354.
Full textPons, Rodríguez Gerard. "Computer-aided lesion detection and segmentation on breast ultrasound." Doctoral thesis, Universitat de Girona, 2014. http://hdl.handle.net/10803/129453.
Full textAquesta tesi es centra en la detecció, segmentació i classificació de lesions en imatges d'ecografia. La contribució d'aquesta tesi és el desenvolupament d'una nova eina de Diagnòstic Assistit per Ordinador (DAO) capaç de detectar, segmentar i classificar automàticament lesions en imatges d'ecografia de mama. Inicialment, s'ha proposat l'adaptació del mètode genèric de detecció d'objectes Deformable Part Models (DPM) per detectar lesions en imatges d'ecografia. Aquest mètode utilitza tècniques d'aprenentatge automàtic per generar un model basat en l'Histograma de Gradients Orientats. Aquest mètode també és utilitzat per detectar lesions malignes directament, simplificant així l'estratègia tradicional. A continuació, s'han realitzat diferents propostes d'inicialització en un mètode de segmentació basat en Markov Random Field (MRF)-Maximum A Posteriori (MAP) per tal de reduir la interacció amb l'usuari. Per avaluar aquesta proposta, s'ha realitzat un estudi sobre la influència del tipus de lesió en els resultats aconseguits. Finalment, s'ha proposat la inclusió d'elastografia en aquesta estratègia de segmentació. Els mètodes proposats per a cada etapa de l'eina DAO han estat avaluats fent servir bases de dades diferents, comparant els resultats obtinguts amb els resultats dels mètodes més importants de l'estat de l'art
Dursun, Mustafa. "Road Detection By Mean Shift Segmentation And Structural Analysis." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614443/index.pdf.
Full textZhai, Yun. "VIDEO CONTENT EXTRACTION: SCENE SEGMENTATION, LINKING AND ATTENTION DETECTION." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4007.
Full textPh.D.
School of Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science
Schwarz, Christopher. "Detection, Segmentation, and Pose Recognition of Hands in Images." Honors in the Major Thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETH/id/1004.
Full textBachelors
Engineering and Computer Science
Computer Science
Riste-Smith, Robert. "Edge detection and knowledge based segmentation of medical radiographs." Thesis, University of Portsmouth, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303486.
Full textSchofield, Andrew John. "Neural network models for texture segmentation and target detection." Thesis, Keele University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358048.
Full textCAMPOS, VANESSA DE OLIVEIRA. "MULTICRITERION SEGMENTATION FOR LUNG NODULE DETECTION IN COMPUTED TOMOGRAPHY." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16423@1.
Full textEste trabalho propõe um novo algoritmo de segmentação baseado em crescimento de regiões para detecção de nódulos pulmonares em imagens de tomografia computadorizada. Para decidir, em cada iteração, se dois objetos adjacentes são fundidos em um único objeto, o algoritmo de segmentação calcula um índice de heterogeneidade baseada em múltiplos critérios. Entretanto, o algoritmo de segmentação depende de alguns parâmetros os quais foram encontrados utilizando algoritmo genético. Resultados experimentais mostraram que o método é robusto e promissor (chegando a uma sensibilidade de 80,9 % com 0,23 falsos positivos por exame). Além disso, indicam que o método proposto é capaz de fornecer um bom suporte para o diagnóstico do especialista.
This study proposes a novel segmentation algorithm for lung nodules detection in thorax computed tomography (CT). In order to decide, at each iteration, whether two adjacent objects should be merged or not, a region growing procedure calculates a heterogeneity growth based on multiple criteria. However, segmentation algorithm depends on some parameters which were found by genetic algorithm. Results produced by the proposed segmentation were closely consistent with the reference segments provided manually by an expert physician. The detection itself achieved 80,9% sensitivity with 0,23 false positive per slice which indicates that the proposed method is able to provide a good suggestion for the specialist. Results indicate the potential of proposed segmentation method and encourage a further investigation aiming at improving its accuracy.
Espis, Andrea. "Object detection and semantic segmentation for assisted data labeling." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Find full textGhadiri, Farnoosh. "Human shape modelling for carried object detection and segmentation." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30948.
Full textDetecting carried objects is one of the requirements for developing systems that reason about activities involving people and objects. This thesis presents novel methods to detect and segment carried objects in surveillance videos. The contributions are divided into three main chapters. In the first, we introduce our carried object detector which allows to detect a generic class of objects. We formulate carried object detection in terms of a contour classification problem. We classify moving object contours into two classes: carried object and person. A probability mask for person’s contours is generated based on an ensemble of contour exemplars (ECE) of walking/standing humans in different viewing directions. Contours that are not falling in the generated hypothesis mask are considered as candidates for carried object contours. Then, a region is assigned to each carried object candidate contour using Biased Normalized Cut (BNC) with a probability obtained by a weighted function of its overlap with the person’s contour hypothesis mask and segmented foreground. Finally, carried objects are detected by applying a Non-Maximum Suppression (NMS) method which eliminates the low score carried object candidates. The second contribution presents an approach to detect carried objects with an innovative method for extracting features from foreground regions based on their local contours and superpixel information. Initially, a moving object in a video frame is segmented into multi-scale superpixels. Then human-like regions in the foreground area are identified by matching a set of extracted features from superpixels against a codebook of local shapes. Here the definition of human like regions is equivalent to a person’s probability map in our first proposed method (ECE). Our second carried object detector benefits from the novel feature descriptor to produce a more accurate probability map. Complement of the matching probabilities of superpixels to human-like regions in the foreground are considered as a carried object probability map. At the end, each group of neighboring superpixels with a high carried object probability which has strong edge support is merged to form a carried object. Finally, in the third contribution we present a method to detect and segment carried objects. The proposed method adopts the new superpixel-based descriptor to identify carried object-like candidate regions using human shape modeling. Using spatio-temporal information of the candidate regions, consistency of recurring carried object candidates viewed over time is obtained and serves to detect carried objects. Last, the detected carried object regions are refined by integrating information of their appearances and their locations over time with a spatio-temporal extension of GrabCut. This final stage is used to accurately segment carried objects in frames. Our methods are fully automatic, and make minimal assumptions about a person, carried objects and videos. We evaluate the aforementioned methods using two available datasets PETS 2006 and i-Lids AVSS. We compare our detector and segmentation methods against a state-of-the-art detector. Experimental evaluation on the two datasets demonstrates that both our carried object detection and segmentation methods significantly outperform competing algorithms.
Marte, Otto-Carl. "Model driven segmentation and the detection of bone fractures." Master's thesis, University of Cape Town, 2004. http://hdl.handle.net/11427/6414.
Full textThe introduction of lower dosage image acquisition devices and the increase in computational power means that there is an increased focus on producing diagnostic aids for the medical trauma environment. The focus of this research is to explore whether geometric criteria can be used to detect bone fractures from Computed Tomography data. Conventional image processing of CT data is aimed at the production of simple iso-surfaces for surgical planning or diagnosis - such methods are not suitable for the automated detection of fractures. Our hypothesis is that through a model-based technique a triangulated surface representing the bone can be speedily and accurately produced. And, that there is sufficient structural information present that by examining the geometric structure of this representation we can accurately detect bone fractures. In this dissertation we describe the algorithms and framework that we built to facilitate the detection of bone fractures and evaluate the validity of our approach.
Lo, Wing Sze. "Statistics-based Chinese word segmentation and new word detection /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?ELEC%202002%20LOW.
Full textIncludes bibliographical references (leaves 83-86). Also available in electronic version. Access restricted to campus users.
Ullah, Habib. "Crowd Motion Analysis: Segmentation, Anomaly Detection, and Behavior Classification." Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/369001.
Full textUllah, Habib. "Crowd Motion Analysis: Segmentation, Anomaly Detection, and Behavior Classification." Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1406/1/PhD_Thesis_Habib.pdf.
Full textLung-Yut-Fong, Alexandre. "Evaluation of Kernel Methods for Change Detection and Segmentation : Application to Audio Onset Detection." Thesis, Uppsala University, Department of Information Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-98274.
Full textFinding changes in a signal is a pervasive topic in signal processing. Through the example of audio onset detection to which we apply an online framework, we evaluate the ability of a class of machine learning techniques to solve this task.
The goal of this thesis is to review and evaluate some kernel methods for thetwo-sample problem (one-class Support Vector Machine, Maximum MeanDiscrepancy and Kernel Fisher Discriminant Analysis) on the change detection task, by benchmarking our proposed framework on a set of annotated audio files to which we can compare our results to the ground-truth onset times.
Sarkaar, Ajit Bhikamsingh. "Addressing Occlusion in Panoptic Segmentation." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/101988.
Full text24
Visual recognition tasks have witnessed vast improvements in performance since the advent of deep learning. Despite making significant improvements, algorithms for these tasks still do not perform well at recognizing partially visible objects in the scene. In this work, we propose a novel object classification method that uses compositional models to perform part based detection. The method first looks at individual parts of an object in the scene and then makes a decision about its identity. We test the proposed method in the context of the recently introduced panoptic segmentation task. The panoptic segmentation task combines both semantic and instance segmentation to perform labelling of the entire image. The novel classification method replaces the object detection module in UPSNet, a Mask R-CNN based algorithm for panoptic segmentation. We also discuss an issue with the segmentation mask prediction of Mask R-CNN that affects overlapping instances. After performing extensive experiments and evaluation, it can be seen that the novel classification method shows promising results for object classification on occluded instances in complex scenes.
Feng, Sitao. "Evaluation of Red Colour Segmentation Algorithms in Traffic Signs Detection." Thesis, Högskolan Dalarna, Datateknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:du-5806.
Full textLosch, Max. "Detection and Segmentation of Brain Metastases with Deep Convolutional Networks." Thesis, KTH, Datorseende och robotik, CVAP, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-173519.
Full textOtt, Patrick. "Segmentation features, visibility modeling and shared parts for object detection." Thesis, University of Leeds, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.581947.
Full textLiang, Kung-Hao. "From uncertainty to adaptivity : multiscale edge detection and image segmentation." Thesis, University of Warwick, 1997. http://wrap.warwick.ac.uk/57578/.
Full textChristogiannopoulos, Georgios. "Detection, segmentation and tracking of moving individuals in cluttered scenes." Thesis, University of Sussex, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.444374.
Full textWang, Chen. "2D object detection and semantic segmentation in the Carla simulator." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291337.
Full textÄmnet självkörande bilteknik har väckt intresse de senaste åren. Många företag, som Baidu och Tesla, har redan infört automatiska körtekniker i sina nyaste bilar när de kör i ett specifikt område. Det finns dock fortfarande många utmaningar inför fullt autonoma bilar. Detta projekt syftar till att bygga ett riktmärke för att implementera hela det självkörande bilsystemet i programvara. Det finns tre huvudkomponenter inklusive uppfattning, planering och kontroll i hela det autonoma körsystemet. Denna avhandling fokuserar på två underuppgifter 2D-objekt detektering och semantisk segmentering i uppfattningsdelen. Alla experiment kommer att testas i en simulatormiljö som heter The CAR Learning to Act (Carla), som är en öppen källkodsplattform för autonom bilforskning. Du ser bara en gång (Yolov4) och effektiva nätverk för datorvision (ESPnetv2) implementeras i detta projekt för att uppnå Funktioner för objektdetektering och semantisk segmentering. Den minimala distans medvetenhets applikationen implementeras i Carla-simulatorn för att upptäcka avståndet till de främre bilarna. Denna applikation kan användas som en grundläggande funktion för att undvika kollisionen.
Kim, Soowon. "Computational architecture for the detection and segmentation of coherent motion /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487946776021216.
Full textLidayová, Kristína. "Fast Methods for Vascular Segmentation Based on Approximate Skeleton Detection." Doctoral thesis, Uppsala universitet, Avdelningen för visuell information och interaktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318796.
Full textMa, Tianyang. "Graph-based Inference with Constraints for Object Detection and Segmentation." Diss., Temple University Libraries, 2013. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/231622.
Full textPh.D.
For many fundamental problems of computer vision, adopting a graph-based framework can be straight-forward and very effective. In this thesis, I propose several graph-based inference methods tailored for different computer vision applications. It starts from studying contour-based object detection methods. In particular, We propose a novel framework for contour based object detection, by replacing the hough-voting framework with finding dense subgraph inference. Compared to previous work, we propose a novel shape matching scheme suitable for partial matching of edge fragments. The shape descriptor has the same geometric units as shape context but our shape representation is not histogram based. The key contribution is that we formulate the grouping of partial matching hypotheses to object detection hypotheses is expressed as maximum clique inference on a weighted graph. Consequently, each detection result not only identifies the location of the target object in the image, but also provides a precise location of its contours, since we transform a complete model contour to the image. We achieve very competitive results on ETHZ dataset, obtained in a pure shape-based framework, demonstrate that our method achieves not only accurate object detection but also precise contour localization on cluttered background. Similar to the task of grouping of partial matches in the contour-based method, in many computer vision problems, we would like to discover certain pattern among a large amount of data. For instance, in the application of unsupervised video object segmentation, where we need automatically identify the primary object and segment the object out in every frame. We propose a novel formulation of selecting object region candidates simultaneously in all frames as finding a maximum weight clique in a weighted region graph. The selected regions are expected to have high objectness score (unary potential) as well as share similar appearance (binary potential). Since both unary and binary potentials are unreliable, we introduce two types of mutex (mutual exclusion) constraints on regions in the same clique: intra-frame and inter-frame constraints. Both types of constraints are expressed in a single quadratic form. An efficient algorithm is applied to compute the maximal weight cliques that satisfy the constraints. We apply our method to challenging benchmark videos and obtain very competitive results that outperform state-of-the-art methods. We also show that the same maximum weight subgraph with mutex constraints formulation can be used to solve various computer vision problems, such as points matching, solving image jigsaw puzzle, and detecting object using 3D contours.
Temple University--Theses
Wu, Xinheng. "A Deep Unsupervised Anomaly Detection Model for Automated Tumor Segmentation." Thesis, The University of Sydney, 2020. https://hdl.handle.net/2123/22502.
Full text