To see the other types of publications on this topic, follow the link: Linearizace systému.

Journal articles on the topic 'Linearizace systému'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Linearizace systému.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Korobov, V. I. "Almost linearizable control systems." Mathematics of Control, Signals, and Systems 33, no. 3 (May 15, 2021): 473–97. http://dx.doi.org/10.1007/s00498-021-00288-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sastry, S. S., and A. Isidori. "Adaptive control of linearizable systems." IEEE Transactions on Automatic Control 34, no. 11 (1989): 1123–31. http://dx.doi.org/10.1109/9.40741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chetverikov, V. N. "Flatness of dynamically linearizable systems." Differential Equations 40, no. 12 (December 2004): 1747–56. http://dx.doi.org/10.1007/s10625-005-0106-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hirschorn, R. M. "Global Controllability of Locally Linearizable Systems." SIAM Journal on Control and Optimization 28, no. 3 (March 1990): 540–51. http://dx.doi.org/10.1137/0328032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agafonov, S. I., E. V. Ferapontov, and V. S. Novikov. "Quasilinear systems with linearizable characteristic webs." Journal of Mathematical Physics 58, no. 7 (July 2017): 071506. http://dx.doi.org/10.1063/1.4994198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bowong, S., and A. Temgoua Kagou. "Adaptive Control for Linearizable Chaotic Systems." Journal of Vibration and Control 12, no. 2 (February 2006): 119–37. http://dx.doi.org/10.1177/1077546306059318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hussien, Omar, Aaron Ames, and Paulo Tabuada. "Abstracting Partially Feedback Linearizable Systems Compositionally." IEEE Control Systems Letters 1, no. 2 (October 2017): 227–32. http://dx.doi.org/10.1109/lcsys.2017.2713461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marino, R., W. M. Boothby, and D. L. Elliott. "Geometric properties of linearizable control systems." Mathematical Systems Theory 18, no. 1 (December 1985): 97–123. http://dx.doi.org/10.1007/bf01699463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Del Vecchio, D., R. Marino, and P. Tomei. "Adaptive Learning Control for Feedback Linearizable Systems*." European Journal of Control 9, no. 5 (January 2003): 483–96. http://dx.doi.org/10.3166/ejc.9.483-496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marino, R., and P. Tomei. "Self-Tuning Stabilization of Feedback Linearizable Systems." IFAC Proceedings Volumes 25, no. 14 (July 1992): 95–100. http://dx.doi.org/10.1016/s1474-6670(17)50718-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

González, Graciela Adriana. "Adaptive control of linearizable discrete-time systems." Automatica 33, no. 4 (April 1997): 725–27. http://dx.doi.org/10.1016/s0005-1098(96)00232-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

ESFANDIARI, FARZAD, and HASSAN K. KHALIL. "Output feedback stabilization of fully linearizable systems." International Journal of Control 56, no. 5 (November 1992): 1007–37. http://dx.doi.org/10.1080/00207179208934355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tall, Issa Amadou. "Feedback Linearizable Feedforward Systems: A Special Class." IEEE Transactions on Automatic Control 55, no. 7 (July 2010): 1736–42. http://dx.doi.org/10.1109/tac.2010.2048051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Tornambè, Antonio. "Asymptotic inverse dynamics of feedback linearizable systems." Systems & Control Letters 16, no. 2 (February 1991): 145–53. http://dx.doi.org/10.1016/0167-6911(91)90009-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Vakhrameev, S. A. "Smooth control systems of constant rank and linearizable systems." Journal of Soviet Mathematics 55, no. 4 (July 1991): 1864–91. http://dx.doi.org/10.1007/bf01095138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Stöcker, Christian, and Jan Lunze. "Event-based control of input-output linearizable systems." IFAC Proceedings Volumes 44, no. 1 (January 2011): 10062–67. http://dx.doi.org/10.3182/20110828-6-it-1002.00540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

AL-SUNNI, F., and S. MUKARRAM. "An Adaptive Variable Structure Controller for Linearizable Systems." Journal of King Abdulaziz University-Engineering Sciences 14, no. 1 (2002): 63–74. http://dx.doi.org/10.4197/eng.14-1.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Feki, Moez. "An adaptive feedback control of linearizable chaotic systems." Chaos, Solitons & Fractals 15, no. 5 (March 2003): 883–90. http://dx.doi.org/10.1016/s0960-0779(02)00203-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hauser, John, and Rick Hindman. "Maneuver Regulation from Trajectory Tracking: Feedback Linearizable Systems *." IFAC Proceedings Volumes 28, no. 14 (June 1995): 595–600. http://dx.doi.org/10.1016/s1474-6670(17)46893-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Romanovski, Valery G. "The Linearizable Centers of Time-Reversible Polynomial Systems." Progress of Theoretical Physics Supplement 150 (2003): 243–54. http://dx.doi.org/10.1143/ptps.150.243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jeng Tze Huang. "Sufficient conditions for parameter convergence in linearizable systems." IEEE Transactions on Automatic Control 48, no. 5 (May 2003): 878–80. http://dx.doi.org/10.1109/tac.2003.811272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zhu, Ruijun, Jingdan Fu, Weili Hu, and Qingwei Chen. "Adaptive time-delay observer design for linearizable systems." IFAC Proceedings Volumes 32, no. 2 (July 1999): 3920–25. http://dx.doi.org/10.1016/s1474-6670(17)56669-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kosmatopoulos, E. B., and P. A. Ioannou. "A switching adaptive controller for feedback linearizable systems." IEEE Transactions on Automatic Control 44, no. 4 (April 1999): 742–50. http://dx.doi.org/10.1109/9.754811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Chabour, R., and A. Ferfera. "Singularity for static-state feedback linearizable bilinear systems." IEEE Transactions on Automatic Control 44, no. 8 (1999): 1559–64. http://dx.doi.org/10.1109/9.780421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Safdar, M., Asghar Qadir, and S. Ali. "Linearizability of Systems of Ordinary Differential Equations Obtained by Complex Symmetry Analysis." Mathematical Problems in Engineering 2011 (2011): 1–17. http://dx.doi.org/10.1155/2011/171834.

Full text
Abstract:
Five equivalence classes had been found for systems of two second-order ordinary differential equations, transformable to linear equations (linearizable systems) by a change of variables. An “optimal (or simplest) canonical form” of linear systems had been established to obtain the symmetry structure, namely, with 5-, 6-, 7-, 8-, and 15-dimensional Lie algebras. For those systems that arise from a scalar complex second-order ordinary differential equation, treated as a pair of real ordinary differential equations, we provide a “reduced optimal canonical form.” This form yields three of the five equivalence classes of linearizable systems of two dimensions. We show that there exist 6-, 7-, and 15-dimensional algebras for these systems and illustrate our results with examples.
APA, Harvard, Vancouver, ISO, and other styles
26

Ha, I. J., B. G. Ahn, and J. Y. Lee. "Discussion on: “Adaptive Learning Control for Feedback Linearizable Systems”." European Journal of Control 9, no. 5 (2003): 497–98. http://dx.doi.org/10.3166/ejc.9.497-498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Song, Ri-yoa, Shintaro Ishijima, and Akira Kojima. "Observer Based Linearization of I/O Linearizable Nonlinear Systems." IFAC Proceedings Volumes 29, no. 1 (June 1996): 2150–55. http://dx.doi.org/10.1016/s1474-6670(17)57990-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

SIRA-RAMIREZ, HEBERTT, MOHAMED ZRIBI, and SHAHEEN AHMAD. "Adaptive dynamical feedback regulation strategies for linearizable uncertain systems." International Journal of Control 57, no. 1 (January 1993): 121–39. http://dx.doi.org/10.1080/00207179308934381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Xu, Haojian, Maj Mirmirani, and Helen Boussalis. "Robust Adaptive Control of Linearizable Systems with Saturaturated Input." IFAC Proceedings Volumes 34, no. 6 (July 2001): 121–26. http://dx.doi.org/10.1016/s1474-6670(17)35160-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kanellakopoulos, I., P. V. Kokotovic, and A. S. Morse. "Systematic design of adaptive controllers for feedback linearizable systems." IEEE Transactions on Automatic Control 36, no. 11 (November 1991): 1241–53. http://dx.doi.org/10.1109/9.100933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Marino, R., P. Tomei, I. Kanellakopoulos, and P. V. Kokotovic. "Adaptive tracking for a class of feedback linearizable systems." IEEE Transactions on Automatic Control 39, no. 6 (June 1994): 1314–19. http://dx.doi.org/10.1109/9.293204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

WANG, LE YI, IMAD MAKKI, and WEI ZHAN. "A NOTE ON ROBUST STABILIZATION OF FEEDBACK LINEARIZABLE SYSTEMS." International Journal of Robust and Nonlinear Control 7, no. 1 (January 1997): 85–95. http://dx.doi.org/10.1002/(sici)1099-1239(199701)7:1<85::aid-rnc209>3.0.co;2-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Xu, Haojian, and Petros A. Ioannou. "ROBUST ADAPTIVE CONTROL OF LINEARIZABLE NONLINEAR SINGLE INPUT SYSTEMS." IFAC Proceedings Volumes 35, no. 1 (2002): 391–96. http://dx.doi.org/10.3182/20020721-6-es-1901.01051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Son, Jun-Won, and Jong-Tae Lim. "Stabilization of Approximately Feedback Linearizable Systems Using Singular Perturbation." IEEE Transactions on Automatic Control 53, no. 6 (July 2008): 1499–503. http://dx.doi.org/10.1109/tac.2008.921027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Giacomini, Héctor, Jaume Giné, and Maite Grau. "Linearizable planar differential systems via the inverse integrating factor." Journal of Physics A: Mathematical and Theoretical 41, no. 13 (March 17, 2008): 135205. http://dx.doi.org/10.1088/1751-8113/41/13/135205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

KOO, M. S., and J. T. LIM. "Switching Control of Feedback Linearizable Systems Using Multi-Diffeomorphism." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A, no. 11 (November 1, 2006): 3344–47. http://dx.doi.org/10.1093/ietfec/e89-a.11.3344.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

CHOI, H. L., and J. T. LIM. "Asymptotic Stabilization of Feedback Linearizable Systems via Estimated Diffeomorphism." IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E90-A, no. 7 (July 1, 2007): 1476–80. http://dx.doi.org/10.1093/ietfec/e90-a.7.1476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Khalil, Hassan K. "Robust servomechanism output feedback controllers for feedback linearizable systems." Automatica 30, no. 10 (October 1994): 1587–99. http://dx.doi.org/10.1016/0005-1098(94)90098-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Hin-Chi, Lei, and Chang Huei-Wen. "A list of hodograph transformations and exactly linearizable systems." International Journal of Non-Linear Mechanics 31, no. 2 (March 1996): 117–27. http://dx.doi.org/10.1016/0020-7462(95)00062-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Yao, Xuelian, Gang Tao, and Bin Jiang. "Adaptive actuator failure compensation for multivariable feedback linearizable systems." International Journal of Robust and Nonlinear Control 26, no. 2 (January 28, 2015): 252–85. http://dx.doi.org/10.1002/rnc.3309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

CHARRON-BOST, BERNADETTE, and ROBERT CORI. "A NOTE ON LINEARIZABILITY AND THE GLOBAL TIME AXIOM." Parallel Processing Letters 13, no. 01 (March 2003): 19–24. http://dx.doi.org/10.1142/s0129626403001100.

Full text
Abstract:
The assumption of the existence of global time, which significantly simplifies the analysis of distributed systems, is generally safe since most of the conclusions obtained under the global time axiom can be transferred to the frame where no such assumption is made. In this note, we show that the compositionality of the well-known correctness condition for concurrent objects called linearizability does not satisfy this simplification rule: we present a simple non-linearizable system composed of two objects which are individually linearizable.
APA, Harvard, Vancouver, ISO, and other styles
42

Schlemmer, M., and S. K. Agrawal. "Globally Feedback Linearizable Time-Invariant Systems: Optimal Solution for Mayer’s Problem." Journal of Dynamic Systems, Measurement, and Control 122, no. 2 (December 10, 1998): 343–47. http://dx.doi.org/10.1115/1.482461.

Full text
Abstract:
This paper discusses the optimal solution of Mayer’s problem for globally feedback linearizable time-invariant systems subject to general nonlinear path and actuator constraints. This class of problems includes the minimum time problem, important for engineering applications. Globally feedback linearizable nonlinear systems are diffeomorphic to linear systems that consist of blocks of integrators. Using this alternate form, it is proved that the optimal solution always lies on a constraint arc. As a result of this optimal structure of the solution, efficient numerical procedures can be developed. For a single input system, this result allows to characterize and build the optimal solution. The associated multi-point boundary value problem is then solved using direct solution techniques. [S0022-0434(00)02002-5]
APA, Harvard, Vancouver, ISO, and other styles
43

Pan, Yangyou, Yuzhen Bai, and Xiang Zhang. "Dynamics of locally linearizable complex two dimensional cubic Hamiltonian systems." Discrete & Continuous Dynamical Systems - S 12, no. 6 (2019): 1761–74. http://dx.doi.org/10.3934/dcdss.2019116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

SONG, Ri-yao, Shintaro ISHIJIMA, and Akira KOJIMA. "Observer Based Linearization of I/O Linearizable MIMO Nonlinear Systems." Transactions of the Society of Instrument and Control Engineers 32, no. 11 (1996): 1510–17. http://dx.doi.org/10.9746/sicetr1965.32.1510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rodriguez, A., and R. Ortega. "Adaptive Stabilization of Nonlinear Systems: The Non-Feedback Linearizable Case." IFAC Proceedings Volumes 23, no. 8 (August 1990): 303–6. http://dx.doi.org/10.1016/s1474-6670(17)52025-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Krothapally, Mohan, Juan C. Cockburn, and Srinivas Palanki. "Sliding mode control of I/O linearizable systems with uncertainty." ISA Transactions 37, no. 4 (September 1998): 313–22. http://dx.doi.org/10.1016/s0019-0578(98)00033-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

KIM, WEON HO, and FRANK R. GROVES. "A DIRECT NONLINEAR ADAPTIVE CONTROL OF STATE FEEDBACK LINEARIZABLE SYSTEMS." Chemical Engineering Communications 132, no. 1 (February 1995): 69–90. http://dx.doi.org/10.1080/00986449508936297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Gubbiotti, G., and M. C. Nucci. "Are all classical superintegrable systems in two-dimensional space linearizable?" Journal of Mathematical Physics 58, no. 1 (January 2017): 012902. http://dx.doi.org/10.1063/1.4974264.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Min, and Donghua Zhou. "Fault tolerant control of feedback linearizable systems with stuck actuators." Asian Journal of Control 10, no. 1 (January 2008): 74–87. http://dx.doi.org/10.1002/asjc.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kofman, Ernesto, Fernando Fontenla, Hernan Haimovich, and María M. Seron. "Control design with guaranteed ultimate bound for feedback linearizable systems." IFAC Proceedings Volumes 41, no. 2 (2008): 242–47. http://dx.doi.org/10.3182/20080706-5-kr-1001.00041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography