Academic literature on the topic 'Linearizace systému'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linearizace systému.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Linearizace systému"

1

Korobov, V. I. "Almost linearizable control systems." Mathematics of Control, Signals, and Systems 33, no. 3 (May 15, 2021): 473–97. http://dx.doi.org/10.1007/s00498-021-00288-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sastry, S. S., and A. Isidori. "Adaptive control of linearizable systems." IEEE Transactions on Automatic Control 34, no. 11 (1989): 1123–31. http://dx.doi.org/10.1109/9.40741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chetverikov, V. N. "Flatness of dynamically linearizable systems." Differential Equations 40, no. 12 (December 2004): 1747–56. http://dx.doi.org/10.1007/s10625-005-0106-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hirschorn, R. M. "Global Controllability of Locally Linearizable Systems." SIAM Journal on Control and Optimization 28, no. 3 (March 1990): 540–51. http://dx.doi.org/10.1137/0328032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agafonov, S. I., E. V. Ferapontov, and V. S. Novikov. "Quasilinear systems with linearizable characteristic webs." Journal of Mathematical Physics 58, no. 7 (July 2017): 071506. http://dx.doi.org/10.1063/1.4994198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bowong, S., and A. Temgoua Kagou. "Adaptive Control for Linearizable Chaotic Systems." Journal of Vibration and Control 12, no. 2 (February 2006): 119–37. http://dx.doi.org/10.1177/1077546306059318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hussien, Omar, Aaron Ames, and Paulo Tabuada. "Abstracting Partially Feedback Linearizable Systems Compositionally." IEEE Control Systems Letters 1, no. 2 (October 2017): 227–32. http://dx.doi.org/10.1109/lcsys.2017.2713461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marino, R., W. M. Boothby, and D. L. Elliott. "Geometric properties of linearizable control systems." Mathematical Systems Theory 18, no. 1 (December 1985): 97–123. http://dx.doi.org/10.1007/bf01699463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Del Vecchio, D., R. Marino, and P. Tomei. "Adaptive Learning Control for Feedback Linearizable Systems*." European Journal of Control 9, no. 5 (January 2003): 483–96. http://dx.doi.org/10.3166/ejc.9.483-496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marino, R., and P. Tomei. "Self-Tuning Stabilization of Feedback Linearizable Systems." IFAC Proceedings Volumes 25, no. 14 (July 1992): 95–100. http://dx.doi.org/10.1016/s1474-6670(17)50718-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Linearizace systému"

1

Vlk, Jan. "Návrh a evaluace moderních systémů řízení letu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445472.

Full text
Abstract:
Tato práce je zaměřena na výzkum moderních metod automatického řízení letu a jejich ověření s ohledem na současný stav poznání a budoucí využití bezpilotních letadlových systémů. Práce představuje proces návrhu automatického systému řízení letu s důrazem na přístupy z oblasti návrhu založeného na modelování (Model-Based Design). Nedílnou součástí tohoto procesu je tvorba matematického modelu letounu, který byl využit k syntéze zákonů řízení a k vytvoření simulačního rámce pro evaluaci stability a kvality regulace automatického systému řízení letu. Jádro této práce se věnuje syntéze zákonů řízení založených na unikátní kombinaci teorie optimálního a adaptivního řízení. Zkoumané zákony řízení byly integrovány do digitálního systému řízení letu, jenž umožňuje vysoce přesné automatické létání. Závěrečná část práce se zabývá ověřením a analýzou navrženého systému řízení letu a je rozdělena do 3 fází. První fáze ověření obsahuje evaluaci robustnosti a analyzuje stabilitu a robustnost navrženého systému řízení letu ve frekvenční oblasti. Druhá fáze, evaluace kvality regulace, probíhala v rámci počítačových simulací s využitím vytvořených matematických modelů v časové oblasti.  V poslední fázi ověření došlo k integraci navrženého systému řízení letu do experimentálního letounu, sloužícího jako testovací platforma pro budoucí bezpilotní letadlové systémy a jeho evaluaci v rámci série letových experimentů.
APA, Harvard, Vancouver, ISO, and other styles
2

Wahbe, Andrew A. "Linearizable shared objects for asynchronous message passing systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0024/MQ50378.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rossoni, Priscila. "Fluxo de carga AC linearizado associado a ferramenta MATLAB." reponame:Repositório Institucional da UFABC, 2016.

Find full text
Abstract:
Orientador: Prof. Dr. Edmarcio Antonio Belati
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Elétrica, 2016.
Esta dissertação apresenta um estudo para sistemas de distribuição e transmissão de energia elétrica com Fluxo de Carga AC Linearizado (FCACL). Este estudo é baseado no Fluxo de Carga AC (FCAC) em que é realizada uma linearização nas equações de balanço das potências ativas e reativas utilizadas na modelagem original do FCAC. Ao contrário dos algoritmos de FCAC, esta técnica não requer um processo iterativo, o que resulta em uma metodologia rápida e robusta. O FCACL considera todos os acoplamentos do modelo tradicional de FCAC, tais como o acoplamento de potência ativa com os ângulos de fase e o acoplamento da potência reativa com as magnitudes de tensão, diferentemente do que ocorre no método tradicional de Fluxo de Carga DC (FCDC), que considera apenas a parte ativa do acoplamento. O método é adequado para estudos de contingência e de carregamento, e sendo indicado em situações em que há a necessidade de se obter soluções rápidas e repetidas. A grande vantagem é que o método não é iterativo e oferece soluções, mesmo quando FCAC tradicional diverge e apresenta mais precisão do que o FCDC. O método foi testado no sistema didático de transmissão de 3, 14, 30 e 118 barras e nos sistemas de distribuição de 34, 70 e 126 barras. Os resultados demonstram a eficácia do método. A metodologia proposta foi desenvolvida e implementada em ambiente Matlab®, de forma a compor a ferramenta computacional de análises de sistemas elétricos, a ANASEP. As soluções foram comparadas com os métodos de FCAC, FCDC e de Backward/Forward Sweep (BFS), estes dois últimos também uma contribuição para ferramenta que passará a ser identificada como ANASEP 2.0.
This dissertation presents a load flow method for electricity distribution and transmission system called AC Linearized Flow Power (LACLF). The method is based on the AC Load Flow (ACLF) which are held in the linearization equations of the Jacobian matrix. Unlike ACLF algorithm, this method does not require an iterative process, which results in a fast and robust method. The LACLF considers all the coupling ACLF, including the coupling of active power with the magnitude of voltage and reactive power coupling with the phase angle, different from the traditional DC load flow method (DCLF). The method is suitable for contingency studies and can be used when solutions quick, robust and repeatedly are requested. The big advantage is that the method is not iterative and offers solutions even where traditional ACLF diverges and more accurately than the DCLF. The method was applied to the distribution systems 34, 70 and 126 bus and applied to the transmission systems 3, 14, 30 and 118 bus. The partial results of the tests demonstrate the effectiveness of the methodology. The proposed methodology has been developed and implemented in Matlab® environment, in order to compose a computational tool for electrical system analysis, ANASEP. The solutions were compared with the methods of FCAC, FCDC and Backward / Forward Sweep (BFS), the latter two also a contribution to tool that had become identified as ANASEP 2.0.
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Yahao. "Geometric analysis of differential-algebraic equations and control systems : linear, nonlinear and linearizable." Thesis, Normandie, 2019. http://www.theses.fr/2019NORMIR04.

Full text
Abstract:
Dans la première partie de cette thèse, nous étudions les équations différentielles algébriques (en abrégé EDA) linéaires et les systèmes de contrôles linéaires associés (en abrégé SCEDA). Les problèmes traités et les résultats obtenus sont résumés comme suit : 1. Relations géométriques entre les EDA linéaires et les systèmes de contrôles génériques SCEDO. Nous introduisons une méthode, appelée explicitation, pour associer un SCEDO à n'importe quel EDA linéaire. L'explicitation d'une EDA est une classe des SCEDO, précisément un SCEDO défini, à un changement de coordonnées près, une transformation de bouclage près et une injection de sortie près. Puis nous comparons les « suites de Wong » d'une EDA avec les espaces invariants de son explicitation. Nous prouvons que la forme canonique de Kronecker FCK d'une EDA linéaire et la forme canonique de Morse FCM d'un SCEDO, ont une correspondance une à une et que leurs invariants sont liés. De plus, nous définissons l'équivalence interne de deux EDA et montrons sa particularité par rapport à l'équivalence externe en examinant les relations avec la régularité interne, i.e., l'existence et l'unicité de solutions. 2. Transformation d'un SCEDA linéaire vers sa forme canonique via la méthode d'explicitation avec des variables de driving. Nous étudions les relations entre la forme canonique par bouclage FCFB d'un SCEDA proposée dans la littérature et la forme canonique de Morse pour les SCEDO. Premièrement, dans le but de relier SCEDA avec les SCEDO, nous utilisons une méthode appelée explicitation (avec des variables de driving). Cette méthode attache à une classe de SCEDO avec deux types d'entrées (le contrôle original et le vecteur des variables de driving) à un SCEDA donné. D'autre part, pour un SCEDO linéaire classique (sans variable de driving) nous proposons une forme de Morse triangulaire FMT pour modifier la construction de la FCM. Basé sur la FMT nous proposons une forme étendue FMT et une forme étendue de FCM pour les SCEDO avec deux types d'entrées. Finalement, un algorithme est donné pour transformer un SCEDA dans sa FCFB. Cet algorithme est construit sur la FCM d'un SCEDO donné par la procédure d'explicitation. Un exemple numérique illustre la structure et l'efficacité de l'algorithme. Pour les EDA non linéaires et les SCEDA (quasi linéaires) nous étudions les problèmes suivants : 3. Explicitations, analyse externe et interne et formes normales des EDA non linéaires. Nous généralisons les deux procédures d'explicitation (avec ou sans variables de driving) dans le cas des EDA non linéaires. L'objectif de ces deux méthodes est d'associer un SCEDO non linéaire à une EDA non linéaire telle que nous puissions l'analyser à l'aide de la théorie des EDO non linéaires. Nous comparons les différences de l'équivalence interne et externe des EDA non linéaires en étudiant leurs relations avec l'existence et l'unicité d'une solution (régularité interne). Puis nous montrons que l'analyse interne des EDA non linéaire est liée à la dynamique nulle en théorie classique du contrôle non linéaire. De plus, nous montrons les relations des EDAS de forme purement semi-explicite avec les 2 procédures d'explicitations. Finalement, une généralisation de la forme de Weierstrass non linéaire FW basée sur la dynamique nulle d'un SCEDO non linéaire donné par la méthode d'explicitation est proposée
In the first part of this thesis, we study linear differential-algebraic equations (shortly, DAEs) and linear control systems given by DAEs (shortly, DAECSs). The discussed problems and obtained results are summarized as follows. 1. Geometric connections between linear DAEs and linear ODE control systems ODECSs. We propose a procedure, named explicitation, to associate a linear ODECS to any linear DAE. The explicitation of a DAE is a class of ODECSs, or more precisely, an ODECS defined up to a coordinates change, a feedback transformation and an output injection. Then we compare the Wong sequences of a DAE with invariant subspaces of its explicitation. We prove that the basic canonical forms, the Kronecker canonical form KCF of linear DAEs and the Morse canonical form MCF of ODECSs, have a perfect correspondence and their invariants (indices and subspaces) are related. Furthermore, we define the internal equivalence of two DAEs and show its difference with the external equivalence by discussing their relations with internal regularity, i.e., the existence and uniqueness of solutions. 2. Transform a linear DAECS into its feedback canonical form via the explicitation with driving variables. We study connections between the feedback canonical form FBCF of DAE control systems DAECSs proposed in the literature and the famous Morse canonical form MCF of ODECSs. In order to connect DAECSs with ODECSs, we use a procedure named explicitation (with driving variables). This procedure attaches a class of ODECSs with two kinds of inputs (the original control input and the vector of driving variables) to a given DAECS. On the other hand, for classical linear ODECSs (without driving variables), we propose a Morse triangular form MTF to modify the construction of the classical MCF. Based on the MTF, we propose an extended MTF and an extended MCF for ODECSs with two kinds of inputs. Finally, an algorithm is proposed to transform a given DAECS into its FBCF. This algorithm is based on the extended MCF of an ODECS given by the explication procedure. Finally, a numerical example is given to show the structure and efficiency of the proposed algorithm. For nonlinear DAEs and DAECSs (of quasi-linear form), we study the following problems: 3. Explicitations, external and internal analysis, and normal forms of nonlinear DAEs. We generalize the two explicitation procedures (with or without driving variable) proposed in the linear case for nonlinear DAEs of quasi-linear form. The purpose of these two explicitation procedures is to associate a nonlinear ODECS to any nonlinear DAE such that we can use the classical nonlinear ODE control theory to analyze nonlinear DAEs. We discuss differences of internal and external equivalence of nonlinear DAEs by showing their relations with the existence and uniqueness of solutions (internal regularity). Then we show that the internal analysis of nonlinear DAEs is closely related to the zero dynamics in the classical nonlinear control theory. Moreover, we show relations of DAEs of pure semi-explicit form with the two explicitation procedures. Furthermore, a nonlinear generalization of the Weierstrass form WE is proposed based on the zero dynamics of a nonlinear ODECS given by the explicitation procedure
APA, Harvard, Vancouver, ISO, and other styles
5

Resener, Mariana. "Modelo linearizado para problemas de planejamento da expansão de sistemas de distribuição." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2016. http://hdl.handle.net/10183/156487.

Full text
Abstract:
Este trabalho apresenta um modelo linearizado para ser utilizado em problemas de planejamento da expansão de sistemas de distribuição de energia elétrica (SDEE) com geração distribuída (GD), em um horizonte de curto prazo. O ponto de operação em regime permanente é calculado através de um modelo linearizado da rede, sendo as cargas e geradores representados por injeções constantes de corrente, o que torna possível calcular as correntes nos ramos e as tensões nas barras através de expressões lineares. As alternativas de expansão consideradas são: (i) alocação de bancos de capacitores; (ii) alocação de reguladores de tensão; e (iii) recondutoramento. Ainda, o modelo considera a possibilidade de seleção do tap dos transformadores de distribuição como alternativa para a redução das violações de tensão. A flexibilidade do modelo permite obter soluções considerando a contribuição das GDs no controle de tensão e potência reativa sem a necessidade de especificar uma tensão para a barra da subestação. O modelo de otimização proposto para a solução destes problemas utiliza uma função objetivo linear, além de restrições lineares e variáveis contínuas e binárias. Dessa forma, o modelo de otimização pode ser representado como um problema de programação linear inteira mista (PLIM) A função objetivo considera a minimização dos custos de investimento (aquisição, instalação e remoção de equipamentos e aquisição de condutores) e dos custos de operação, que correspondem aos custos anuais de manutenção somados aos custos das perdas de energia e das violações dos limites de tensão. A variação da carga é representada através de curvas de duração, sendo que os custos das perdas e das violações são ponderados pela duração de cada nível de carregamento. Utilizando uma abordagem de PLIM, sabe-se que existem condições suficientes que garantem a otimalidade de uma dada solução factível, além de permitir que a solução seja obtida através de métodos de otimização clássica. O modelo proposto foi implementado na linguagem de programação OPL e resolvido utilizando o solver comercial CPLEX. O modelo foi validado através da comparação dos resultados obtidos para cinco sistemas de distribuição com os resultados obtidos utilizando um fluxo de carga convencional. Os casos analisados e os resultados obtidos demonstram a precisão do modelo proposto e seu potencial de aplicação.
This work presents a linearized model to be used in short-term expansion planning problems of power distribution systems (PDS) with distributed generation (DG). The steady state operation point is calculated through a linearized model of the network, being the loads and generators modeled as constant current injections, which makes it possible to calculate the branch currents and bus voltages through linear expressions. The alternatives considered for expansion are: (i) capacitor banks placement; (ii) voltage regulators placement; and (iii) reconductoring. Furthermore, the model considers the possibility of adjusting the taps of the distribution transformers as an alternative to reduce voltage violations. The flexibility of the model enables solutions that includes the contribution of DGs in the control of voltage and reactive power without the need to specify the substation voltage. The optimization model proposed to solve these problems uses a linear objective function, along with linear constraints, binary and continuous variables. Thus, the optimization model can be represented as a mixed integer linear programming problem (MILP) The objective function considers the minimization of the investment costs (acquisition, installation and removal of equipment and acquisition of conductors) and the operation costs, which corresponds to the annual maintenance cost plus the costs related to energy losses and violation of voltage limits. The load variation is represented by discrete load duration curves and the costs of losses and voltage violations are weighted by the duration of each load level. Using a MILP approach, it is known that there are sufficient conditions that guarantee the optimality of a given feasible solution, besides allowing the solution to be obtained by classical optimization methods. The proposed model was written in the programming language OPL and solved by the commercial solver CPLEX. The model was validated through the comparison of the results obtained for five distribution systems with the results obtained through conventional load flow. The analyzed cases and the obtained results show the accuracy of the proposed model and its potential for application.
APA, Harvard, Vancouver, ISO, and other styles
6

Nowicki, Marcin. "Feedback linearization of mechanical control systems Geometry and flatness of m-crane systems A classification of feedback linearizable mechanical systems with 2 degrees of freedom." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMIR15.

Full text
Abstract:
Cette thèse est consacrée à l’étude des systèmes mécaniques de contrôle qui sont définis sur une variété différentielle de configuration Q munie des coordonnées locales x = (x¹, . . . , xⁿ). Dans ces coordonnées, ils prennent la forme d’équation différentielle d’ordre deux¹ : … où les coefficients … sont les symboles de Christoffel correspondant aux forces de Coriolois et centrifuges, e(x) est un champ de vecteurs représentant l’influence des forces externes (par exemple, la gravité ou l’élasticité) et les … sont des champs de vecteurs contrôlés. De manière équivalente nous pouvons décrire les trajectoires d’un système mécanique de contrôle par un système d’équations différentielles ordinaires sur le fibré tangent TQ muni des coordonnées (x,y) = (x¹, ..., xⁿ, y¹, ..., yⁿ) : … Le problème central étudié dans cette thèse est la linéarisation mécanique par bouclage des systèmes mécaniques de contrôle (MF-linéarisation) en appliquant les transformations suivantes : (i) le changement de coordonnées par difféomorphisme … (ii) la transformation par bouclage mécanique (α,β,γ) de la forme … de sorte que le système transformé soit linéaire et mécanique
This thesis is devoted to a study of mechanical control systems, which are defined in local coordinates x = (x¹, . . . , xⁿ) on a smooth configuration manifold Q. They take the form of second-order differential equations¹ … where…are the Christoffel symbols corresponding to Coriolis and centrifugal terms, e(x) is an uncontrolled vector field on Q representing the influence of external positional forces acting on the system (e.g. gravitational or elasticity), and … are controlled vector fields in Q. Equivalently, a mechanical control system can be described by a first-order system on the tangent bundle TQ which is the state space of the system using coordinates (x,y) = (x¹, ..., xⁿ, y¹, ..., yⁿ) : … The main problem considered in this thesis is mechanical feedback linearization (shortly MF-linearization) by applying to the mechanical system the following transformations : (i) changes of coordinates given by diffeomorphisms … (ii) mechanical feedback transformations, denoted (α,β,γ), of the form … such that the transformed system is linear and mechanica
APA, Harvard, Vancouver, ISO, and other styles
7

Dittrich, Petr. "Odhad Letových Parametrů Malého Letounu." Doctoral thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-412582.

Full text
Abstract:
Tato práce je zaměřena na odhad letových parametrů malého letounu, konkrétně letounu Evektor SportStar RTC. Pro odhad letových parametrů jsou použity metody "Equation Error Method", "Output Error Method" a metody rekurzivních nejmenších čtverců. Práce je zaměřena na zkoumání charakteristik aerodynamických parametrů podélného pohybu a ověření, zda takto odhadnuté letové parametry odpovídají naměřeným datům a tudíž vytvářejí předpoklad pro realizaci dostatečně přesného modelu letadla. Odhadnuté letové parametry jsou dále porovnávány s a-priorními hodnotami získanými s využitím programů Tornado, AVL a softwarovéverze sbírky Datcom. Rozdíly mezi a-priorními hodnotami a odhadnutými letovými paramatery jsou porovnány s korekcemi publikovanými pro subsonické letové podmínky modelu letounu F-18 Hornet.
APA, Harvard, Vancouver, ISO, and other styles
8

Hoang, Trong bien. "Switched observers and input-delay compensation for anti-lock brake systems." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-00994114.

Full text
Abstract:
Many control algorithms for ABS systems have been proposed in the literature since the introduction of this equipment by Bosch in 1978. In general, one can divide these control algorithms into two different types: those based on a regulation logic with wheel acceleration thresholds that are used by most commercial ABS systems; and those based on wheel slip control that are preferred in the large majority of academic algorithms. Each approach has its pros and cons [Shida 2010]. Oversimplifying, one can say that the strength of the first ones is their robustness; while that of the latter ones their short braking distances (on dry grounds) and their absence of limit cycles. At the midpoint of this industry/academy dichotomy, based on the concept of extended braking stiffness (XBS), a quite different class of ABS control strategies has been proposed by several researchers (see, e.g., [Sugai 1999] and [Ono 2003]). This concept combines the advantages from both the industrial and academic approaches. Nevertheless, since the slope of the tyre characteristic is not directly measurable, it introduces the question of real-time XBS estimation. The first part of this thesis is devoted to the study of this estimation problem and to a generalization of the proposed technique to a larger class of systems. From the technological point of view, the design of ABS control systems is highly dependent on the ABS system characteristics and actuator performance. Current ABS control algorithms on passenger cars, for instance the Bosch ABS algorithm, are based on heuristics that are deeply associated to the hydraulic nature of the actuator. An interesting observation is that they seem to work properly only in the presence of a specific delay coming from the hydraulic actuation [Gerard 2012]. For brake systems that have different delays compared to those of hydraulic actuators, like electric in-wheel motors (with a smaller delay) or pneumatic trailer brakes (with a bigger delay), they might be no longer suitable [Miller 2013]. Therefore, adapting standard ABS algorithms to other advanced actuators becomes an imperative goal in the automobile industry. This goal can be reached by the compensation of the delays induced by actuators. The second part of this thesis is focused on this issue, and to the generalization of the proposed technique to a particular class of nonlinear systems. Throughout this thesis, we employ two different linearization techniques: the linearization of the error dynamics in the construction of model-based observers [Krener 1983] and the linearization based on restricted state feedback [Brockett 1979]. The former is one of the simplest ways to build an observer for dynamical systems with output and to analyze its convergence. The main idea is to transform the original nonlinear system via a coordinate change to a special form that admits an observer with a linear error dynamics and thus the observer gains can be easily computed to ensure the observer convergence. The latter is a classical method to control nonlinear systems by converting them into a controllable linear state equation via the cancellation of their nonlinearities. It is worth mentioning that existing results for observer design by error linearization in the literature are only applied to the case of regular time scalings ([Guay 2002] and [Respondek 2004]). The thesis shows how to extend them to the case of singular time scalings. Besides, the thesis combines the classical state feedback linearization with a new method for the input delay compensation to resolve the output tracking problem for restricted feedback linearizable systems with input delays.
APA, Harvard, Vancouver, ISO, and other styles
9

Tsao, Wen-Tzung, and 曹文宗. "Adaptive Control of Linearizable Discrete-Time Systems." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/71198784451994524775.

Full text
Abstract:
碩士
國立交通大學
控制工程系
82
The adaptive control of feedback linearizable discrete-time systems including SISO and MIMO cases with general relative degree is studied. The nonlinearities in the system are combinations of unknown linear parameters with known nonlinear functions. Although the unknown parameters appear linearly, the convergence result obtained is not global. The maximum allowable parameter error depends on the system characteristics and on the initial system states. Simulations show that the system diverges when the initial parameter error is too large. The thesis also uses feedback linearization techniques to control a chemical plant--the CSTR(continuous stirred tank reactor). The objective of the CSTR control is for the output values of the CSTR to track desired reference commands. The outputs will track the setpoints if the parameter error is not too large. Finally, we will give some studies about the implementation of the adaptive feedback linearization control on a inverse pendulum, and we will give some comparisons between adaptive feedback linearization control and PD control.
APA, Harvard, Vancouver, ISO, and other styles
10

陳行智. "Sliding mode control of feedback linearizable six-degree-of-freedom flight system." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/79971976394984782759.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Linearizace systému"

1

Wahbe, Andrew A. Linearizable shared objects for asynchronous message passing systems. 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Zongli. Global and semi-global control problems for linear systems subject to input saturation and minimum-phase input-output linearizable systems. 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Linearizace systému"

1

Krstic, Miroslav. "Linearizable Strict-Feedforward Systems." In Delay Compensation for Nonlinear, Adaptive, and PDE Systems, 217–31. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4877-0_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boothby, William M. "Global Feedback Linearizability of Locally Linearizable Systems." In Algebraic and Geometric Methods in Nonlinear Control Theory, 243–56. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4706-1_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sen, Soumya, Partha Ghosh, and Agostino Cortesi. "Materialized View Construction Using Linearizable Nonlinear Regression." In Advances in Intelligent Systems and Computing, 261–76. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2650-5_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grammaticos, B., and A. Ramani. "Continuous and Discrete Linearizable Systems: The Riccati Saga." In Algebraic Methods in Physics, 81–94. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0119-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Del Vecchio, Domitilla, Riccardo Marino, and Patrizio Tomei. "Adaptive control of feedback linearizable systems by orthogonal approximation functions." In Nonlinear control in the Year 2000, 341–53. London: Springer London, 2001. http://dx.doi.org/10.1007/bfb0110225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jagannathan, S. "Discrete-Time Adaptive Fuzzy Logic Control of Feedback Linearizable Systems." In Advances in Fuzzy Control, 225–61. Heidelberg: Physica-Verlag HD, 1998. http://dx.doi.org/10.1007/978-3-7908-1886-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nowicki, Marcin, and Witold Respondek. "A Classification of Feedback Linearizable Mechanical Systems with 2 Degrees of Freedom." In Advances in Intelligent Systems and Computing, 638–50. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50936-1_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alimhan, Keylan, and Naohisa Otsuka. "A Note on Practically Output Tracking Control of Nonlinear Systems That May Not Be Linearizable at the Origin." In Communications in Computer and Information Science, 17–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-26010-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Charfeddine, Monia, Khalil Jouili, and Naceur Benhadj Braiek. "Approximate Input-Output Feedback Linearization of Non-Minimum Phase System using Vanishing Perturbation Theory." In Handbook of Research on Advanced Intelligent Control Engineering and Automation, 173–201. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-7248-2.ch006.

Full text
Abstract:
The inverse of a non-minimum-phase system being unstable, standard input-output feedback linearization is not effective to control such systems. In this chapter is a presentation of a new tracking control method for the nonlinear non-minimum-phase system. Indeed, the main idea here is to dismiss a part of system dynamics in order to make the approximate system input-state feedback linearizable. The neglected part is then considered as a perturbation part that vanishes at the origin. Finally, a linear controller is designed to control the approximate system. Stability is analyzed using the vanishing perturbation theory. The efficacy and usage of the proposed approach is evaluated in an illustrative inverted cart-pendulum example.
APA, Harvard, Vancouver, ISO, and other styles
10

"Many-Body Systems in Ordinary (Three-Dimensional) Space: Solvable, Integrable, Linearizable Problems." In Classical Many-Body Problems Amenable to Exact Treatments, 511–662. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44730-x_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Linearizace systému"

1

Cheng, Daizhan, and Hongsheng Qi. "Stabilization of Switched Linearizable Nonlinear Systems." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.376960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tall, Issa Amadou. "Linearizable feedforward systems: A special class." In 2008 IEEE International Conference on Control Applications (CCA) part of the IEEE Multi-Conference on Systems and Control. IEEE, 2008. http://dx.doi.org/10.1109/cca.2008.4629662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Willson, S. S., Philippe Müllhaupt, and Dominique Bonvin. "Numerical algorithm for feedback linearizable systems." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Primbs, J. A., and V. Nevistic. "MPC extensions to feedback linearizable systems." In Proceedings of 16th American CONTROL Conference. IEEE, 1997. http://dx.doi.org/10.1109/acc.1997.611055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krstic, M. "Feedforward systems linearizable by coordinate change." In Proceedings of the 2004 American Control Conference. IEEE, 2004. http://dx.doi.org/10.23919/acc.2004.1383992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mekhail, Matteo, and Stefano Battilotti. "Distributed estimation for feedback-linearizable nonlinear systems." In 2016 European Control Conference (ECC). IEEE, 2016. http://dx.doi.org/10.1109/ecc.2016.7810669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Haojian Xu, M. Mirmirani, P. A. Ioannou, and H. R. Boussalis. "Robust adaptive sliding control of linearizable systems." In Proceedings of American Control Conference. IEEE, 2001. http://dx.doi.org/10.1109/acc.2001.945662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hunt, L. R., and Madanpal S. Verma. "Observers and Controllers for Feedback Linearizable Systems." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alvarez, Jesus, Rodolfo Suarez, and Rafael Martinez. "Feedforward-Feedback Nonlinear Control for Linearizable Systems." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

XIE, W. F., and A. B. RAD. "FUZZY DIRECT ADAPTIVE CONTROL OF LINEARIZABLE SYSTEMS." In Proceedings of the 2004 International Conference (CDIC '04). WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702289_0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography