To see the other types of publications on this topic, follow the link: Linear search.

Journal articles on the topic 'Linear search'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Linear search.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hohzaki, Ryusuke. "A SEARCH GAME TAKING ACCOUNT OF LINEAR EFFECTS AND LINEAR CONSTRAINTS OF SEARCHING RESOURCE." Journal of the Operations Research Society of Japan 55, no. 1 (2012): 1–22. http://dx.doi.org/10.15807/jorsj.55.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mäkinen, Erkki. "On linear search heuristics." Information Processing Letters 29, no. 1 (September 1988): 35–36. http://dx.doi.org/10.1016/0020-0190(88)90129-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hester, J. H., and D. S. Hirschberg. "Self-organizing linear search." ACM Computing Surveys 17, no. 3 (September 1985): 295–311. http://dx.doi.org/10.1145/5505.5507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arora, Nitin, Garima Bhasin, and Neha Sharma. "Two way Linear Search Algorithm." International Journal of Computer Applications 107, no. 21 (December 18, 2014): 6–8. http://dx.doi.org/10.5120/19137-9622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Limoncelli, Thomas A. "10 optimizations on linear search." Communications of the ACM 59, no. 9 (August 24, 2016): 44–48. http://dx.doi.org/10.1145/2980976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Limoncelli, Thomas A. "10 Optimizations on Linear Search." Queue 14, no. 4 (August 2016): 20–33. http://dx.doi.org/10.1145/2984629.2984631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Korf, Richard E. "Linear-space best-first search." Artificial Intelligence 62, no. 1 (July 1993): 41–78. http://dx.doi.org/10.1016/0004-3702(93)90045-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Foley, R. D., T. P. Hill, and M. C. Spruill. "Linear search with bounded resources." Naval Research Logistics 38, no. 4 (August 1991): 555–65. http://dx.doi.org/10.1002/1520-6750(199108)38:4<555::aid-nav3220380408>3.0.co;2-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumari, Anchala. "Linear Search Versus Binary Search:A Statistical Comparison For Binomial Inputs." International Journal of Computer Science, Engineering and Applications 2, no. 2 (April 30, 2012): 29–39. http://dx.doi.org/10.5121/ijcsea.2012.2203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Balkhi, Zaid T. "THE GENERALIZED LINEAR SEARCH PROBLEM, EXISTENCE OF OPTIMAL SEARCH PATHS." Journal of the Operations Research Society of Japan 30, no. 4 (1987): 399–421. http://dx.doi.org/10.15807/jorsj.30.399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Manski, Charles F. "Optimal Search Profiling with Linear Deterrence." American Economic Review 95, no. 2 (April 1, 2005): 122–26. http://dx.doi.org/10.1257/000282805774669817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Heydari, Javad, Ali Tajer, and H. Vincent Poor. "Quickest Linear Search over Correlated Sequences." IEEE Transactions on Information Theory 62, no. 10 (October 2016): 5786–808. http://dx.doi.org/10.1109/tit.2016.2593772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Korytowski, A. "Inner search methods for linear programming." Applicationes Mathematicae 20, no. 2 (1988): 307–27. http://dx.doi.org/10.4064/am-20-2-307-327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Gorbunov, Dmitry S., and Viacheslav A. Ilyin. "Stoponium search at photon linear collider." Journal of High Energy Physics 2000, no. 11 (November 6, 2000): 011. http://dx.doi.org/10.1088/1126-6708/2000/11/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Saha, Subir, Mridul K.Bhaumik, and Supratim Das. "A New Modified Linear Search Algorithm." International Journal of Mathematics Trends and Technology 65, no. 12 (December 25, 2019): 148–52. http://dx.doi.org/10.14445/22315373/ijmtt-v65i12p516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Beck, Anatole, and Micah Beck. "The linear search problem rides again." Israel Journal of Mathematics 53, no. 3 (December 1986): 365–72. http://dx.doi.org/10.1007/bf02786568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rodler, Patrick. "Linear-Space Best-First Diagnosis Search." Proceedings of the International Symposium on Combinatorial Search 12, no. 1 (July 21, 2021): 188–90. http://dx.doi.org/10.1609/socs.v12i1.18579.

Full text
Abstract:
Various model-based diagnosis scenarios require the computation of the most preferred fault explanations. Existing algorithms that are sound (i.e., output only actual fault explanations) and complete (i.e., can return all explanations), however, require exponential space to achieve this task. As a remedy, to enable successful diagnosis on memory-restricted devices and for memory-intensive problem cases, we propose RBF-HS, a diagnostic search based on Korf’s seminal RBFS algorithm. RBF-HS can enumerate an arbitrary fixed number of fault explanations in best-first order within linear space bounds, without sacrificing the desirable soundness or completeness properties. Evaluations using real-world diagnosis cases show that RBF-HS, when used to compute minimum-cardinality fault explanations, in most cases saves substantial space (up to 98 %) while requiring only reasonably more or even less time than Reiter’s HS-Tree, one of the most widely used diagnostic algorithms with the same properties.
APA, Harvard, Vancouver, ISO, and other styles
18

Nickels, W., W. Rödder, L. Xu, and H. J. Zimmermann. "Intelligent gradient search in linear programming." European Journal of Operational Research 22, no. 3 (December 1985): 293–303. http://dx.doi.org/10.1016/0377-2217(85)90248-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Weixiong, and Richard E. Korf. "Performance of linear-space search algorithms." Artificial Intelligence 79, no. 2 (December 1995): 241–92. http://dx.doi.org/10.1016/0004-3702(94)00047-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Baston, Vic, and Anatole Beck. "Generalizations in the linear search problem." Israel Journal of Mathematics 90, no. 1-3 (October 1995): 301–23. http://dx.doi.org/10.1007/bf02783218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mejia, Carolina. "Linear secret sharing and the automatic search of linear rank inequalities." Applied Mathematical Sciences 9 (2015): 5305–24. http://dx.doi.org/10.12988/ams.2015.57478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Beck, Anatole, and Micah Beck. "The Revenge of the Linear Search Problem." SIAM Journal on Control and Optimization 30, no. 1 (January 1992): 112–22. http://dx.doi.org/10.1137/0330008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Gonzaga, Clovis C. "Search directions for interior linear-programming methods." Algorithmica 6, no. 1-6 (June 1991): 153–81. http://dx.doi.org/10.1007/bf01759039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Korf, Richard E. "Linear-time disk-based implicit graph search." Journal of the ACM 55, no. 6 (December 2008): 1–40. http://dx.doi.org/10.1145/1455248.1455250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Koehler, Gary J. "Linear Discriminant Functions Determined by Genetic Search." ORSA Journal on Computing 3, no. 4 (November 1991): 345–57. http://dx.doi.org/10.1287/ijoc.3.4.345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

El-Rayes, A. B., Abd El-Moneim A. Mohamed, and Hamdy M. Abou Gabal. "LINEAR SEARCH FOR A BROWNIAN TARGET MOTION." Acta Mathematica Scientia 23, no. 3 (July 2003): 321–27. http://dx.doi.org/10.1016/s0252-9602(17)30338-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Greenberg, Shlomo, and Daniel Kogan. "Linear search applied to global motion estimation." Multimedia Systems 12, no. 6 (November 22, 2006): 493–504. http://dx.doi.org/10.1007/s00530-006-0069-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Németh, Károly, and Gustavo E. Scuseria. "Linear scaling density matrix search based onsignmatrices." Journal of Chemical Physics 113, no. 15 (October 15, 2000): 6035–41. http://dx.doi.org/10.1063/1.1308546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hatem, Matthew, Roni Stern, and Wheeler Ruml. "Bounded Suboptimal Heuristic Search in Linear Space." Proceedings of the International Symposium on Combinatorial Search 4, no. 1 (August 20, 2021): 98–104. http://dx.doi.org/10.1609/socs.v4i1.18297.

Full text
Abstract:
It is commonly appreciated that solving search problems optimally can overrun time and memory constraints. Bounded suboptimal search algorithms trade increased solution cost for reduced solving time and memory consumption. However, even suboptimal search can overrun memory on large problems. The conventional approach to this problem is to combine a weighted admissible heuristic with an optimal linear space algorithm, resulting in algorithms such as Weighted IDA* (wIDA*). However, wIDA* does not exploit distance-to-go estimates or inadmissible heuristics, which have recently been shown to be helpful for suboptimal search. In this paper, we present a linear space analogue of Explicit Estimation Search (EES), a recent algorithm specifically designed for bounded suboptimal search. We call our method Iterative Deepening EES (IDEES). In an empirical evaluation, we show that IDEES dramatically outperforms wIDA* on domains with non-uniform edge costs and can scale to problems that are out of reach for the original EES.
APA, Harvard, Vancouver, ISO, and other styles
30

Krivoi, S. L., and S. G. Raksha. "Search for invariant linear relationships in programs." Cybernetics 20, no. 6 (1985): 796–803. http://dx.doi.org/10.1007/bf01072165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Amin, Gholam R., and Ali Emrouznejad. "Optimizing search engines results using linear programming." Expert Systems with Applications 38, no. 9 (September 2011): 11534–37. http://dx.doi.org/10.1016/j.eswa.2011.03.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

P.Parmar, Vimal, and CK Kumbharana. "Comparing Linear Search and Binary Search Algorithms to Search an Element from a Linear List Implemented through Static Array, Dynamic Array and Linked List." International Journal of Computer Applications 121, no. 3 (July 18, 2015): 13–17. http://dx.doi.org/10.5120/21519-4495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hatem, Matthew, and Wheeler Ruml. "Bounded Suboptimal Search in Linear Space: New Results." Proceedings of the International Symposium on Combinatorial Search 5, no. 1 (September 1, 2021): 89–96. http://dx.doi.org/10.1609/socs.v5i1.18327.

Full text
Abstract:
Bounded suboptimal search algorithms are usually faster than optimal ones, but they can still run out of memory on large problems. This paper makes three contributions. First, we show how solution length estimates, used by the current state-of-the-art linear-space bounded suboptimal search algorithm Iterative Deepening EES, can be used to improve unbounded-space suboptimal search. Second, we convert one of these improved algorithms into a linear-space variant called Iterative Deepening A* epsilon, resulting in a new state of the art in linear-space bounded suboptimal search. Third, we show how Recursive Best-First Search can be used to create additional linear-space variants that have more stable performance. Taken together, these results significantly expand our armamentarium of bounded suboptimal search algorithms.
APA, Harvard, Vancouver, ISO, and other styles
34

Vighneshvel, T., and S. P. Arun. "Does linear separability really matter? Complex visual search is explained by simple search." Journal of Vision 13, no. 11 (September 12, 2013): 10. http://dx.doi.org/10.1167/13.11.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ahmed, Haffane, and Hasni Abdelhafid. "Cuckoo search optimization for linear antenna arrays synthesis." Serbian Journal of Electrical Engineering 10, no. 3 (2013): 371–80. http://dx.doi.org/10.2298/sjee130317010a.

Full text
Abstract:
A recently developed metaheuristic optimization algorithm, the Cuckoo search algorithm, is used in this paper for the synthesis of symmetric uniformly spaced linear microstrip antennas array. Cuckoo search is based on the breeding strategy of Cuckoos augmented by a Levy flight behaviour found in the foraging habits of other species. This metaheuristic is tested on amplitude only pattern synthesis and amplitude and phase pattern synthesis. In both case, the objective, is to determinate the optimal excitations element that produce a synthesized radiation pattern within given bounds specified by a pattern mask.
APA, Harvard, Vancouver, ISO, and other styles
36

Ntzoufras, Ioannis, Jonathan J. Forster, and Petros Dellaportas. "Stochastic search variable selection for log-linear models." Journal of Statistical Computation and Simulation 68, no. 1 (December 2000): 23–37. http://dx.doi.org/10.1080/00949650008812054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Anashkina, N. V., and A. N. Shurupov. "Solving linear inequalities systems with local search algorithms." Prikladnaya diskretnaya matematika. Prilozhenie, no. 8 (December 1, 2015): 136–38. http://dx.doi.org/10.17223/2226308x/8/53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Ghosh, Subir. "Influential nonnegligible parameters under the search linear model." Communications in Statistics - Theory and Methods 16, no. 4 (January 1987): 1013–25. http://dx.doi.org/10.1080/03610928708829419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Tsai, S. M., and J. F. Yang. "Efficient algebraic code-excited linear predictive codebook search." IEE Proceedings - Vision, Image, and Signal Processing 153, no. 6 (2006): 761. http://dx.doi.org/10.1049/ip-vis:20060123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mladenovic, Nenad, Dragan Urosevic, and Dionisio Pérez-Brito. "Variable neighborhood search for minimum linear arrangement problem." Yugoslav Journal of Operations Research 26, no. 1 (2016): 3–16. http://dx.doi.org/10.2298/yjor140928038m.

Full text
Abstract:
The minimum linear arrangement problem is widely used and studied in many practical and theoretical applications. It consists of finding an embedding of the nodes of a graph on the line such that the sum of the resulting edge lengths is minimized. This problem is one among the classical NP-hard optimization problems and therefore there has been extensive research on exact and approximative algorithms. In this paper we present an implementation of a variable neighborhood search (VNS) for solving minimum linear arrangement problem. We use Skewed general VNS scheme that appeared to be successful in solving some recent optimization problems on graphs. Based on computational experiments, we argue that our approach is comparable with the state-of-the-art heuristic.
APA, Harvard, Vancouver, ISO, and other styles
41

Liu, P. L., B. J. Li, and Y. S. Trisno. "In search of a linear electrooptic amplitude modulator." IEEE Photonics Technology Letters 3, no. 2 (February 1991): 144–46. http://dx.doi.org/10.1109/68.76869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kong, Garry, David Alais, and Erik Van der Burg. "Investigating Linear Separability in Visual Search for Orientation." Journal of Vision 16, no. 12 (September 1, 2016): 1280. http://dx.doi.org/10.1167/16.12.1280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pryde, A. J., and R. M. Phatarfod. "Multiplicities of eigenvalues of some linear search schemes." Linear Algebra and its Applications 291, no. 1-3 (April 1999): 115–24. http://dx.doi.org/10.1016/s0024-3795(98)10246-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lòpez, Pablo, Ernesto Pimentel, Joshua S. Hodas, Jeffrey Polakow, and Lubomira Stoilova. "Isolating Resource Consumption in Linear Logic Proof Search." Electronic Notes in Theoretical Computer Science 70, no. 2 (December 2002): 1–10. http://dx.doi.org/10.1016/s1571-0661(04)80502-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Esmaeili, M., A. Alampour, and T. A. Gulliver. "Decoding Binary Linear Block Codes Using Local Search." IEEE Transactions on Communications 61, no. 6 (June 2013): 2138–45. http://dx.doi.org/10.1109/tcomm.2013.041113.120057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Cervesato, Iliano, Joshua S. Hodas, and Frank Pfenning. "Efficient resource management for linear logic proof search." Theoretical Computer Science 232, no. 1-2 (February 2000): 133–63. http://dx.doi.org/10.1016/s0304-3975(99)00173-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Manber, Udi. "Recognizing breadth-first search trees in linear time." Information Processing Letters 34, no. 4 (April 1990): 167–71. http://dx.doi.org/10.1016/0020-0190(90)90155-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Luh, Hsing, and Ray Tsaih. "An efficient search direction for linear programming problems." Computers & Operations Research 29, no. 2 (February 2002): 195–203. http://dx.doi.org/10.1016/s0305-0548(00)00069-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Velez, German Correa, Fernando Mesa, and Pedro Pablo Cardenas Alzate. "Linear search optimization through the Armijo rule method." Contemporary Engineering Sciences 11, no. 16 (2018): 771–78. http://dx.doi.org/10.12988/ces.2018.8121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Boldyrev, A. I., and J. Simons. "Theoretical search for small linear doubly charged anions." Journal of Chemical Physics 98, no. 6 (March 15, 1993): 4745–52. http://dx.doi.org/10.1063/1.464978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography