Academic literature on the topic 'Linear regression'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear regression.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear regression"
Raghuvanshi, Monika. "Knowledge and Awareness: Linear Regression." Educational Process: International Journal 5, no. 4 (December 1, 2016): 279–92. http://dx.doi.org/10.22521/edupij.2016.54.2.
Full textLam, Kim Fung. "A Unified Linear Regression Approach." International Journal of Applied Physics and Mathematics 4, no. 4 (2014): 223–26. http://dx.doi.org/10.7763/ijapm.2014.v4.287.
Full textSamaniego, Angel. "CAPM-alpha estimation with robust regression vs. linear regression." Análisis Económico 38, no. 97 (January 20, 2023): 27–37. http://dx.doi.org/10.24275/uam/azc/dcsh/ae/2022v38n97/samaniego.
Full textGenç, S., and M. Mendeş. "Multiple Linear Regression versus Automatic Linear Modelling." Arquivo Brasileiro de Medicina Veterinária e Zootecnia 76, no. 1 (2024): 131–36. http://dx.doi.org/10.1590/1678-4162-13071.
Full textHersh, A., and T. B. Newman. "Linear Regression." AAP Grand Rounds 25, no. 6 (June 1, 2011): 68. http://dx.doi.org/10.1542/gr.25-6-68-a.
Full textPandis, Nikolaos. "Linear regression." American Journal of Orthodontics and Dentofacial Orthopedics 149, no. 3 (March 2016): 431–34. http://dx.doi.org/10.1016/j.ajodo.2015.11.019.
Full textDombrowsky, Thomas. "Linear regression." Nursing 53, no. 9 (September 2023): 56–60. http://dx.doi.org/10.1097/01.nurse.0000946844.96157.68.
Full textSu, Xiaogang, Xin Yan, and Chih-Ling Tsai. "Linear regression." Wiley Interdisciplinary Reviews: Computational Statistics 4, no. 3 (February 10, 2012): 275–94. http://dx.doi.org/10.1002/wics.1198.
Full textMarill, Keith A. "Advanced Statistics: Linear Regression,Part I: Simple Linear Regression." Academic Emergency Medicine 11, no. 1 (January 2004): 87–93. http://dx.doi.org/10.1111/j.1553-2712.2004.tb01378.x.
Full textMarill, Keith A. "Advanced Statistics: Linear Regression, Part II: Multiple Linear Regression." Academic Emergency Medicine 11, no. 1 (January 2004): 94–102. http://dx.doi.org/10.1111/j.1553-2712.2004.tb01379.x.
Full textDissertations / Theses on the topic "Linear regression"
Bai, Xue. "Robust linear regression." Kansas State University, 2012. http://hdl.handle.net/2097/14977.
Full textDepartment of Statistics
Weixin Yao
In practice, when applying a statistical method it often occurs that some observations deviate from the usual model assumptions. Least-squares (LS) estimators are very sensitive to outliers. Even one single atypical value may have a large effect on the regression parameter estimates. The goal of robust regression is to develop methods that are resistant to the possibility that one or several unknown outliers may occur anywhere in the data. In this paper, we review various robust regression methods including: M-estimate, LMS estimate, LTS estimate, S-estimate, [tau]-estimate, MM-estimate, GM-estimate, and REWLS estimate. Finally, we compare these robust estimates based on their robustness and efficiency through a simulation study. A real data set application is also provided to compare the robust estimates with traditional least squares estimator.
Hernandez, Erika Lyn. "Parameter Estimation in Linear-Linear Segmented Regression." Diss., CLICK HERE for online access, 2010. http://contentdm.lib.byu.edu/ETD/image/etd3551.pdf.
Full textOllikainen, Kati. "PARAMETER ESTIMATION IN LINEAR REGRESSION." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4138.
Full textPh.D.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering and Management Systems
Chen, Xinyu. "Inference in Constrained Linear Regression." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/405.
Full textWaterman, Megan Janet Tuttle. "Linear Mixed Model Robust Regression." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27708.
Full textPh. D.
Ratnasingam, Suthakaran. "Sequential Change-point Detection in Linear Regression and Linear Quantile Regression Models Under High Dimensionality." Bowling Green State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu159050606401363.
Full textRettes, Julio Alberto Sibaja. "Robust algorithms for linear regression and locally linear embedding." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/22445.
Full textSubmitted by Weslayne Nunes de Sales (weslaynesales@ufc.br) on 2017-03-30T13:15:27Z No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-04-04T11:10:44Z (GMT) No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5)
Made available in DSpace on 2017-04-04T11:10:44Z (GMT). No. of bitstreams: 1 2017_dis_rettesjas.pdf: 3569500 bytes, checksum: 46cedc2d9f96d0f58bcdfe3e0d975d78 (MD5) Previous issue date: 2017
Nowadays a very large quantity of data is flowing around our digital society. There is a growing interest in converting this large amount of data into valuable and useful information. Machine learning plays an essential role in the transformation of data into knowledge. However, the probability of outliers inside the data is too high to marginalize the importance of robust algorithms. To understand that, various models of outliers are studied. In this work, several robust estimators within the generalized linear model for regression framework are discussed and analyzed: namely, the M-Estimator, the S-Estimator, the MM-Estimator, the RANSAC and the Theil-Sen estimator. This choice is motivated by the necessity of examining algorithms with different working principles. In particular, the M-, S-, MM-Estimator are based on a modification of the least squares criterion, whereas the RANSAC is based on finding the smallest subset of points that guarantees a predefined model accuracy. The Theil Sen, on the other hand, uses the median of least square models to estimate. The performance of the estimators under a wide range of experimental conditions is compared and analyzed. In addition to the linear regression problem, the dimensionality reduction problem is considered. More specifically, the locally linear embedding, the principal component analysis and some robust approaches of them are treated. Motivated by giving some robustness to the LLE algorithm, the RALLE algorithm is proposed. Its main idea is to use different sizes of neighborhoods to construct the weights of the points; to achieve this, the RAPCA is executed in each set of neighbors and the risky points are discarded from the corresponding neighborhood. The performance of the LLE, the RLLE and the RALLE over some datasets is evaluated.
Na atualidade um grande volume de dados é produzido na nossa sociedade digital. Existe um crescente interesse em converter esses dados em informação útil e o aprendizado de máquinas tem um papel central nessa transformação de dados em conhecimento. Por outro lado, a probabilidade dos dados conterem outliers é muito alta para ignorar a importância dos algoritmos robustos. Para se familiarizar com isso, são estudados vários modelos de outliers. Neste trabalho, discutimos e analisamos vários estimadores robustos dentro do contexto dos modelos de regressão linear generalizados: são eles o M-Estimator, o S-Estimator, o MM-Estimator, o RANSAC e o Theil-Senestimator. A escolha dos estimadores é motivada pelo principio de explorar algoritmos com distintos conceitos de funcionamento. Em particular os estimadores M, S e MM são baseados na modificação do critério de minimização dos mínimos quadrados, enquanto que o RANSAC se fundamenta em achar o menor subconjunto que permita garantir uma acurácia predefinida ao modelo. Por outro lado o Theil-Sen usa a mediana de modelos obtidos usando mínimos quadradosno processo de estimação. O desempenho dos estimadores em uma ampla gama de condições experimentais é comparado e analisado. Além do problema de regressão linear, considera-se o problema de redução da dimensionalidade. Especificamente, são tratados o Locally Linear Embedding, o Principal ComponentAnalysis e outras abordagens robustas destes. É proposto um método denominado RALLE com a motivação de prover de robustez ao algoritmo de LLE. A ideia principal é usar vizinhanças de tamanhos variáveis para construir os pesos dos pontos; para fazer isto possível, o RAPCA é executado em cada grupo de vizinhos e os pontos sob risco são descartados da vizinhança correspondente. É feita uma avaliação do desempenho do LLE, do RLLE e do RALLE sobre algumas bases de dados.
Peraça, Maria da Graça Teixeira. "Modelos para estimativa do grau de saturação do concreto mediante variáveis ambientais que influenciam na sua variação." reponame:Repositório Institucional da FURG, 2009. http://repositorio.furg.br/handle/1/3436.
Full textSubmitted by Lilian M. Silva (lilianmadeirasilva@hotmail.com) on 2013-04-22T19:51:54Z No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5)
Approved for entry into archive by Bruna Vieira(bruninha_vieira@ibest.com.br) on 2013-06-03T19:20:55Z (GMT) No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5)
Made available in DSpace on 2013-06-03T19:20:55Z (GMT). No. of bitstreams: 1 Modelos para estimativa do Grau de Saturação do concreto mediante Variáveis Ambientais que influenciam na sua variação.pdf: 2786682 bytes, checksum: df174dab02a19756db94fc47c6bb021d (MD5) Previous issue date: 2009
Nas engenharias, é fundamental estimar o tempo de vida útil das estruturas construídas, o que neste trabalho significa o tempo que os íons cloretos levam para atingirem a armadura do concreto. Um dos coeficientes que influenciam na vida útil do concreto é o de difusão, sendo este diretamente influenciado pelo grau de saturação (GS) do concreto. Recentes estudos levaram ao desenvolvimento de um método de medição do GS. Embora esse método seja eficiente, ainda assim há um grande desperdício de tempo e dinheiro em utilizá-lo. O objetivo deste trabalho é reduzir estes custos calculando uma boa aproximação para o valor do GS com modelos matemáticos que estimem o seu valor através de variáveis ambientais que influenciam na sua variação. As variáveis analisadas nesta pesquisa, são: pressão atmosférica,temperatura do ar seco, temperatura máxima, temperatura mínima, taxa de evaporação interna (Pichê), taxa de precipitação, umidade relativa, insolação, visibilidade, nebulosidade e taxa de evaporação externa. Todas foram analisadas e comparadas estatisticamente com medidas do GS obtidas durante quatro anos de medições semanais, para diferentes famílias de concreto. Com essas análises, pode-se medir a relação entre estes dados verificando que os fatores mais influentes no GS são, temperatura máxima e umidade relativa. Após a verificação desse resultado, foram elaborados modelos estatísticos, para que, através dos dados ambientais, cedidos pelo banco de dados meteorológicos, se possam calcular, sem desperdício de tempo e dinheiro, as médias aproximadas do GS para cada estação sazonal da região sul do Brasil, garantindo assim uma melhor estimativa do tempo de vida útil em estruturas de concreto.
In engineering, it is fundamental to estimate the life-cycle of built structures, which in this study means the period of time required for chlorides to reach the concrete reinforcement. One of the coefficients that affect the life-cycle of concrete is the diffusion, which is directly influenced by the saturation degree (SD) of concrete. Recent studies have led to the development of a measurement method for the SD. Although this method is efficient, there is still waste of time and money when it is used. The objective of this study is to reduce costs by calculating a good approximation for the SD value with mathematical models that predict its value through environmental variables that affect its variation. The variables analysed in the study are: atmospheric pressure, temperature of the dry air, maximum temperature, minimum temperature, internal evaporation rate (Pichê), precipitation rate, relative humidity, insolation, visibility, cloudiness and external evaporation rate. All of them were statistically analysed and compared with measurements of SD obtained during four years of weekly assessments for different families of concrete. By considering these analyses, the relationship among these data can be measured and it can be verified that the most influent variables affecting the SD are the maximum temperature and the relative humidity. After verifying this result, statistical models were developed aiming to calculate, based on the environmental data provided by the meteorological database and without waste of time and money, the approximate averages of SD for each seasonal station of the south region of Brazil, thus providing a better estimative of life-cycle for concrete structures.
Bocci, Cynthia Jacqueline. "Linear regression with spatially correlated data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0012/NQ52271.pdf.
Full textMahmood, Nozad. "Sparse Ridge Fusion For Linear Regression." Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5986.
Full textM.S.
Masters
Statistics
Sciences
Statistical Computing
Books on the topic "Linear regression"
Groß, Jürgen. Linear Regression. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55864-1.
Full textOlive, David J. Linear Regression. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55252-1.
Full textWeisberg, Sanford. Applied Linear Regression. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471704091.
Full text1946-, Lee A. J., ed. Linear regression analysis. 2nd ed. Hoboken, N.J: Wiley-Interscience, 2003.
Find full textSeber, George A. F. Linear regression analysis. 2nd ed. Hoboken, NJ: Wiley-Interscience, 2002.
Find full textApplied linear regression. 3rd ed. Hoboken, N.J: Wiley-Interscience, 2005.
Find full textApplied linear regression. 2nd ed. New York: Wiley, 1985.
Find full textWeisberg, Sanford. Applied Linear Regression. New York: John Wiley & Sons, Ltd., 2005.
Find full textJohn, Neter, ed. Applied linear regression models. 3rd ed. Chicago: Irwin, 1996.
Find full textRegression and linear models. New York: McGraw-Hill, 1990.
Find full textBook chapters on the topic "Linear regression"
Fahrmeir, Ludwig, Thomas Kneib, Stefan Lang, and Brian Marx. "Generalized Linear Models." In Regression, 269–324. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34333-9_5.
Full textFahrmeir, Ludwig, Thomas Kneib, Stefan Lang, and Brian D. Marx. "Generalized Linear Models." In Regression, 283–342. Berlin, Heidelberg: Springer Berlin Heidelberg, 2021. http://dx.doi.org/10.1007/978-3-662-63882-8_5.
Full textGroß, Jürgen. "Regression Diagnostics." In Linear Regression, 293–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55864-1_6.
Full textGroß, Jürgen. "Linear Admissibility." In Linear Regression, 213–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55864-1_4.
Full textOlive, David J. "Introduction." In Linear Regression, 1–15. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55252-1_1.
Full textOlive, David J. "Multivariate Models." In Linear Regression, 299–312. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55252-1_10.
Full textOlive, David J. "Theory for Linear Models." In Linear Regression, 313–42. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55252-1_11.
Full textOlive, David J. "Multivariate Linear Regression." In Linear Regression, 343–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55252-1_12.
Full textOlive, David J. "GLMs and GAMs." In Linear Regression, 389–458. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55252-1_13.
Full textOlive, David J. "Stuff for Students." In Linear Regression, 459–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55252-1_14.
Full textConference papers on the topic "Linear regression"
Bisserier, A., S. Galichet, and R. Boukezzoula. "Fuzzy piecewise linear regression." In 2008 IEEE 16th International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2008. http://dx.doi.org/10.1109/fuzzy.2008.4630658.
Full textSweetkind-Singer, J. A. "Log-penalized linear regression." In IEEE International Symposium on Information Theory, 2003. Proceedings. IEEE, 2003. http://dx.doi.org/10.1109/isit.2003.1228301.
Full textWenyi Zeng and Xin Zheng. "Fuzzy Linear Regression Model." In 2008 International Symposium on Information Science and Engineering (ISISE). IEEE, 2008. http://dx.doi.org/10.1109/isise.2008.143.
Full textChen, Juncheng, Jun-Sheng Ng, Nay Aung Kyaw, Zhili Zou, Kwen-Siong Chong, Zhiping Lin, and Bah-Hwee Gwee. "Incremental Linear Regression Attack." In 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). IEEE, 2022. http://dx.doi.org/10.1109/asianhost56390.2022.10022167.
Full textNelson, Eric, and Meir Pachter. "Linear Regression with Intercept." In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-4757.
Full textLi, Feiran, Kent Fujiwara, Fumio Okura, and Yasuyuki Matsushita. "Generalized Shuffled Linear Regression." In 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2021. http://dx.doi.org/10.1109/iccv48922.2021.00641.
Full textMandre, Ananya, Deeksha R. Hebbar, J. Shreya Rao, Ananya Keshav, Shoaib Kamal, and Trupthi Rao. "Early Forest-Fire Detection by Linear Regression, Ridge Regression And Lasso Regression." In 2023 International Conference on Computational Intelligence for Information, Security and Communication Applications (CIISCA). IEEE, 2023. http://dx.doi.org/10.1109/ciisca59740.2023.00060.
Full textGoetschalckx, Robby, Kurt Driessens, and Scott Sanner. "Cost-Sensitive Parsimonious Linear Regression." In 2008 Eighth IEEE International Conference on Data Mining (ICDM). IEEE, 2008. http://dx.doi.org/10.1109/icdm.2008.76.
Full textChahad, Abdelkader, Ali Laksaci, and Ait-Hennani Larbi. "Functional local linear relative regression." In 2020 2nd International Conference on Mathematics and Information Technology (ICMIT). IEEE, 2020. http://dx.doi.org/10.1109/icmit47780.2020.9047027.
Full textLemos, Andre, Walmir Caminhas, and Fernando Gomide. "Evolving fuzzy linear regression trees." In 2010 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2010. http://dx.doi.org/10.1109/fuzzy.2010.5583970.
Full textReports on the topic "Linear regression"
Wallstrom, Timothy Clarke, and David Mitchell Higdon. Hierarchical Linear Regression. Office of Scientific and Technical Information (OSTI), January 2019. http://dx.doi.org/10.2172/1489929.
Full textKubik, Harold. MLRP, Multiple Linear Regression Program. Fort Belvoir, VA: Defense Technical Information Center, July 1986. http://dx.doi.org/10.21236/ada204565.
Full textMarchese, Malvina. Advanced Non-Linear Regression Modelling. Instats Inc., 2023. http://dx.doi.org/10.61700/mrtlpflhp64q7469.
Full textMarchese, Malvina. Advanced Non-Linear Regression Modelling. Instats Inc., 2023. http://dx.doi.org/10.61700/ovehw89kw8hwq469.
Full textZarnoch, Stanley J. Testing hypotheses for differences between linear regression lines. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2009. http://dx.doi.org/10.2737/srs-rn-17.
Full textZarnoch, Stanley J. Testing hypotheses for differences between linear regression lines. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2009. http://dx.doi.org/10.2737/srs-rn-17.
Full textDiCiccio, T. J. Likelihood Inference for Linear Regression Models. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada594293.
Full textButtrey, Samuel E. The Smarter Regression" Add-In for Linear and Logistic Regression in Excel". Fort Belvoir, VA: Defense Technical Information Center, July 2007. http://dx.doi.org/10.21236/ada470645.
Full textStock, James, and Motohiro Yogo. Testing for Weak Instruments in Linear IV Regression. Cambridge, MA: National Bureau of Economic Research, November 2002. http://dx.doi.org/10.3386/t0284.
Full textGraham, Bryan, and Cristine Campos de Xavier Pinto. Semiparametrically Efficient Estimation of the Average Linear Regression Function. Cambridge, MA: National Bureau of Economic Research, November 2018. http://dx.doi.org/10.3386/w25234.
Full text