Academic literature on the topic 'Linear quadratic theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear quadratic theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear quadratic theory"
Bakushev, S. V. "LINEAR THEORY OF ELASTICITY WITH QUADRATIC SUMMAND." STRUCTURAL MECHANICS AND ANALYSIS OF CONSTRUCTIONS 303, no. 4 (February 28, 2022): 29–36. http://dx.doi.org/10.37538/0039-2383.2022.1.29.36.
Full textMoir, T. J., and J. F. Barrett. "Wiener theory of digital linear-quadratic control." International Journal of Control 49, no. 6 (June 1989): 2123–55. http://dx.doi.org/10.1080/00207178908559766.
Full textAlford, R., and E. Lee. "Sampled data hereditary systems: Linear quadratic theory." IEEE Transactions on Automatic Control 31, no. 1 (January 1986): 60–65. http://dx.doi.org/10.1109/tac.1986.1104106.
Full textvan den Broek, W. A., J. C. Engwerda, and J. M. Schumacher. "An equivalence result in linear-quadratic theory." Automatica 39, no. 2 (February 2003): 355–59. http://dx.doi.org/10.1016/s0005-1098(02)00228-5.
Full textRăsvan, Vladimir. "Linear quadratic problems (On “linear” approaches in nonlinear system theory)." Journal of Physics: Conference Series 1864, no. 1 (May 1, 2021): 012003. http://dx.doi.org/10.1088/1742-6596/1864/1/012003.
Full textLapierre, Helene, and Germain Ostiguy. "Structural model verification with linear quadratic optimization theory." AIAA Journal 28, no. 8 (August 1990): 1497–503. http://dx.doi.org/10.2514/3.25244.
Full textRasina, Irina Viktorovna, and Oles Vladimirovich Fesko. "Approximate optimal control synthesis for nonuniform discrete systems with linear-quadratic state." Program Systems: Theory and Applications 10, no. 2 (2019): 67–77. http://dx.doi.org/10.25209/2079-3316-2019-10-2-67-77.
Full textHorwitz, Noam. "Linear resolutions of quadratic monomial ideals." Journal of Algebra 318, no. 2 (December 2007): 981–1001. http://dx.doi.org/10.1016/j.jalgebra.2007.06.006.
Full textCIARLET, PHILIPPE G., and LILIANA GRATIE. "A NEW APPROACH TO LINEAR SHELL THEORY." Mathematical Models and Methods in Applied Sciences 15, no. 08 (August 2005): 1181–202. http://dx.doi.org/10.1142/s0218202505000704.
Full textAHMED, N. U., and P. LI. "Quadratic Regulator Theory and Linear Filtering Under System Constraints." IMA Journal of Mathematical Control and Information 8, no. 1 (1991): 93–107. http://dx.doi.org/10.1093/imamci/8.1.93.
Full textDissertations / Theses on the topic "Linear quadratic theory"
Mouadeb, Abdu-Nasser R. "Extension of linear quadratic regulator theory and its applications." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7535.
Full textShen, Dan. "Nash strategies for dynamic noncooperative linear quadratic sequential games." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1156434869.
Full textFry, Jedediah Micah. "On Integral Quadratic Constraint Theory and Robust Control of Unmanned Aircraft Systems." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/102615.
Full textDoctor of Philosophy
Wahl, Eric J. "The effect of damping on an optimally tuned dwell-rise-dwell cam designed by linear quadratic optimal control theory." Ohio : Ohio University, 1993. http://www.ohiolink.edu/etd/view.cgi?ohiou1176312992.
Full textDoruk, Resat Ozgur. "Missile Autopilot Design By Projective Control Theory." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/4/1089929/index.pdf.
Full textWild, Marcel Wolfgang. "Dreieckverbande : lineare und quadratische darstellungstheorie." Thesis, University of Zurich, 1987. http://hdl.handle.net/10019.1/70322.
Full textThe original works can be found at http://www.hbz.uzh.ch/
ABSTRACT: A linear representation of a modular lattice L is a homomorphism from L into the lattice Sub(V) of all subspaces of a vector space V. The representation theory of lattices was initiated by the Darmstadt school (Wille, Herrmann, Poguntke, et al), to large extent triggered by the linear representations of posets (Gabriel, Gelfand-Ponomarev, Nazarova, Roiter, Brenner, et al). Even though posets are more general than lattices, none of the two theories encompasses the other. In my thesis a natural type of finite lattice is identified, i.e. triangle lattices, and their linear representation theory is advanced. All of this was triggered by a more intricate setting of quadratic spaces (as opposed to mere vector spaces) and the question of how Witt’s Theorem on the congruence of finite-dimensional quadratic spaces lifts to spaces of uncountable dimensions. That issue is dealt with in the second half of the thesis.
Flores, Callisaya Hector 1980. "Empacotamento em quadráticas." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/307468.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-20T05:08:42Z (GMT). No. of bitstreams: 1 FloresCallisaya_Hector_D.pdf: 2324904 bytes, checksum: e15e7624ccad0fdf64ce3c4d8095c20a (MD5) Previous issue date: 2012
Resumo: Neste trabalho, serão propostos modelos matemáticos para problemas de empacotamento não reticulado de esferas em regiões limitadas por quadráticas no plano e no espaço. Uma técnica para construir representações ou parametrizações será introduzida, mediante a qual será possível encontrar um sistema de desigualdades que determinam o empacotamento de um número fixo de esferas. Desta forma, resolvemos o problema de empacotamento de esferas através de uma sequência de sistemas de desigualdades. Finalmente, para obter resultados eficientes, minimizaremos a função de sobreposição, usando o método do Lagrangiano Aumentado
Abstract: In this work, we will propose mathematical models for not latticed packing of spheres problems in regions bounded by quadratic in the plane and in the space. A technique to construct representations or parameterizations will be introduced, by which it will be possible to find a system of inequalities which determine the packing of a fixed number of spheres. Thus, we solve the problem of packing spheres through a sequence of systems of inequalities. Finally, to obtain effective results, we will minimize the overlay function using the Augmented Lagrangian Method
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Troschke, Sven-Oliver. "Enhanced approaches to the combination of forecasts : univariate linear plus quadratic and multivariate linear methods /." Lohmar [u. a.] : Eul, 2002. http://www.gbv.de/dms/zbw/358295025.pdf.
Full textMörhed, Joakim, and Filip Östman. "Automatic Parking and Path Following Control for a Heavy-Duty Vehicle." Thesis, Linköpings universitet, Reglerteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144496.
Full textSANTOS, Watson Robert Macedo. "Metodos para Solução da Equação HJB-Riccati via Famíla de Estimadores Parametricos RLS Simplificados e Dependentes de Modelo." Universidade Federal do Maranhão, 2014. http://tedebc.ufma.br:8080/jspui/handle/tede/1892.
Full textMade available in DSpace on 2017-09-04T13:42:58Z (GMT). No. of bitstreams: 1 Watson Robert.pdf: 2699368 bytes, checksum: cf204eec3df50b251f4adbbbd380ffd0 (MD5) Previous issue date: 2014-08-21
Due to the demand for high-performance equipments and the rising cost of energy, the industrial sector is developing equipments to attend minimization of the theirs operational costs. The implementation of these requirements generate a demand for projects and implementations of high-performance control systems. The optimal control theory is an alternative to solve this problem, because in its design considers the normative specifications of the system design, as well as those that are related to the operational costs. Motivated by these perspectives, it is presented the study of methods and the development of algorithms to the approximated solution of the Equation Hamilton-Jacobi-Bellman, in the form of discrete Riccati equation, model free and dependent of the dynamic system. The proposed solutions are developed in the context of adaptive dynamic programming that are based on the methods for online design of optimal control systems, Discrete Linear Quadratic Regulator type. The proposed approach is evaluated in multivariable models of the dynamic systems to evaluate the perspectives of the optimal control law for online implementations.
Devido a demanda por equipamentos de alto desempenho e o custo crescente da energia, o setor industrial desenvolve equipamentos que atendem a minimização dos seus custos operacionais. A implantação destas exigências geram uma demanda por projetos e implementações de sistemas de controle de alto desempenho. A teoria de controle ótimo é uma alternativa para solucionar este problema, porque considera no seu projeto as especificações normativas de projeto do sistema, como também as relativas aos seus custos operacionais. Motivado por estas perspectivas, apresenta-se o estudo de métodos e o desenvolvimento de algoritmos para solução aproximada da Equação Hamilton-Jacobi-Bellman, do tipo Equação Discreta de Riccati, livre e dependente de modelo do sistema dinâmico. As soluções propostas são desenvolvidas no contexto de programação dinâmica adaptativa (ADP) que baseiam-se nos métodos para o projeto on-line de Controladores Ótimos, do tipo Regulador Linear Quadrático Discreto. A abordagem proposta é avaliada em modelos de sistemas dinâmicos multivariáveis, tendo em vista a implementação on-line de leis de controle ótimo.
Books on the topic "Linear quadratic theory"
Sima, Vasile. Algorithms for linear-quadratic optimization. New York: M. Dekker, 1996.
Find full textAnderson, Brian D. O. Optimal control: Linear quadratic methods. Englewood Cliffs, N.J: Prentice Hall, 1990.
Find full textQuadratic forms, linear algebraic groups, and cohomology. New York: Springer, 2010.
Find full textIntroduction to quadratic forms. Berlin: Springer, 2000.
Find full text1964-, Hartley T. T., and Chicatelli S. P. 1964-, eds. The hyperbolic map and applications to the linear quadratic regulator. New York: Springer-Verlag, 1989.
Find full text1955-, Mehrmann V. L., ed. The Autonomous linear quadratic control problem: Theory and numerical solution. Berlin: Springer-Verlag, 1991.
Find full textDaiuto, Brian J. The Hyperbolic Map and Applications to the Linear Quadratic Regulator. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textservice), SpringerLink (Online, ed. Mono- and Multivariable Control and Estimation: Linear, Quadratic and LMI Methods. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textArithmetic and analytic theories of quadratic forms and Clifford groups. Providence, R.I: American Mathematical Society, 2004.
Find full textRoche, Maurice J. Some linear-quadratic solution methods to stochastic nonlinear rational expectations models. Maynooth, Co Kildare: Maynooth College, Department of Economics, 1994.
Find full textBook chapters on the topic "Linear quadratic theory"
Agrachev, Andrei A., and Yuri L. Sachkov. "Linear-Quadratic Problem." In Control Theory from the Geometric Viewpoint, 223–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06404-7_16.
Full textBensoussan, Alain, Jens Frehse, and Phillip Yam. "Linear Quadratic Models." In Mean Field Games and Mean Field Type Control Theory, 45–57. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8508-7_6.
Full textCurtain, Ruth, and Hans Zwart. "Linear Quadratic Optimal Control." In Introduction to Infinite-Dimensional Systems Theory, 385–478. New York, NY: Springer New York, 2020. http://dx.doi.org/10.1007/978-1-0716-0590-5_9.
Full textd’Andréa-Novel, Brigitte, and Michel De Lara. "Quadratic Optimization and Linear Filtering." In Control Theory for Engineers, 165–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34324-7_7.
Full textKoshmanenko, Volodymyr. "Quadratic Forms and Linear Operators." In Singular Quadratic Forms in Perturbation Theory, 5–58. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4619-7_2.
Full textLi, Xunjing, and Jiongmin Yong. "Linear Quadratic Optimal Control Problems." In Optimal Control Theory for Infinite Dimensional Systems, 361–418. Boston, MA: Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-4260-4_9.
Full textLü, Qi, and Xu Zhang. "Linear Quadratic Optimal Control Problems." In Mathematical Control Theory for Stochastic Partial Differential Equations, 477–565. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82331-3_13.
Full textHalanay, Aristide, and Judita Samuel. "Linear-Quadratic Optimization on Finite Horizon." In Mathematical Modelling: Theory and Applications, 228–69. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8915-4_8.
Full textGeerts, A. H. W., and M. L. J. Hautus. "Linear-Quadratic Problems and the Riccati Equation." In Perspectives in Control Theory, 39–55. Boston, MA: Birkhäuser Boston, 1990. http://dx.doi.org/10.1007/978-1-4757-2105-8_4.
Full textZimmerman, Dale L. "Moments of a Random Vector and of Linear and Quadratic Forms in a Random Vector." In Linear Model Theory, 57–68. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52063-2_4.
Full textConference papers on the topic "Linear quadratic theory"
Gattami, Ather. "Generalized Linear Quadratic Control Theory." In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.376772.
Full textRantzer, A. "Linear quadratic team theory revisited." In 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1656453.
Full textRantzer, Anders. "On Prize Mechanisms in linear quadratic team theory." In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434594.
Full textTzortzis, Ioannis, and Charalambos D. Charalambous. "Optimum immigration policies based on Linear Quadratic Theory." In 2010 4th International Symposium on Communications, Control and Signal Processing (ISCCSP). IEEE, 2010. http://dx.doi.org/10.1109/isccsp.2010.5463388.
Full textChowdhury, Sayak Ray, Xingyu Zhou, and Ness Shroff. "Adaptive Control of Differentially Private Linear Quadratic Systems." In 2021 IEEE International Symposium on Information Theory (ISIT). IEEE, 2021. http://dx.doi.org/10.1109/isit45174.2021.9518203.
Full textDukeman, Greg. "Profile-Following Entry Guidance Using Linear Quadratic Regulator Theory." In AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-4457.
Full textLee, E., and Y. You. "An infinite dimensional quadratic theory for linear delay systems." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272900.
Full textXU, YASHAN. "A LINEAR QUADRATIC CONSTRAINED OPTIMAL FEEDBACK CONTROL PROBLEM." In Control Theory and Related Topics - In Memory of Professor Xunjing Li. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812790552_0016.
Full textYu, Jen-te. "An Equivalent Discrete-Time Output Feedback Linear Quadratic Regulator Theory." In 2020 7th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2020. http://dx.doi.org/10.1109/codit49905.2020.9263912.
Full textGiamberardino, Paolo Di, and Daniela Iacoviello. "A linear quadratic regulator for nonlinear SIRC epidemic model." In 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2019. http://dx.doi.org/10.1109/icstcc.2019.8885727.
Full textReports on the topic "Linear quadratic theory"
Riveros, Guillermo, Felipe Acosta, Reena Patel, and Wayne Hodo. Computational mechanics of the paddlefish rostrum. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41860.
Full textGarcia-Bernardo, Javier, and Petr Janský. Profit Shifting of Multinational Corporations Worldwide. Institute of Development Studies, March 2021. http://dx.doi.org/10.19088/ictd.2021.005.
Full textAn Input Linearized Powertrain Model for the Optimal Control of Hybrid Electric Vehicles. SAE International, March 2022. http://dx.doi.org/10.4271/2022-01-0741.
Full text