Academic literature on the topic 'Linear principal componetns analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear principal componetns analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear principal componetns analysis"
Török, Evelin, István Komlósi, Béla Béri, Imre Füller, Barnabás Vágó, and János Posta. "Principal component analysis of conformation traits in Hungarian Simmental cows." Czech Journal of Animal Science 66, No. 2 (February 15, 2021): 39–45. http://dx.doi.org/10.17221/155/2020-cjas.
Full textHiden, H. G., M. J. Willis, M. T. Tham, and G. A. Montague. "Non-linear principal components analysis using genetic programming." Computers & Chemical Engineering 23, no. 3 (February 1999): 413–25. http://dx.doi.org/10.1016/s0098-1354(98)00284-1.
Full textZhang, J., A. J. Morris, and E. B. Martin. "Process Monitoring Using Non-Linear Principal Component Analysis." IFAC Proceedings Volumes 29, no. 1 (June 1996): 6584–89. http://dx.doi.org/10.1016/s1474-6670(17)58739-x.
Full textRuessink, B. G., I. M. J. van Enckevort, and Y. Kuriyama. "Non-linear principal component analysis of nearshore bathymetry." Marine Geology 203, no. 1-2 (January 2004): 185–97. http://dx.doi.org/10.1016/s0025-3227(03)00334-7.
Full textJia, F., E. B. Martin, and A. J. Morris. "Non-linear principal components analysis for process fault detection." Computers & Chemical Engineering 22 (March 1998): S851—S854. http://dx.doi.org/10.1016/s0098-1354(98)00164-1.
Full textRattan, S. S. P., B. G. Ruessink, and W. W. Hsieh. "Non-linear complex principal component analysis of nearshore bathymetry." Nonlinear Processes in Geophysics 12, no. 5 (June 28, 2005): 661–70. http://dx.doi.org/10.5194/npg-12-661-2005.
Full textKambhatla, Nandakishore, and Todd K. Leen. "Dimension Reduction by Local Principal Component Analysis." Neural Computation 9, no. 7 (October 1, 1997): 1493–516. http://dx.doi.org/10.1162/neco.1997.9.7.1493.
Full textPurviance, J. E., M. C. Petzold, and C. Potratz. "A linear statistical FET model using principal component analysis." IEEE Transactions on Microwave Theory and Techniques 37, no. 9 (1989): 1389–94. http://dx.doi.org/10.1109/22.32222.
Full textJiang, Jian-Hui, Ji-Hong Wang, Xia Chu, and Ru-Qin Yu. "Neural network learning to non-linear principal component analysis." Analytica Chimica Acta 336, no. 1-3 (December 1996): 209–22. http://dx.doi.org/10.1016/s0003-2670(96)00359-5.
Full textChan. "Face Biometrics Based on Principal Component Analysis and Linear Discriminant Analysis." Journal of Computer Science 6, no. 7 (July 1, 2010): 693–99. http://dx.doi.org/10.3844/jcssp.2010.693.699.
Full textDissertations / Theses on the topic "Linear principal componetns analysis"
Shannak, Kamal Majed. "On Non-Linear Principal Component Analysis for Process Monitoring." Fogler Library, University of Maine, 2004. http://www.library.umaine.edu/theses/pdf/ShannakKM2004.pdf.
Full textJia, Feng. "Application of linear and non-linear principal component analysis in multivariate statistical process control." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311152.
Full textMENNI, CRISTINA. "Population stratification in genome-wide association studies: a comparison among different multivariate analysis methods for dimensionality reduction." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19317.
Full textArcher, Cynthia. "A framework for representing non-stationary data with mixtures of linear models /." Full text open access at:, 2002. http://content.ohsu.edu/u?/etd,585.
Full textSavery, James Roy. "A modular non-linear approach to empirical principal component analysis based process modelling." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417693.
Full textPascoto, Tamara Vieira. "Análises fatorial e de componentes principais aplicadas ao estudo dos fatores influenciadores de processos erosivos /." Bauru, 2020. http://hdl.handle.net/11449/192266.
Full textResumo: A erosão é um problema ambiental em que a perda de solo pode acarretar problemas econômicos e, quando próximos a urbanizações, problemas sociais. A cidade de São Manuel está situada no interior de São Paulo e apresenta, tanto solos argilosos com baixa suscetibilidade a erosão, como solos arenosos com alta suscetibilidade a erosão. Uma vez que existem áreas suscetíveis à erosão próximas à área urbana capazes de colocar a população em risco, surgiu a necessidade de analisá-las a fim de auxiliar políticas públicas para minimizar suas consequências. Com isso, a presente pesquisa propôs o desenvolvimento de uma metodologia para gerar índices de erosão, por Análise de Componente Principal (PCA) e por Análise Fatorial, fundamentado em alguns dos principais fatores influenciadores nos processos erosivos que ocorrem na área urbana do município. Nessa etapa foram considerados: textura do solo; declividade; permeabilidade; uso e ocupação; pluviosidade; e erodibilidade dos solos. Inicialmente, foram levantadas as feições erosivas existentes na área urbana, espacializadas e classificadas. Entre as 9 feições espacializadas, duas eram provenientes de processos fluviais, duas estavam recuperadas, restando cinco feições erosivas lineares para serem estudadas. Uma das cinco, apesar de estar estabilizada, apresentou um avanço significativo em um dos braços. Das feições estudadas, apenas uma foi classificada como ravina, sendo as demais classificadas como voçorocas. Após levantados os fatores in... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Erosion is an environmental problem where soil loss can lead either to economic problems or, whether close to urbanization, social problems. São Manuel town is located in the interior of São Paulo and has both clayey soils with low susceptibility to erosion and sandy soils with high susceptibility to erosion. Since there are areas susceptible to erosion close to the urban area capable of putting the population at risk, the need arose to analyze them in order to assist public policies to minimize their consequences. Therefore, this research proposed the development of a methodology to generate erosion indexes, by Principal Component Analysis (PCA) and Factorial Analysis, based on some of the main factors influencing erosion processes that occur in the urban area of the municipality. At this stage the following factors were considered: soil texture; slope; permeability; use and occupation; rainfall; and soil erodibility. Initially, the erosive features existing in the urban area were surveyed, spatialized and classified. Among the 9 spatialized features, two were from fluvial processes, two were recovered, leaving five linear erosive features to be studied. One of the five, despite being stabilized, presented a significant advance in one of the arms. Of the studied features, only one was classified as ravine, the others being classified as gullies. After surveyed the influencing factors, they were evaluated according to two methodologies: Method A - it was based on the analysis... (Complete abstract click electronic access below)
Mestre
Marbach, Matthew James. "Use of principal component analysis with linear predictive features in developing a blind SNR estimation system /." Full text available online, 2006. http://www.lib.rowan.edu/find/theses.
Full textVaranis, Marcus Vinicius Monteiro 1979. "Detecção de falhas em motores elétricos através da transformada wavelet packet e métodos de redução de dimensionalidade." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265889.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-26T01:39:31Z (GMT). No. of bitstreams: 1 Varanis_MarcusViniciusMonteiro_D.pdf: 5116959 bytes, checksum: b16ac36565b93c6bf49eb1863f7e9823 (MD5) Previous issue date: 2014
Resumo: Motores elétricos são componentes de grande importância na maioria dos equipamentos de plantas industriais. As diversas falhas que ocorrem nas máquinas de indução podem gerar consequências severas no processo industrial. Os principais problemas estão relacionados à elevação dos custos de produção, piora nas condições do processo e de segurança e, sobretudo piora na qualidade do produto final. Muitas destas falhas mostram-se progressivas. Neste trabalho, apresenta-se uma contribuição ao estudo de Técnicas de Processamento de Sinais Baseadas na Transformada Wavelet para extração de parâmetros de Energia e Entropia a partir de sinais de vibração para detecção de falhas no regime não-estacionário (parada e partida do motor). Em conjunto com a transformada Wavelet utilizam-se métodos de redução de dimensionalidade como, a análise em componentes principais (PCA e a análise Linear Discriminante (LDA). O uso de uma bancada experimental mostra que os resultados da classificação têm alta precisão
Abstract: Electric motors are very important components in most industrial plants equipment. The several faults occurring in induction machines can generate severe consequences in the industrial process. The main problems are related to high production costs, worsening the conditions of process and security, and especially poor quality of the final product. Many of these failures are shown progressive. This work presents a contribution to the study of Signal Processing Techniques Based on Wavelet Packet Transform for extracting parameters of Energy and Entropy, together makes the use of dimensionality reduction methods like the Principal components Analysis (PCA) and Linear Dscriminant Analysis (LDA). This analysis is done from the acquisition of vibration signals in Non-Stationary state (stop and start the engine). The results show that the performance of classification has high accuracy based on experimental work
Doutorado
Mecanica dos Sólidos e Projeto Mecanico
Doutor em Engenharia Mecânica
Khosla, Nitin, and n/a. "Dimensionality Reduction Using Factor Analysis." Griffith University. School of Engineering, 2006. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20061010.151217.
Full textKhosla, Nitin. "Dimensionality Reduction Using Factor Analysis." Thesis, Griffith University, 2006. http://hdl.handle.net/10072/366058.
Full textThesis (Masters)
Master of Philosophy (MPhil)
School of Engineering
Full Text
Books on the topic "Linear principal componetns analysis"
Ahmed, S. E. (Syed Ejaz), 1957- editor of compilation, ed. Perspectives on big data analysis: Methodologies and applications : International Workshop on Perspectives on High-Dimensional Data Anlaysis II, May 30-June 1, 2012, Centre de Recherches Mathématiques, University de Montréal, Montréal, Québec, Canada. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textHall, Peter. Principal component analysis for functional data. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.8.
Full textSoilihi, Nizar. Data Analysis: New on Functional Principal Component Analysis and on Functional Linear Regression Modeling. Independently Published, 2020.
Find full textJames, Gareth. Sparseness and functional data analysis. Edited by Frédéric Ferraty and Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.11.
Full textFerraty, Frédéric, and Yves Romain, eds. The Oxford Handbook of Functional Data Analysis. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.001.0001.
Full textVeech, Joseph A. Habitat Ecology and Analysis. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198829287.001.0001.
Full textMakatjane, Katleho, and Roscoe van Wyk. Identifying structural changes in the exchange rates of South Africa as a regime-switching process. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/919-8.
Full textBoothroyd, Andrew T. Principles of Neutron Scattering from Condensed Matter. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862314.001.0001.
Full textFrew, Anthony. Air pollution. Edited by Patrick Davey and David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0341.
Full textBook chapters on the topic "Linear principal componetns analysis"
Balzano, Simona, Maja Bozic, Laura Marcis, and Renato Salvatore. "On Predicting Principal Components Through Linear Mixed Models." In Statistical Learning and Modeling in Data Analysis, 17–27. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69944-4_3.
Full textVisentin, Andrea, Steven Prestwich, and S. Armagan Tarim. "Robust Principal Component Analysis by Reverse Iterative Linear Programming." In Machine Learning and Knowledge Discovery in Databases, 593–605. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46227-1_37.
Full textDeshmukh, Rushali A., Prachi Jadhav, Sakshi Shelar, Ujwal Nikam, Dhanshri Patil, and Rohan Jawale. "Stock Price Prediction Using Principal Component Analysis and Linear Regression." In Emerging Technologies in Data Mining and Information Security, 269–76. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4052-1_28.
Full textAbusham, Eimad Eldin, David Ngo, and Andrew Teoh. "Fusion of Locally Linear Embedding and Principal Component Analysis for Face Recognition (FLLEPCA)." In Pattern Recognition and Image Analysis, 326–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552499_37.
Full textWang, Mei. "An Improved Image Segmentation Algorithm Based on Principal Component Analysis." In Proceedings of the 9th International Symposium on Linear Drives for Industry Applications, Volume 4, 811–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40640-9_101.
Full textWang, Sai, and Huiwen Deng. "Face Recognition Using Principal Component Analysis-Fuzzy Linear Discriminant Analysis and Dynamic Fuzzy Neural Network." In Lecture Notes in Electrical Engineering, 577–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27323-0_73.
Full textTessitore, Gerarda, and Simona Balbi. "An Algorithm for Detecting the Number of Knots in Non Linear Principal Component Analysis." In COMPSTAT, 465–70. Heidelberg: Physica-Verlag HD, 1996. http://dx.doi.org/10.1007/978-3-642-46992-3_64.
Full textDhankhar, Amita, and Kamna Solanki. "Predicting Student’s Performance Using Linear Kernel Principal Component Analysis and Recurrent Neural Network (LKPCA-RNN) Model." In Proceedings of Data Analytics and Management, 637–46. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6285-0_51.
Full textLohmann, G., D. Y. von Cramon, and A. C. F. Colchester. "A Construction of an Averaged Representation of Human Cortical Gyri Using Non-linear Principal Component Analysis." In Lecture Notes in Computer Science, 749–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11566489_92.
Full textFan, Kai, Conall O’Sullivan, Anthony Brabazon, and Michael O’Neill. "Non-linear Principal Component Analysis of the Implied Volatility Smile using a Quantum-inspired Evolutionary Algorithm." In Natural Computing in Computational Finance, 89–107. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77477-8_6.
Full textConference papers on the topic "Linear principal componetns analysis"
Pei, Yan. "Linear Principal Component Discriminant Analysis." In 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2015. http://dx.doi.org/10.1109/smc.2015.368.
Full textHiden, H. G. "Non-linear principal components analysis using genetic programming." In Second International Conference on Genetic Algorithms in Engineering Systems. IEE, 1997. http://dx.doi.org/10.1049/cp:19971197.
Full textRamrath, L., M. Miinchhof, and R. Isermann. "Local linear neural networks based on principal component analysis." In 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1657185.
Full textSu, Hang, and Xuansheng Wang. "Principal Component Analysis in Linear Discriminant Analysis Space for Face Recognition." In 2014 5th International Conference on Digital Home (ICDH). IEEE, 2014. http://dx.doi.org/10.1109/icdh.2014.13.
Full textHorsthemke, William H., and Daniela S. Raicu. "Organ analysis and classification using principal component and linear discriminant analysis." In Medical Imaging, edited by Josien P. W. Pluim and Joseph M. Reinhardt. SPIE, 2007. http://dx.doi.org/10.1117/12.708032.
Full textWang, Huiyuan, Zengfeng Wang, Yan Leng, and Xiaojuan Wu. "Face Recognition Combing Principal Component Analysis and Fractional-step Linear Discriminant analysis." In 2006 8th international Conference on Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/icosp.2006.345816.
Full textVigon, L. "Adaptive non-linear principal component analysis of a saccade related EEG component." In DERA/IEE Workshop Intelligent Sensor Processing. IEE, 2001. http://dx.doi.org/10.1049/ic:20010114.
Full textSantos, A. D. F., M. F. M. Silva, C. S. Sales, J. C. W. A. Costa, and E. Figueiredo. "Applicability of linear and nonlinear principal component analysis for damage detection." In 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2015. http://dx.doi.org/10.1109/i2mtc.2015.7151383.
Full textGencturk, B., V. V. Nabiyev, and A. Ustubioglu. "ACromegaly Pre-Diagnosis Based On Principal Component And Linear Discriminant Analysis." In 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, 2013. http://dx.doi.org/10.1109/siu.2013.6531306.
Full textSu, Yuanhang, Yuzhong Huang, and C. C. Jay Kuo. "Efficient Text Classification Using Tree-structured Multi-linear Principal Component Analysis." In 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8545832.
Full textReports on the topic "Linear principal componetns analysis"
Warrick, Arthur W., Gideon Oron, Mary M. Poulton, Rony Wallach, and Alex Furman. Multi-Dimensional Infiltration and Distribution of Water of Different Qualities and Solutes Related Through Artificial Neural Networks. United States Department of Agriculture, January 2009. http://dx.doi.org/10.32747/2009.7695865.bard.
Full text