Journal articles on the topic 'Linear perturbation theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Linear perturbation theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hwang, Jai-Chan. "COSMOLOGICAL LINEAR PERTURBATION THEORY." Publications of The Korean Astronomical Society 26, no. 2 (July 6, 2011): 55–70. http://dx.doi.org/10.5303/pkas.2011.26.2.055.
Full textDudkin, M. E., and O. Yu Dyuzhenkova. "Singularly perturbed rank one linear operators." Matematychni Studii 56, no. 2 (December 26, 2021): 162–75. http://dx.doi.org/10.30970/ms.56.2.162-175.
Full textNYE, V. A. "Perturbation Theory for Degenerate Linear Systems." IMA Journal of Mathematical Control and Information 2, no. 4 (1985): 261–73. http://dx.doi.org/10.1093/imamci/2.4.261.
Full textRenegar, James. "Some perturbation theory for linear programming." Mathematical Programming 65, no. 1-3 (February 1994): 73–91. http://dx.doi.org/10.1007/bf01581690.
Full textFedorov, A. K., and A. I. Ovseevich. "Perturbation theory of observable linear systems." Mathematical Notes 98, no. 1-2 (July 2015): 216–21. http://dx.doi.org/10.1134/s0001434615070226.
Full textPixius, C., S. Celik, and M. Bartelmann. "Kinetic field theory: perturbation theory beyond first order." Journal of Cosmology and Astroparticle Physics 2022, no. 12 (December 1, 2022): 030. http://dx.doi.org/10.1088/1475-7516/2022/12/030.
Full textNájera, Antonio, and Amanda Fajardo. "Cosmological perturbation theory in f(Q,T) gravity." Journal of Cosmology and Astroparticle Physics 2022, no. 03 (March 1, 2022): 020. http://dx.doi.org/10.1088/1475-7516/2022/03/020.
Full textZhang, J., L. Hui, and Z. Haiman. "A linear perturbation theory of inhomogeneous reionization." Monthly Notices of the Royal Astronomical Society 375, no. 1 (February 11, 2007): 324–36. http://dx.doi.org/10.1111/j.1365-2966.2006.11311.x.
Full textKOLB, EDWARD W., SABINO MATARRESE, ALESSIO NOTARI, and ANTONIO RIOTTO. "COSMOLOGICAL INFLUENCE OF SUPER-HUBBLE PERTURBATIONS." Modern Physics Letters A 20, no. 35 (November 20, 2005): 2705–10. http://dx.doi.org/10.1142/s0217732305018682.
Full textÁngyán, János G. "Rayleigh-Schrödinger perturbation theory for nonlinear Schrödinger equations with linear perturbation." International Journal of Quantum Chemistry 47, no. 6 (September 15, 1993): 469–83. http://dx.doi.org/10.1002/qua.560470606.
Full textLiu, Yan. "Invariance of Deficiency Indices of Second-Order Symmetric Linear Difference Equations under Perturbations." Journal of Function Spaces 2020 (February 13, 2020): 1–6. http://dx.doi.org/10.1155/2020/1940481.
Full textGHEORGHE, DANA. "A KATO PERTURBATION-TYPE RESULT FOR OPEN LINEAR RELATIONS IN NORMED SPACES." Bulletin of the Australian Mathematical Society 79, no. 1 (February 2009): 85–101. http://dx.doi.org/10.1017/s0004972708001056.
Full textGandini, Augusto. "The heuristically-based generalized perturbation theory." EPJ Nuclear Sciences & Technologies 7 (2021): 7. http://dx.doi.org/10.1051/epjn/2021003.
Full textSeelmann, Albrecht. "Semidefinite perturbations in the subspace perturbation problem." Journal of Operator Theory 81, no. 2 (March 15, 2019): 321–33. http://dx.doi.org/10.7900/jot.2018feb07.2186.
Full textMarié, L. "A study of the phase instability of quasi-geostrophic Rossby waves on the infinite β-plane to zonal flow perturbations." Nonlinear Processes in Geophysics 17, no. 1 (February 2, 2010): 49–63. http://dx.doi.org/10.5194/npg-17-49-2010.
Full textKalhous, Miloš, Lubomír Skála, Jaroslav Zamastil, and Jiří Čížek. "New Version of the Rayleigh-Schrödinger Perturbation Theory." Collection of Czechoslovak Chemical Communications 68, no. 2 (2003): 295–306. http://dx.doi.org/10.1135/cccc20030295.
Full textPANI, PAOLO. "ADVANCED METHODS IN BLACK-HOLE PERTURBATION THEORY." International Journal of Modern Physics A 28, no. 22n23 (September 20, 2013): 1340018. http://dx.doi.org/10.1142/s0217751x13400186.
Full textJungnickel, D. U., and C. Wetterich. "The linear meson model and chiral perturbation theory." European Physical Journal C 2, no. 3 (1998): 557. http://dx.doi.org/10.1007/s100520050161.
Full textJungnickel, D. U., and C. Wetterich. "The linear meson model and chiral perturbation theory." European Physical Journal C 2, no. 3 (April 1998): 557–67. http://dx.doi.org/10.1007/s100529800704.
Full textParusiński, Adam, and Guillaume Rond. "Multiparameter perturbation theory of matrices and linear operators." Transactions of the American Mathematical Society 373, no. 4 (January 23, 2020): 2933–48. http://dx.doi.org/10.1090/tran/8061.
Full textFalkovsky, L. A. "Perturbation theory for a hamiltonian linear in quasimomentum." JETP Letters 94, no. 9 (January 2012): 723–27. http://dx.doi.org/10.1134/s0021364011210053.
Full textCasotto, Stefano. "The gravitational perturbation spectrum in linear satellite theory." Celestial Mechanics & Dynamical Astronomy 62, no. 1 (May 1995): 1–22. http://dx.doi.org/10.1007/bf00692066.
Full textKloeckner, Benoit R. "Effective perturbation theory for simple isolated eigenvalues of linear operators." Journal of Operator Theory 81, no. 1 (December 15, 2018): 175–94. http://dx.doi.org/10.7900/jot.2017dec22.2179.
Full textSZPAK, NIKODEM. "LINEAR AND NONLINEAR TAILS I: GENERAL RESULTS AND PERTURBATION THEORY." Journal of Hyperbolic Differential Equations 05, no. 04 (December 2008): 741–65. http://dx.doi.org/10.1142/s0219891608001684.
Full textO'MALLEY, ROBERT E. "NAIVE SINGULAR PERTURBATION THEORY." Mathematical Models and Methods in Applied Sciences 11, no. 01 (February 2001): 119–31. http://dx.doi.org/10.1142/s0218202501000787.
Full textBora, Shreemayee, and Volker Mehrmann. "Linear Perturbation Theory for Structured Matrix Pencils Arising in Control Theory." SIAM Journal on Matrix Analysis and Applications 28, no. 1 (January 2006): 148–69. http://dx.doi.org/10.1137/040609355.
Full textYano, Masayuki, and Anthony T. Patera. "A space–time variational approach to hydrodynamic stability theory." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, no. 2155 (July 8, 2013): 20130036. http://dx.doi.org/10.1098/rspa.2013.0036.
Full textArnal, Ana, Fernando Casas, and Cristina Chiralt. "Exponential Perturbative Expansions and Coordinate Transformations." Mathematical and Computational Applications 25, no. 3 (August 13, 2020): 50. http://dx.doi.org/10.3390/mca25030050.
Full textNishihara, K., J. G. Wouchuk, C. Matsuoka, R. Ishizaki, and V. V. Zhakhovsky. "Richtmyer–Meshkov instability: theory of linear and nonlinear evolution." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, no. 1916 (April 13, 2010): 1769–807. http://dx.doi.org/10.1098/rsta.2009.0252.
Full textNAKAMURA, KOUJI. "GAUGE-INVARIANT VARIABLES IN GENERAL-RELATIVISTIC PERTURBATIONS: GLOBALIZATION AND ZERO-MODE PROBLEM." International Journal of Modern Physics D 21, no. 11 (October 2012): 1242004. http://dx.doi.org/10.1142/s0218271812420047.
Full textFAKHFAKH, FATMA, and MAHER MNIF. "Perturbation theory of lower semi-Browder multivalued linear operators." Publicationes Mathematicae Debrecen 78, no. 3-4 (April 1, 2011): 595–606. http://dx.doi.org/10.5486/pmd.2011.4799.
Full textMaurer, Simon A., Matthias Beer, Daniel S. Lambrecht, and Christian Ochsenfeld. "Linear-scaling symmetry-adapted perturbation theory with scaled dispersion." Journal of Chemical Physics 139, no. 18 (November 14, 2013): 184104. http://dx.doi.org/10.1063/1.4827297.
Full textWu, Xuejun, Chongming Xu, and Michael Soffel. "General-relativistic Linear Perturbation Theory on Elastical Astronomical Bodies." Symposium - International Astronomical Union 202 (2004): 247–49. http://dx.doi.org/10.1017/s0074180900218007.
Full textFrank, L. S., and H. W. Norde. "On a singular perturbation in the linear soliton theory." Asymptotic Analysis 4, no. 1 (1991): 17–59. http://dx.doi.org/10.3233/asy-1991-4102.
Full textBlas, Diego, Mathias Garny, and Thomas Konstandin. "On the non-linear scale of cosmological perturbation theory." Journal of Cosmology and Astroparticle Physics 2013, no. 09 (September 23, 2013): 024. http://dx.doi.org/10.1088/1475-7516/2013/09/024.
Full textBrumberg, Eugene, Victor A. Brumberg, Thomas Konrad, and Michael Soffel. "Analytical linear perturbation theory for highly eccentric satellite orbits." Celestial mechanics and dynamical astronomy 61, no. 4 (1995): 369–87. http://dx.doi.org/10.1007/bf00049516.
Full textGulliksson, M�rten, and Per-�ke Wedin. "Perturbation theory for generalized and constrained linear least squares." Numerical Linear Algebra with Applications 7, no. 4 (2000): 181–95. http://dx.doi.org/10.1002/1099-1506(200005)7:4<181::aid-nla193>3.0.co;2-d.
Full textMoore, Andrew M., Cristina L. Perez, and Javier Zavala-Garay. "A Non-normal View of the Wind-Driven Ocean Circulation." Journal of Physical Oceanography 32, no. 9 (September 1, 2002): 2681–705. http://dx.doi.org/10.1175/1520-0485-32.9.2681.
Full textÁlvarez, Teresa, and Diane Wilcox. "Perturbation theory of multivalued atkinson operators in normed spaces." Bulletin of the Australian Mathematical Society 76, no. 2 (October 2007): 195–204. http://dx.doi.org/10.1017/s0004972700039587.
Full textDing, Jiu. "Perturbation of systems of linear algebraic equations∗." Linear and Multilinear Algebra 47, no. 2 (April 2000): 119–27. http://dx.doi.org/10.1080/03081080008818637.
Full textAlinea, Allan L., and Takahiro Kubota. "Transformation of primordial cosmological perturbations under the general extended disformal transformation." International Journal of Modern Physics D 30, no. 08 (May 11, 2021): 2150057. http://dx.doi.org/10.1142/s0218271821500577.
Full textJiménez-Mejía, Raúl E., Rodrigo Acuna Herrera, and Pedro Torres. "Analysis of Spatially Doped Fused Silica Fiber Optic by Means of a Hamiltonian Formulation of the Helmholtz Equation." Advances in Materials Science and Engineering 2018 (2018): 1–11. http://dx.doi.org/10.1155/2018/5806947.
Full textNtahompagaze, Joseph, Amare Abebe, and Manasse Mbonye. "A study of perturbations in scalar–tensor theory using 1 + 3 covariant approach." International Journal of Modern Physics D 27, no. 03 (February 2018): 1850033. http://dx.doi.org/10.1142/s0218271818500335.
Full textArnoldi, Jean-François, and Bart Haegeman. "Unifying dynamical and structural stability of equilibria." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2193 (September 2016): 20150874. http://dx.doi.org/10.1098/rspa.2015.0874.
Full textLissy, Pierre, Yannick Privat, and Yacouba Simporé. "Insensitizing control for linear and semi-linear heat equations with partially unknown domain." ESAIM: Control, Optimisation and Calculus of Variations 25 (2019): 50. http://dx.doi.org/10.1051/cocv/2018035.
Full textAlmeida, Juan P. Beltrán, Josué Motoa-Manzano, Jorge Noreña, Thiago S. Pereira, and César A. Valenzuela-Toledo. "Structure formation in an anisotropic universe: Eulerian perturbation theory." Journal of Cosmology and Astroparticle Physics 2022, no. 02 (February 1, 2022): 018. http://dx.doi.org/10.1088/1475-7516/2022/02/018.
Full textAgullo, Ivan, Javier Olmedo, and Vijayakumar Sreenath. "xAct Implementation of the Theory of Cosmological Perturbation in Bianchi I Spacetimes." Mathematics 8, no. 2 (February 20, 2020): 290. http://dx.doi.org/10.3390/math8020290.
Full textNadkarni-Ghosh, Sharvari, and David F. Chernoff. "Modelling non-linear evolution using Lagrangian perturbation theory re-expansions." Monthly Notices of the Royal Astronomical Society 431, no. 1 (March 8, 2013): 799–823. http://dx.doi.org/10.1093/mnras/stt217.
Full textHeck, B. S., and A. H. Haddad. "Singular perturbation theory for piecewise–linear systems with random inputs." Stochastic Analysis and Applications 7, no. 3 (January 1989): 273–89. http://dx.doi.org/10.1080/07362998908809182.
Full textBaskakov, A. G. "Krylov-Bogolyubov substitution in the perturbation theory of linear operators." Ukrainian Mathematical Journal 36, no. 5 (1985): 451–55. http://dx.doi.org/10.1007/bf01086768.
Full text