Academic literature on the topic 'Linear perturbation theory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear perturbation theory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear perturbation theory"
Hwang, Jai-Chan. "COSMOLOGICAL LINEAR PERTURBATION THEORY." Publications of The Korean Astronomical Society 26, no. 2 (July 6, 2011): 55–70. http://dx.doi.org/10.5303/pkas.2011.26.2.055.
Full textDudkin, M. E., and O. Yu Dyuzhenkova. "Singularly perturbed rank one linear operators." Matematychni Studii 56, no. 2 (December 26, 2021): 162–75. http://dx.doi.org/10.30970/ms.56.2.162-175.
Full textNYE, V. A. "Perturbation Theory for Degenerate Linear Systems." IMA Journal of Mathematical Control and Information 2, no. 4 (1985): 261–73. http://dx.doi.org/10.1093/imamci/2.4.261.
Full textRenegar, James. "Some perturbation theory for linear programming." Mathematical Programming 65, no. 1-3 (February 1994): 73–91. http://dx.doi.org/10.1007/bf01581690.
Full textFedorov, A. K., and A. I. Ovseevich. "Perturbation theory of observable linear systems." Mathematical Notes 98, no. 1-2 (July 2015): 216–21. http://dx.doi.org/10.1134/s0001434615070226.
Full textPixius, C., S. Celik, and M. Bartelmann. "Kinetic field theory: perturbation theory beyond first order." Journal of Cosmology and Astroparticle Physics 2022, no. 12 (December 1, 2022): 030. http://dx.doi.org/10.1088/1475-7516/2022/12/030.
Full textNájera, Antonio, and Amanda Fajardo. "Cosmological perturbation theory in f(Q,T) gravity." Journal of Cosmology and Astroparticle Physics 2022, no. 03 (March 1, 2022): 020. http://dx.doi.org/10.1088/1475-7516/2022/03/020.
Full textZhang, J., L. Hui, and Z. Haiman. "A linear perturbation theory of inhomogeneous reionization." Monthly Notices of the Royal Astronomical Society 375, no. 1 (February 11, 2007): 324–36. http://dx.doi.org/10.1111/j.1365-2966.2006.11311.x.
Full textKOLB, EDWARD W., SABINO MATARRESE, ALESSIO NOTARI, and ANTONIO RIOTTO. "COSMOLOGICAL INFLUENCE OF SUPER-HUBBLE PERTURBATIONS." Modern Physics Letters A 20, no. 35 (November 20, 2005): 2705–10. http://dx.doi.org/10.1142/s0217732305018682.
Full textÁngyán, János G. "Rayleigh-Schrödinger perturbation theory for nonlinear Schrödinger equations with linear perturbation." International Journal of Quantum Chemistry 47, no. 6 (September 15, 1993): 469–83. http://dx.doi.org/10.1002/qua.560470606.
Full textDissertations / Theses on the topic "Linear perturbation theory"
Naruko, Atsushi. "Non-linear Cosmological Perturbation Theory." 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157769.
Full textHeck, Bonnie S. "On singular perturbation theory for piecewise-linear systems." Diss., Georgia Institute of Technology, 1988. http://hdl.handle.net/1853/15054.
Full textHidalgo-Cuellar, Juan Carlos. "Primordial black holes in non-linear perturbation theory." Thesis, Queen Mary, University of London, 2009. http://qmro.qmul.ac.uk/xmlui/handle/123456789/495.
Full textReid, Richard D. "Feynman-Dyson perturbation theory applied to model linear polyenes." Diss., Virginia Polytechnic Institute and State University, 1986. http://hdl.handle.net/10919/76488.
Full textPh. D.
Goldberg, Sophia Rachel. "Two-parameter perturbation theory for cosmologies with non-linear structure." Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/43168.
Full textDianzinga, Mamy Rivo. "N-representable density matrix perturbation theory." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0285/document.
Full textWhereas standard approaches for solving the electronic structures present acomputer effort scaling with the cube of the number of atoms, solutions to overcomethis cubic wall are now well established for the ground state properties, and allow toreach the asymptotic linear-scaling, O(N). These solutions are based on thenearsightedness of the density matrix and the development of a theoreticalframework allowing bypassing the standard eigenvalue problem to directly solve thedensity matrix. The density matrix purification theory constitutes a branch of such atheoretical framework. Similarly to earlier developments of O(N) methodology appliedto the ground state, the perturbation theory necessary for the calculation of responsefunctions must be revised to circumvent the use of expensive routines, such asmatrix diagonalization and sum-over-states. The key point is to develop a robustmethod based only on the search of the perturbed density matrix, for which, ideally,only sparse matrix multiplications are required. In the first part of this work, we derivea canonical purification, which respects the N-representability conditions of the oneparticledensity matrix for both unperturbed and perturbed electronic structurecalculations. We show that this purification polynomial is self-consistent andconverges systematically to the right solution. As a second part of this work, we applythe method to the computation of static non-linear response tensors as measured inoptical spectroscopy. Beyond the possibility of achieving linear-scaling calculations,we demonstrate that the N-representability conditions are a prerequisite to ensurereliability of the results
Eltzner, Benjamin. "Local Thermal Equilibrium on Curved Spacetimes and Linear Cosmological Perturbation Theory." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-117472.
Full textIn dieser Arbeit wird die von Schlemmer eingeführte Erweiterung des Kriteriums für lokales thermisches Gleichgewicht in Quantenfeldtheorien von Buchholz, Ojima und Roos auf gekrümmte Raumzeiten untersucht. Dabei werden verschiedene Probleme identifiziert und insbesondere die bereits von Schlemmer gezeigte Instabilität unter Zeitentwicklung untersucht. Es wird eine alternative Herangehensweise an lokales thermisches Gleichgewicht in Quantenfeldtheorien auf gekrümmten Raumzeiten vorgestellt und deren Probleme diskutiert. Es wird dann eine Untersuchung des dynamischen Systems der linearen Feld- und Metrikstörungen im üblichen Inflationsmodell mit Blick auf Uneindeutigkeit der Quantisierung durchgeführt. Zuletzt werden die Temperaturfluktuationen der kosmischen Hintergrundstrahlung auf Kompatibilität mit lokalem thermalem Gleichgewicht überprüft
Coine, Clément. "Continuous linear and bilinear Schur multipliers and applications to perturbation theory." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD074/document.
Full textIn the first chapter, we define some tensor products and we identify their dual space. Then, we give some properties of Schatten classes. The end of the chapter is dedicated to the study of Bochner spaces valued in the space of operators that can be factorized by a Hilbert space.The second chapter is dedicated to linear Schur multipliers. We characterize bounded multipliers on B(Lp, Lq) when p is less than q and then apply this result to obtain new inclusion relationships among spaces of multipliers.In the third chapter, we characterize, by means of linear Schur multipliers, continuous bilinear Schur multipliers valued in the space of trace class operators. In the fourth chapter, we give several results concerning multiple operator integrals. In particular, we characterize triple operator integrals mapping valued in trace class operators and then we give a necessary and sufficient condition for a triple operator integral to define a completely bounded map on the Haagerup tensor product of compact operators. Finally, the fifth chapter is dedicated to the resolution of Peller's problems. We first study the connection between multiple operator integrals and perturbation theory for functional calculus of selfadjoint operators and we finish with the construction of counter-examples for those problems
Leithes, Alexander. "Perturbations in Lemaître-Tolman-Bondi and Assisted Coupled Quintessence cosmologies." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/24649.
Full textBandy, Rebecca Anne. "Location-Aware Adaptive Vehicle Dynamics System: Linear Chassis Predictions." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/48171.
Full textMaster of Science
Books on the topic "Linear perturbation theory"
Jeribi, Aref. Perturbation Theory for Linear Operators. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2528-2.
Full textKato, Tosio. Perturbation Theory for Linear Operators. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-66282-9.
Full textKatō, Tosio. Perturbation theory for linear operators. Berlin: Springer, 1995.
Find full textAnalytic perturbation theory for matrices and operators. Basel: Birkhäuser Verlag, 1985.
Find full textLimaye, Balmohan Vishnu. Spectral perturbation and approximation with numerical experiments. [Canberra]: Centre for Mathematical Analysis, Australian National University, 1987.
Find full textCraig, Ian J. D. Linear theory of fast reconnection at an X-type neutral point. Hamilton, N.Z: University of Waikato, 1992.
Find full textExponentially dichotomous operators and applications. Basel: Birkhäuser, 2008.
Find full textOperator functions and localization of spectra. Berlin: Springer, 2003.
Find full textMyo-Taeg, Lim, ed. Optimal control of singularly perturbed linear systems and applications: High-accuracy techniques. New York: Marcel Dekker, 2001.
Find full textUnited States. National Aeronautics and Space Administration., ed. Comparison of dynamical approximation schemes for non-linear gravitational clustering. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "Linear perturbation theory"
Gaeta, Giuseppe. "Symmetry and Perturbation Theory in Non-linear Dynamics." In Perturbation Theory, 185–209. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-1-0716-2621-4_361.
Full textvan Neerven, Jan. "Perturbation theory." In The Adjoint of a Semigroup of Linear Operators, 69–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0085012.
Full textKato, Tosio. "Analytic perturbation theory." In Perturbation Theory for Linear Operators, 364–426. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-66282-9_7.
Full textKato, Tosio. "Asymptotic perturbation theory." In Perturbation Theory for Linear Operators, 426–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-66282-9_8.
Full textSchlÜchtermann, G. "Perturbation of linear semigroups." In Recent Progress in Operator Theory, 263–77. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8793-9_14.
Full textBeilina, Larisa, Evgenii Karchevskii, and Mikhail Karchevskii. "Elements of Perturbation Theory." In Numerical Linear Algebra: Theory and Applications, 231–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57304-5_7.
Full textKato, Tosio. "Perturbation theory for semigroups of operators." In Perturbation Theory for Linear Operators, 479–515. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-66282-9_9.
Full textKato, Tosio. "Operator theory in finite-dimensional vector spaces." In Perturbation Theory for Linear Operators, 1–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-66282-9_1.
Full textKato, Tosio. "Perturbation theory in a finite-dimensional space." In Perturbation Theory for Linear Operators, 62–126. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-66282-9_2.
Full textKato, Tosio. "Perturbation of continuous spectra and unitary equivalence." In Perturbation Theory for Linear Operators, 516–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-66282-9_10.
Full textConference papers on the topic "Linear perturbation theory"
Alman, Gregory M., Hongen Shen, Lynne A. Molter, and Mitra B. Dutta. "Refractive index approximations from linear perturbation theory for planar MQW waveguides." In Semiconductors '92, edited by David Yevick. SPIE, 1992. http://dx.doi.org/10.1117/12.60471.
Full textBoyer, Mark, and Anne McCoy. "A SPARSE LINEAR ALGEBRAIC APPROACH TO ARBITRARY-ORDER VIBRATIONAL PERTURBATION THEORY." In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.wk05.
Full textJiménez-Mejía, Raúl E., Rodrigo Acuna Herrera, and Pedro Torres. "Stationary Perturbation Theory applied to Linear and Non-Linear Analysis in Multi-mode Optical-Fiber." In Latin America Optics and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/laop.2016.lth3b.4.
Full textBazzani, A., M. Giovannozzi, and G. Turchetti. "Stochastic perturbation of the linear tune and diffusion for simple lattice models." In Nonlinear dynamics in particle accelerators: Theory and experiments. AIP, 1995. http://dx.doi.org/10.1063/1.48971.
Full textMalomed, B. A., I. M. Uzunov, and F. Lederer. "An Improved Perturbation Theory for Optical Solitons Near the Zero-Dispersion Point." In Nonlinear Guided Waves and Their Applications. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/nlgw.1996.sad.8.
Full textAgarwal, Vijyant, and Harish Parthasarathy. "Optimal trajectory tracking based on perturbation theory of linear systems with feedback error." In 2015 International Conference on Computer, Communication and Control (IC4). IEEE, 2015. http://dx.doi.org/10.1109/ic4.2015.7375512.
Full textZupan, Dominik. "Application of Perturbation Theory of Non-Linear Systems to an Amplifier Circuit for EMI Analysis." In 2019 12th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo). IEEE, 2019. http://dx.doi.org/10.1109/emccompo.2019.8919872.
Full textHashemi, A., K. Busch, D. N. Christodoulides, S. K. Ozdemir, and R. El-Ganainy. "Linear Response of Optical Systems With Exceptional Points." In CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.fm4b.2.
Full textWang, Fengxia, and Anil K. Bajaj. "On the Equivalence of Normal Form Theory and Multiple Time Scale Method." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35603.
Full textChatterjee, Pranesh, and Biswajit Basu. "Non-Stationary Response of Non-Linear SDOF Systems by Perturbation of Wavelet Coefficients." In ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/vib-21007.
Full textReports on the topic "Linear perturbation theory"
Chandrasekaran, Shivkumar, and Ilse Ipsen. Perturbation Theory for the Solution of Systems of Linear Equations. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada254994.
Full textGu, Ming F., Tomer Holczer, Ehud Behar, and Steven M. Kahn. Inner-Shell Absorption Lines of Fe 6-Fe 16: a Many-Body Perturbation Theory Approach. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/878002.
Full textTaucher, Jan, and Markus Schartau. Report on parameterizing seasonal response patterns in primary- and net community production to ocean alkalinization. OceanNETs, November 2021. http://dx.doi.org/10.3289/oceannets_d5.2.
Full textJander, Georg, Gad Galili, and Yair Shachar-Hill. Genetic, Genomic and Biochemical Analysis of Arabidopsis Threonine Aldolase and Associated Molecular and Metabolic Networks. United States Department of Agriculture, January 2010. http://dx.doi.org/10.32747/2010.7696546.bard.
Full text