Academic literature on the topic 'Linear motor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear motor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear motor"
Chen, Xinwen, Hanying Jiang, Zhaohua Li, and Kun Liang. "Modelling and Measurement of a Moving Magnet Linear Motor for Linear Compressor." Energies 13, no. 15 (August 4, 2020): 4030. http://dx.doi.org/10.3390/en13154030.
Full textBakewell, David J. G., and Dan V. Nicolau. "Protein Linear Molecular Motor-Powered Nanodevices." Australian Journal of Chemistry 60, no. 5 (2007): 314. http://dx.doi.org/10.1071/ch06456.
Full textMIYATA, Shohiko, Akio MATSUURA, and Hajime TAKAGI. "Linear motor carMAGLEV." Doboku Gakkai Ronbunshu, no. 415 (1990): 17–25. http://dx.doi.org/10.2208/jscej.1990.415_17.
Full textTeter, Joseph P., and Arthur E. Clark. "Magnetostrictive linear motor." Journal of the Acoustical Society of America 92, no. 1 (July 1992): 631. http://dx.doi.org/10.1121/1.404062.
Full textYamaguchi, Masaki. "Linear ultrasonic motor." Journal of the Acoustical Society of America 96, no. 1 (July 1994): 614. http://dx.doi.org/10.1121/1.410393.
Full textOnishi, Kazumasa, and Koichi Naito. "Ultrasonic linear motor." Journal of the Acoustical Society of America 97, no. 5 (May 1995): 3215. http://dx.doi.org/10.1121/1.411837.
Full textOtsuka, Jiro, Toshiharu Tanaka, and Ikuro Masuda. "Sub-Nanometer Positioning Combining New Linear Motor with Linear Motion Ball Guide Ways." International Journal of Automation Technology 3, no. 3 (May 5, 2009): 241–48. http://dx.doi.org/10.20965/ijat.2009.p0241.
Full textVELI, Yelda, Alexandru M. MOREGA, Lucian PÎSLARU – DĂNESCU, Mihaela MOREGA, and Marius POPA. "The Study of a Linear Magnetostriction Motor." "ACTUALITĂŢI ŞI PERSPECTIVE ÎN DOMENIUL MAŞINILOR ELECTRICE (ELECTRIC MACHINES, MATERIALS AND DRIVES - PRESENT AND TRENDS)" 1, no. 1 (November 19, 2020): 1–8. http://dx.doi.org/10.36801/apme.2019.1.12.
Full textLeisten, J. M., D. R. G. H. Jones, and L. Hobson. "Laboratory Exercise on Linear Induction Motors." International Journal of Electrical Engineering & Education 24, no. 2 (April 1987): 101–13. http://dx.doi.org/10.1177/002072098702400202.
Full textAhmadinia, Nahid. "The Linear Induction Motor (LIM) & Single Linear Induction Motor (SLIM)." American Journal of Electrical Power and Energy Systems 3, no. 4 (2014): 71. http://dx.doi.org/10.11648/j.epes.20140304.11.
Full textDissertations / Theses on the topic "Linear motor"
Halkyard, Peter. "Terfenol-D magnetostrictive linear motor." Thesis, University of Salford, 2011. http://usir.salford.ac.uk/26704/.
Full textCrawford, Douglas Stewart. "Sensor designand feedback motor control for two dimensional linear motors." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/37546.
Full textStroinski, Krzysztof Jerzy. "Generalized linear models in motor insurance." Thesis, Heriot-Watt University, 1987. http://hdl.handle.net/10399/1044.
Full textManchen, Manfred Ludwig. "Shaded-pole flat linear induction motor." Thesis, Cape Technikon, 1990. http://hdl.handle.net/20.500.11838/1137.
Full textLinear induction motors are built for numerous applications. Their robustness, gearfree-link to the load and the fact that speed is not a function of the number of poles (as in round machines) are only a few advantages. As every single phase motor needs some starting aid, so does a linear induction drive. For round machines, capacitors or shaded poles are usually used. A capacitor can be damaged electrically, which is a rare occurrence for shading rings. A useful combination of these advantages is a linear induction motor which is gearless and uses the shaded pole principle as a starting aid. In order to simplify the designing process, a computer program (Fortran) was written. The main objective on the electrical side was to obtain low input power, high power factor and high efficiency. In order to find the performance curves, torque measurements were made. Although the principles of torque measurements are well known the device to measure torque for this machine was not available and had to be constructed.
Johnson, Andrew P. (Andrew Peter). "High speed linear induction motor efficiency optimization." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/10945/11052.
Full textCIVINS
One of the reasons linear motors, a technology nearly a century old, have not been adopted for a large number of linear motion applications is that they have historically had poor efficiencies. This has restricted the progress of linear motor development. The concept of a linear motor as a rotary motor cut and laid out flat with a conventional rotary motor control scheme as a design basis may not be the best way to design and control a high-speed linear motor. End effects and other geometry subtleties of a linear motor make it unique, and a means of optimizing efficiency with both the motor geometry and the motor control scheme will be analyzed to create a High-Speed Linear Induction Motor (LIM) with a higher efficiency than what is possible with conventional motors and controls. This thesis pursues the modeling of a short secondary type Double-Sided Linear Induction Motor (DSLIM) that is proposed for use as an Electromagnetic Aircraft Launch System (EMALS) aboard the CVN-2 1. Mathematical models for the prediction of effects that are peculiar to DSLIM are formulated, and their overall effects on the performance of the proposed machine are analyzed.;3 |a(cont.) These effects are used to generate a transient motor model, which is then driven by a motor controller that is specifically designed to the characteristics of the proposed DSLIM. Due to this DSLIM's role as a linear accelerator, the overall efficiency of the DSLIM will be judged by the kinetic energy of the launched projectile versus the total electric energy that the machine consumes. This thesis is meant to propose a maximum possible efficiency for a DSLIM in this type of role.
Sharp, Scott L. "Design of a Linear Ultrasonic Piezoelectric Motor." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/997.
Full textIsmael, Adel. "Microprocessor-controlled brushless DC linear stepping motor." Thesis, Cardiff University, 2018. http://orca.cf.ac.uk/119080/.
Full textChow, Irene A. (Irene Ai Tze). "Design of a two-axis linear motor." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12349.
Full textChoi, Henry O. "A linear ultrasonic motor for nano-technology." Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/38148.
Full textPippi, Rafael Silva. "Motor ultra-sônico linear com geometria tubular." Universidade Federal de Santa Maria, 2008. http://repositorio.ufsm.br/handle/1/3656.
Full textThis work presents the study on a linear ultrasonic motor with tubular geometry for linear displacements. Similar topologies, reported elsewhere, are conceived for producing rotary motions. Due to some particular characteristics of this geometry, not explored yet, a new study on interaction between resonance modes in a hollow cylinder for linear movement generation is proposed. In order to experimentally investigate the resonance modes in tubular stators, a proof of concept prototype was built and tested. The prototype consisted of a internally toothed phosphore bronze tube, excited by two PZT rings. Several types of mobile axes, with one or more solid cylinders of aluminum or stainless steel, were employed. The methodology of test consisted of changing geometric parameters, properties of materials, sweeping driving conditions, and observing the respective movement on the shaft. Tests showed the production of linear and/or angular movements, with maximum speeds of 0,07m/s, but with little uniformity and repeatability. The lack of conclusive hypothesis on the stability issue, based only on experimental set of results, has led to a reassessment of the methodology of investigation, including additional analysis tools for the characterization of the device. So, a simple analytical modeling of the stator was formulated to set up a project methodology. Despite its simplicity and limitations, the analytical model allows a first order approximation for resonance modes, and relates them to the constructive parameters of the stator. In order to take the influence of the factors neglected in the analytical modeling into account, the analysis was complemented with finite element method (FEM) simulations. The deformation profiles of the stator to the 21st resonance mode were analyzed using FEM. With the results, it is possible to predict the behavior of the resonance frequencies, and the corresponding deformations they produce on the teeth, for each stator configuration. The most important result of this analysis is to show the relationship between aspect ratio of ellipsoidal trajectory on the stator teeth and the geometry of the stator. This allows a conclusive diagnosis on the inefficiency of the built prototype: The small amplitude of the longitudinal component of traveling deformation wave. An analysis of simulations results has lead to a design methodology for this new type of motor. The results showed that if the stator is redesigned according to the proposed methodology, it would be able to produce longitudinal deformations of 2.6 μm, with ceramics driven at 35.3 V. If Compared to simulations of the prototyped stator the new project exhibits an increase of 90% for radial deformation components of, and 3600% for the longitudinal components, indicating that if the new design was implemented, it could achieve much higher efficiency in movement production.
Este trabalho apresenta o estudo de um motor ultra-sônico com geometria tubular para movimentos lineares. Outros motores com geometria tubular, encontrados na bibliografia, são concebidos para a produção de movimentos rotativos. Devido a diversas características ainda não exploradas desta geometria, um novo estudo sobre a interação dos modos naturais de vibração de um cilindro vazado para a geração de movimento linear é proposto. Com o objetivo de investigar experimentalmente os modos de ressonância em estatores tubulares, um protótipo para prova de conceito foi construído e ensaiado. O protótipo consiste de um tubo vazado, dentado internamente, excitado por dois anéis de PZT. Foram utilizados diversos tipos de eixos móveis, com um ou mais cilindros maciços de alumínio ou aço inoxidável. A metodologia de ensaio consistiu da variação dos parâmetros geométricos, propriedades de materiais e condições de acionamento, e da respectiva observação e medição dos movimentos do eixo. Os testes evidenciam a produção de movimentos lineares e/ou angulares com velocidades máximas de aproximadamente 0,07m/s, mas com pouca uniformidade e repetibilidade. A impossibilidade de uma análise conclusiva sobre a instabilidade do motor com base apenas nos resultados experimentais de bancada motivou uma reavaliação da metodologia de estudo e a busca de ferramentas adicionais para a caracterização do dispositivo. Uma modelagem analítica do estator foi formulada para que um roteiro de análise e cálculos dimensionais pudessem ser estabelecidos. Embora simples e com diversas limitações, o modelo obtido permite aproximações de primeira ordem para os modos de ressonância em função dos parâmetros construtivos do estator. Para que a influência das não-linearidades não incluídas na modelagem possa ser avaliada, a análise foi complementada com simulações pelo método dos elementos finitos (FEM). Os perfis das deformações do estator até o 21o modo de ressonância foram analisados utilizando FEM. Com os resultados obtidos, é possível prever o comportamento das freqüências naturais e das deformações nos dentes em função das características do estator. O resultado mais importante desta análise é mostrar a relação de aspecto da trajetória elipsoidal dos dentes do estator, com a geometria do estator, permitindo um diagnóstico conclusivo sobre a ineficiência do protótipo construído: A baixa amplitude da componente de deformação longitudinal da onda viajante no tubo. O estudo dos resultados das simulações permitiu o estabelecimento de um roteiro de análise e cálculos dimensionais para este novo tipo de motor. Simulações realizadas mostraram que um estator projetado com o roteiro proposto, é capaz de produzir deformações longitudinais de 2,6μm e radiais de 3,8μm, quando as cerâmicas piezelétricas são acionadas a 35,3 V. Comparando-se os resultados das simulações do estator prototipado com o novo projeto, observa-se um acréscimo teórico de 90% nas componentes de deformação radial e 3600% nas componentes longitudinais, indicando que um novo protótipo construído de acordo com o projeto pode atingir uma eficiência muito superior na produção de movimento.
Books on the topic "Linear motor"
Cheema, Muhammad Ali Masood, and John Edward Fletcher. Advanced Direct Thrust Force Control of Linear Permanent Magnet Synchronous Motor. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40325-6.
Full textCho, David Ming Kei. Multiple simultaneous specification (MSS) control of brushless D.C. motor and high-speed linear positioning system. Ottawa: National Library of Canada, 1999.
Find full textElmas, Çetin. A position sensorless operation of a switched reluctance motor drive based on a non-linear observer. Birmingham: University of Birmingham, 1993.
Find full textPeter, Gaspar, Bokor Jozsef, and SpringerLink (Online service), eds. Robust Control and Linear Parameter Varying Approaches: Application to Vehicle Dynamics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textGastel, Saskia van. Food consumption and mental and motor development in relation to linear growth retardation in rural Zambian children. Wageningen, Netherlands: Dept. of Human Nutrition, Wageningen Agricultural University, 1995.
Find full textShorten, Robert Noel. A study of hybrid dynamical systems with application to automobile control. Dublin: University College Dublin, 1996.
Find full textRauch, Jeffrey. Transient and steady-state tests of the space power research engine with resistive and motor loads. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textRauch, Jeffrey. Transient and steady-state tests of the space power research engine with resistive and motor loads. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textRauch, Jeffrey. Transient and steady-state tests of the space power research engine with resistive and motor loads. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textRauch, Jeffrey. Transient and steady-state tests of the space power research engine with resistive and motor loads. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Find full textBook chapters on the topic "Linear motor"
Green, Judith L., Robert W. Moon, and Anthony A. Holder. "Merozoite Linear Motor." In Encyclopedia of Malaria, 1–9. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8757-9_57-1.
Full textWakiwaka, Hiroyuki. "Magnetic Application in Linear Motor." In Magnetic Material for Motor Drive Systems, 423–37. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9906-1_27.
Full textTsukamoto, O., Y. Tanaka, K. Oishi, T. Kataoka, Y. Yoneyama, T. Takao, and S. Torii. "Development of Superconducting Linear Induction Motor." In Advances in Superconductivity II, 1047–50. Tokyo: Springer Japan, 1990. http://dx.doi.org/10.1007/978-4-431-68117-5_226.
Full textSjölander, P. I., M. Hulliger, U. R. Windhorst, and E. Otten. "Non-Linear Summation in GTO Responses: Implications for Receptor Mechanisms." In Alpha and Gamma Motor Systems, 319–21. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1935-5_67.
Full textLiang, Xiao-Yue, Su Wang, and Xin-Gang Miao. "Research of a Linear Switched Reluctance Motor." In Advances in Intelligent Systems and Computing, 595–602. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18997-0_51.
Full textLenin, N. C., P. Sanjeevikumar, Atif Iqbal, and Charles Mbohwa. "Linear Synchronous Reluctance Motor—A Comprehensive Review." In Advances in Systems, Control and Automation, 45–70. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4762-6_5.
Full textRohde, Marieke. "Linear Synergies as a Principle in Motor Control." In Atlantis Thinking Machines, 67–83. Paris: Atlantis Press, 2010. http://dx.doi.org/10.2991/978-94-91216-34-3_4.
Full textHenneberger, G., and C. Reuber. "3D FEM Calculation of a Linear Synchronous Motor." In Electric and Magnetic Fields, 347–50. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1961-4_80.
Full textLévine, Jean. "Displacements of a Linear Motor With Oscillating Masses." In Analysis and Control of Nonlinear Systems, 211–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00839-9_10.
Full textHooper, Scott L., Christoph Guschlbauer, Marcus Blümel, Arndt von Twickel, Kevin H. Hobbs, Jeffrey B. Thuma, and Ansgar Büschges. "Muscles: Non-linear Transformers of Motor Neuron Activity." In Neuromechanical Modeling of Posture and Locomotion, 163–94. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-3267-2_6.
Full textConference papers on the topic "Linear motor"
Popham, Vernon W., Christopher C. Lawrenson, Ronald F. Burr, and Bart Lipkens. "Variable Gap-Reluctance Linear Motor With Application to Linear Resonance Compressors." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/nca-23518.
Full textFo¨hse, Martin, Hans-D. Sto¨lting, Jens Edler, and Hans H. Gatzen. "A Batch Fabricated Linear Synchronous Motor." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41388.
Full textBedenbecker, Matthias, Matthias Hahn, Christine Ruffert, and Hans H. Gatzen. "Linear Synchronous Micro Motor With Further Miniaturized Dimensions." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34677.
Full textAl-Allaq, Aiman, and Nebojsa Jaksic. "Modeling and Simulation of a Superconductive Linear Motor." In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10083.
Full textCruise, R. J. "Linear synchronous motor hoists." In Eighth International Conference on Electrical Machines and Drives. IEE, 1997. http://dx.doi.org/10.1049/cp:19971084.
Full textThornton, R. D. "Linear Synchronous Motor Design." In International Electric Machines and Drives Conference. IEEE, 2005. http://dx.doi.org/10.1109/iemdc.2005.195927.
Full textHyder, Christoph, Garnett C. Horner, and William W. Clark. "Linear traveling wave motor." In 1999 Symposium on Smart Structures and Materials, edited by Jack H. Jacobs. SPIE, 1999. http://dx.doi.org/10.1117/12.351557.
Full textShutov, M. V., E. E. Sandoz, D. L. Howard, T. C. Hsia, Rosemary L. Smith, and Scott D. Collins. "Miniature linear synchronous motor." In SPIE Proceedings, edited by Gregory H. Bearman and Patricia M. Beauchamp. SPIE, 2003. http://dx.doi.org/10.1117/12.520574.
Full textYuying, Wang, Wen Hong, and Bu Tiewei. "Summarize of the Linear Motor." In 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM). IEEE, 2020. http://dx.doi.org/10.1109/wcmeim52463.2020.00121.
Full textVaughan, Mark, and Donald J. Leo. "Integrated Piezoelectric Linear Motor for Vehicle Applications." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-32942.
Full textReports on the topic "Linear motor"
Ward, C. R. Linear Synchronous Motor Repeatability Tests. Office of Scientific and Technical Information (OSTI), October 2002. http://dx.doi.org/10.2172/803396.
Full textHolliday, Jeffrey C. Innovative Linear Reciprocating Motor Technology for Advanced Cryocooler Systems. Fort Belvoir, VA: Defense Technical Information Center, February 1994. http://dx.doi.org/10.21236/adb205134.
Full textTurman, B. N., B. M. Marder, G. J. Rohwein, D. P. Aeschliman, J. B. Kelley, M. Cowan, and R. M. Zimmerman. The pulsed linear induction motor concept for high-speed trains. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/90379.
Full textMichael J. Crowley. IEMDC - In-Line Electric Motor Driven Compressor. US: Dresser-Rand Co, March 2004. http://dx.doi.org/10.2172/899855.
Full textMichael J. Crowley, Prem N. Bansal, and John E. Tessaro. IEMDC-IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR. Office of Scientific and Technical Information (OSTI), June 2003. http://dx.doi.org/10.2172/822925.
Full textMichael J. Crowley, Prem N. Bansal, and John E. Tessaro. IEMDC -IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/823493.
Full textCrowley, Michael J., Prem N. Bansal, and John E. Tessaro. IEMDC--IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/825145.
Full textMichael J. Crowley and Prem N. Bansal. IEMDC IN-LINE ELECTRIC MOTOR DRIVEN COMPRESSOR. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/835640.
Full textKOCH, M. R. Guidance for Flow Computer Setup on the Jet Pump Motor Recirculation Flow Line. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/801354.
Full textKueck, J., and C. Talbott. Analysis of production line motor failure. CRADA final report for CRADA number Y-1293-0215. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/442126.
Full text