Academic literature on the topic 'Linear induction accelerators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear induction accelerators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Linear induction accelerators":

1

Bayless, John R., Craig P. Burkhart, and Richard J. Adler. "Linear induction accelerators for industrial applications." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (April 1989): 1142–45. http://dx.doi.org/10.1016/0168-583x(89)90558-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Shao-Heng, and Jian-Jun Deng. "Acceleration modules in linear induction accelerators." Chinese Physics C 38, no. 5 (May 2014): 057005. http://dx.doi.org/10.1088/1674-1137/38/5/057005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bayless, John R., and Richard J. Adler. "Linear induction accelerators for radiation processing." International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 31, no. 1-3 (January 1988): 327–31. http://dx.doi.org/10.1016/1359-0197(88)90146-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori, and Tadashi Yamamoto. "Induction Linear Accelerators with High-TcBulk Superconductor Lenses." Japanese Journal of Applied Physics 30, Part 1, No. 11A (November 15, 1991): 2972–73. http://dx.doi.org/10.1143/jjap.30.2972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Humphries, Stanley. "Quadrupole field geometries for intense electron beam acceleration." Laser and Particle Beams 14, no. 3 (September 1996): 519–28. http://dx.doi.org/10.1017/s0263034600010193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.
6

Herrmannsfeldt, W. B., and Denis Keefe. "Induction linac drivers for heavy ion fusion." Laser and Particle Beams 8, no. 1-2 (January 1990): 81–88. http://dx.doi.org/10.1017/s0263034600007849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The Heavy Ion Fusion Accelerator Research (HIFAR) program of the U.S. Dept. of Energy has for several years concentrated on developing linear induction accelerators as Inertial Fusion (IF) drivers. This accelerator technology is suitable for the IF application because it is readily capable of accelerating short, intense pulses of charged particles with good electrical efficiency. The principal technical difficulty is in injecting and transporting the intense pulses while maintaining the necessary beam quality. The approach used has been to design a system of multiple beams so that not all of the charge has to be confined in a single beam line. The beams are finally brought together in a common focus at the target. This paper will briefly present the status and future plans of the program, and will also briefly review systems study results for HIF.
7

Ekdahl, Carl. "The Resistive-Wall Instability in Multipulse Linear Induction Accelerators." IEEE Transactions on Plasma Science 45, no. 5 (May 2017): 811–18. http://dx.doi.org/10.1109/tps.2017.2681040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Orzechowski, T., E. Scharlemann, B. Anderson, V. Neil, W. Fawley, D. Prosnitz, S. Yarema, et al. "High-gain free electron lasers using induction linear accelerators." IEEE Journal of Quantum Electronics 21, no. 7 (July 1985): 831–44. http://dx.doi.org/10.1109/jqe.1985.1072732.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Humphries, Stanley. "Simulations of longitudinal instabilities in ion induction linear accelerators." Laser and Particle Beams 10, no. 3 (September 1992): 511–29. http://dx.doi.org/10.1017/s0263034600006765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This article describes computer simulations of a longitudinal instability that affects induction linear accelerators for high-power ion beams. The instability is driven by axial bunching of ions when they interact with acceleration gaps connected to input transmission lines. The process is similar to the longitudinal resistive wall instability in continuous systems. Although bunching instabilities do not appear in existing induction linear accelerators for electrons, they may be important for proposed ion accelerators for heavy ion fusion. The simulation code is a particle-in-cell model that describes a drifting beam crossing discrete acceleration gaps with a self-consistent calculation of axial space charge forces. In present studies with periodic boundaries, the model predicts values for quantities such as the stabilizing axial velocity spread that are in good agreement with analytic theories. The simulations describe the nonlinear growth of the instability and its saturation with increased axial emittance. They show that an initially cold beam is subject to a severe disruption that drives the emittance well above the stabilized saturation levels. The simulation results confirm that axial space charge forces do not reduce axial beam bunching. In fact, space charge effects increase the axial velocity spread required for stability. With simple resistive driving circuits, the model predicts velocity spreads that are too high for heavy ion fusion applications. Several processes currently under study may mitigate this result, including advanced pulsed power switching methods, enhanced gap capacitance, and an energy spread impressed between individual beams of a multibeam transport system.
10

Lagunas-Solar, Manuel C. "Induction-linear accelerators for food processing with ionizing radiation." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 (May 1985): 987–93. http://dx.doi.org/10.1016/0168-583x(85)90155-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Linear induction accelerators":

1

Horne, Christopher Douglas. "Design and analysis of linear induction accelerators." Thesis, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Alvinerie, Clara-Marie. "Etude numérique et expérimentale de la dynamique des faisceaux d'electrons dans les accélérateurs linéaires à induction." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMC291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La radiographie éclair est une technique permettant de caractériser l’état d’un objet dense soumis à des conditions physiques extrêmes, avec des vitesses de déplacement de plusieurs km/s. Dans ces conditions, il est nécessaire d’avoir une source de rayonnement X spécifique : faible dimension (quelques mm), durée brève (inférieure à 100 ns), haute énergie (autour de 20 MeV) et intense (quelques kA). Elle est produite à l’aide du rayonnement de freinage généré par l’interaction d’un faisceau intense et pulsé d’électrons avec une cible de métal de numéro atomique élevé. Ce faisceau est émis par une cathode en velours puis transporté dans un accélérateur linéaire à induction (LIA). La qualité d’une radiographie est majoritairement conditionnée par les caractéristiques physiques de la source X, elles-mêmes intimement liées aux propriétés du faisceau d’électrons. Les travaux menés dans cette thèse visent à modéliser la dynamique du faisceau dans les LIA en intégrant ses caractéristiques physiques dont certaines instabilités dégradant le faisceau. Les modèles développés ont été validés lors de la mise en service de l’accélérateur MCH3 implanté au CEA Valduc sur l'installation Epure.La modélisation de la dynamique du faisceau repose sur le code Particle-In-Cell LSP-Slice et le code de transport EVOLI (EVOLution des Instabilités). Ce dernier a été développé lors de cette thèse et modélise la dimension de l’enveloppe et du barycentre des charges (centroïde) du faisceau ainsi que la propagation « temporelle » du faisceau par le biais d’un découpage de ce dernier en disque.Dans un premier temps, des études ont été menées sur le mouvement du centroïde du faisceau lors de son transport. Dans EVOLI, les équations décrivent le centroïde avec l’influence de la charge d’espace. Une procédure d’optimisation numérique a permis de reproduire par simulation les résultats obtenus dans MCH3 en intégrant l’influence du champ magnétique terrestre et les défauts d’alignement des différents éléments magnétiques (solénoïdes et déviateurs). L’application de cette nouvelle méthode sur d’autres transports permet d’envisager de calculer des consignes des déviateurs afin de pré-centrer le faisceau numériquement. Cette méthode laisse entrevoir un gain de temps significatif lors du centrage expérimental du faisceau nécessitant de nombreux essais.Dans un second temps, la modélisation du faisceau a permis de contribuer à la mise en service de l’accélérateur MCH3 en fin d'année 2022. Un premier transport n’a pas permis de mener la totalité de la charge du faisceau jusqu’à la cible de conversion, bien que les simulations numériques prédisaient un transport nominal basé sur le seul formalisme de l’enveloppe. Les mesures expérimentales ont montré des oscillations importantes du centroïde dues à l’instabilité Beam Break-Up (BBU). Un modèle simplifié du BBU a alors été intégré dans EVOLI. Par l’utilisation de ce modèle numérique, un nouveau transport à champ magnétique fort a été conçu limitant théoriquement d’un facteur 2,5 l’intensité du BBU en sortie de ligne accélératrice. Ce résultat a été vérifié expérimentalement par la réduction significative du BBU d’un facteur 3 permettant de transporter l’intégralité de la charge du faisceau de manière stable et reproductible jusqu’à la cible. Cette stratégie de transport du faisceau à champ magnétique fort admet cependant une limite puisqu’elle exacerbe le mouvement Corkscrew qui augmente avec le champ magnétique tel que montré par le travail initialisé dans cette thèse. L’optimisation du transport est donc un compromis entre le poids des différentes instabilités au sein de l’accélérateur. Les travaux de cette thèse ouvrent des perspectives sur la prise en compte des instabilités afin de concevoir des transports innovants particulièrement dans le cadre de machines multi-impulsion constituant à l'heure actuelle un développement majeur des machines de radiographie éclair
Flash radiography allows characterizing the state of a dense object subjected to extreme physical conditions, with displacement velocities of several kilometres per second. These conditions require a specific X-ray source: small size (a few millimetres), brief duration (less than 100 ns), high energy (around 20 MeV) and high current (a few kA). This source is produced using Bremsstrahlung radiation generated by the interaction of an intense and pulsed electron beam with a high atomic number metal target. A velvet cathode emits the beam and an linear induction accelerator (LIA) transports it. The quality of radiography is mainly conditioned by the physical characteristics of the X-ray source, which are closely linked to the properties of the electron beam. The work carried out in this PhD thesis aims to model the beam dynamics in LIAs by integrating its physical characteristics, including some instabilities which degrade the beam. The developed models were validated during the commissioning of the MCH3 accelerator at CEA Valduc in Epure facility.The modelling of beam dynamics is based on the Particle-In-Cell (PIC) code LSP-Slice and the transport code EVOLI (EVOLution of Instabilities). The latter was developed during this thesis and models the size of the beam envelope and its charge centroid, as well as the "temporal" propagation of the beam by its segmentation into discs.In the first place, studies were conducted on the motion of the beam centroid during its transport. In EVOLI, the equations describe the centroid with the influence of space charge. A numerical optimization procedure allowed the simulation to reproduce the results obtained in MCH3 by incorporating the influence of the Earth's magnetic field and the misalignment of various magnetic elements (solenoids and steerers). The application of this new method to other beam transports makes possible to calculate steerer settings for numerical pre-centering of the beam. This method offers the prospect of significant time savings during the experimental beam centering process, which typically requires numerous shots.Afterward the beam modelling contributed to the commissioning of MCH3 accelerator at the end of 2022. With an initial transport attempt, the entire beam charge did not reach the conversion target, despite numerical simulations predicting nominal transport based on the envelope formalism. Experimental measurements revealed significant centroid oscillations due to the Beam Break-Up (BBU) instability. Then, a simplified BBU model was incorporated into EVOLI. By using this numerical model, a new high magnetic field transport was designed, theoretically limiting BBU intensity at the accelerator end by a factor 2.5. This result was experimentally verified by a BBU reduction by a factor 3, enabling a stable and reproducible transport of the entire beam charge to the target. However, this strong magnetic field transport strategy leads to an increase of the Corkscrew motion, which increases with magnetic field strength as shown in the work initiated in this thesis. Therefore, optimizing beam transport is a compromise between the various instabilities within the accelerator. The work of this thesis opens up prospects for considering instabilities to design innovative transports, particularly in the context of multi-pulse machines, which are currently a major development in flash radiography machines
3

Ложкін, Руслан Сергійович. "Покращення енергетичних характеристик секції сильнострумного лінійного індукційного прискорювача заряджених часток шляхом удосконалення її елементів." Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.09.13 – техніка сильних електричних і магнітних полів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018 р. Дисертацію присвячено удосконаленню секцій сильнострумного лінійного індукційного прискорювача (ЛІП) електронів і ЛІП зарядово-компенсованих іонних пучків, з метою забезпечення покращених енергетичних характеристик: підвищеного темпу прискорення, середньої потужності пучка (аж до мегаватного рівня), частоти посилок прискорювальних імпульсів тощо. В роботі проведено науково-технічне обґрунтування конструкції елементів секції ЛІП з індукційною системою, секціонованою по осьовій довжині, виявлено способи забезпечення максимального темпу прискорення при найменших енергетичних втратах в індукційній системі у таких секцій. Проведено обґрунтування конструкції елементів секції ЛІП зарядово-компенсованих іонних пучків, що дозволяє забезпечити необхідні параметри прискорювача – прискорювальну напругу секції не менше 2 МВ, темп прискорення не менше 2 МВ/м. В результаті проведеного дослідження динаміки імпульсного перемагнічування феромагнетику індукторів ЛІП з метою визначення впливу геометрії феромагнітних осердь індукторів і режиму їхнього навантаження на форму імпульсу прискорювальної напруги запропоновано шляхи зменшення розкиду прискорювальної напруги на столі імпульсу. Проведено дослідження теплових навантажень на елементи секції ЛІП при роботі в частотному режимі, запропоновано способи забезпечення секцією ЛІП мегаватного рівня збільшення середньої потужності пучка при збільшенні його енергії на рівні одиниць мегаелектронвольт. Проведено чисельно-аналітичне та експериментальне дослідження впливу конструктивних елементів секції сильнострумного ЛІП електронів на забезпечення її високовольтної вакуумної електричної ізоляції, запропоновано способи їх удосконалення.
Technic sciences candidate scientific degree dissertation receiving on specialty 05.09.13 – equipment strong electric and magnetic fields. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2018. Dissertation work is dedicated to the improvement electrons and charge-compensated ion beams high-current LIA sections, with the providing goal improved energy LIA characteristics: high acceleration, average beam power (up to MW level), parcels accelerating pulses frequency, etc. In the work the rationale of the construction of elements the LIA section with an induction system sectioned along the axial has been carried out, methods, ensuring the maximum acceleration rate with the lowest energy losses in the induction system in such sections have been found. The construction of the elements of the charge-compensated ion beams LIA section has been substantiated, that allowed to provide the necessary accelerator parameters of – the section accelerating voltage is not less than 2 MV, and the acceleration rate is not less than 2 MV/m. The dynamics of the pulsed magnetization reversal of the LIA inductors ferromagnet has been studied, the effect of the geometry of the ferromagnetic inductor cores and the regime of their loading on the accelerating voltage pulse shape is analyzed. The ways, reducing the accelerating voltage spread on the pulse table have been found. The thermal stability of the LIA section elements (induction system, power lines, vacuum isolation) was studied, the maximum possible accelerating pulse repetition frequency was determined. The methods of providing a megawatt level of the increment of the average beam power with increment of its energy at the level of megaelectronvolts by the LIA section are revealed. The research of the vacuum electrical insulation of the LIA experimental model has been carried out; the ways of the improvement of LIA section elements electrical isolation have been found.
4

Ложкін, Руслан Сергійович. "Покращення енергетичних характеристик секції сильнострумного лінійного індукційного прискорювача заряджених часток шляхом удосконалення її елементів." Thesis, НТУ "ХПІ", 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/34699.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.09.13 – техніка сильних електричних і магнітних полів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2018 р. Дисертацію присвячено удосконаленню секцій сильнострумного лінійного індукційного прискорювача (ЛІП) електронів і ЛІП зарядово-компенсованих іонних пучків, з метою забезпечення покращених енергетичних характеристик: підвищеного темпу прискорення, середньої потужності пучка (аж до мегаватного рівня), частоти посилок прискорювальних імпульсів тощо. В роботі проведено науково-технічне обґрунтування конструкції елементів секції ЛІП з індукційною системою, секціонованою по осьовій довжині, виявлено способи забезпечення максимального темпу прискорення при найменших енергетичних втратах в індукційній системі у таких секцій. Проведено обґрунтування конструкції елементів секції ЛІП зарядово-компенсованих іонних пучків, що дозволяє забезпечити необхідні параметри прискорювача – прискорювальну напругу секції не менше 2 МВ, темп прискорення не менше 2 МВ/м. В результаті проведеного дослідження динаміки імпульсного перемагнічування феромагнетику індукторів ЛІП з метою визначення впливу геометрії феромагнітних осердь індукторів і режиму їхнього навантаження на форму імпульсу прискорювальної напруги запропоновано шляхи зменшення розкиду прискорювальної напруги на столі імпульсу. Проведено дослідження теплових навантажень на елементи секції ЛІП при роботі в частотному режимі, запропоновано способи забезпечення секцією ЛІП мегаватного рівня збільшення середньої потужності пучка при збільшенні його енергії на рівні одиниць мегаелектронвольт. Проведено чисельно-аналітичне та експериментальне дослідження впливу конструктивних елементів секції сильнострумного ЛІП електронів на забезпечення її високовольтної вакуумної електричної ізоляції, запропоновано способи їх удосконалення.
Technic sciences candidate scientific degree dissertation receiving on specialty 05.09.13 – equipment strong electric and magnetic fields. – National Technical University "Kharkiv Polytechnic Institute", Kharkiv, 2018. Dissertation work is dedicated to the improvement electrons and charge-compensated ion beams high-current LIA sections, with the providing goal improved energy LIA characteristics: high acceleration, average beam power (up to MW level), parcels accelerating pulses frequency, etc. In the work the rationale of the construction of elements the LIA section with an induction system sectioned along the axial has been carried out, methods, ensuring the maximum acceleration rate with the lowest energy losses in the induction system in such sections have been found. The construction of the elements of the charge-compensated ion beams LIA section has been substantiated, that allowed to provide the necessary accelerator parameters of – the section accelerating voltage is not less than 2 MV, and the acceleration rate is not less than 2 MV/m. The dynamics of the pulsed magnetization reversal of the LIA inductors ferromagnet has been studied, the effect of the geometry of the ferromagnetic inductor cores and the regime of their loading on the accelerating voltage pulse shape is analyzed. The ways, reducing the accelerating voltage spread on the pulse table have been found. The thermal stability of the LIA section elements (induction system, power lines, vacuum isolation) was studied, the maximum possible accelerating pulse repetition frequency was determined. The methods of providing a megawatt level of the increment of the average beam power with increment of its energy at the level of megaelectronvolts by the LIA section are revealed. The research of the vacuum electrical insulation of the LIA experimental model has been carried out; the ways of the improvement of LIA section elements electrical isolation have been found.
5

García, Garrigós Juan José. "Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/34327.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The work for this thesis is in line with the field of Instrumentation for Particle Accelerators, so called Beam Diagnostics. It is presented the development of a series of electro-mechanical devices called Inductive Pick-Ups (IPU) for Beam Position Monitoring (BPM). A full set of 17 BPM units (16 + 1 spare), named BPS units, were built and installed into the Test Beam Line (TBL), an electron beam decelerator, of the 3rd CLIC Test Facility (CTF3) at CERN ¿European Organization for the Nuclear Research¿. The CTF3, built at CERN by an international collaboration, was meant to demonstrate the technical feasibility of the key concepts for CLIC ¿Compact Linear Collider¿ as a future linear collider based on the novel two-beam acceleration scheme, and in order to achieve the next energy frontier for a lepton collider in theMulti-TeV scale. Modern particle accelerators and in particular future colliders like CLIC requires an extreme alignment and stabilization of the beam in order to enhance its quality, which rely heavily on a beam based alignment techniques. Here the BPMs, like the BPS-IPU, play an important role providing the beam position with precision and high resolution, besides a beam current measurement in the case of the BPS, along the beam lines. The BPS project carried out at IFIC was mainly developed in two phases: prototyping and series production and test for the TBL. In the first project phase two fully functional BPS prototypes were constructed, focusing in this thesis work on the electronic design of the BPS on-board PCBs (Printed Circuit Boards) which are based on transformers for the current sensing and beam position measurement. Furthermore, it is described the monitor mechanical design with emphasis on all the parts directly involved in its electromagnetic functioning, as a result of the coupling of the EM fields generated by the beam with those parts. For that, it was studied its operational parameters, according the TBL specifications, and it was also simulated a new circuital model reproducing the BPS monitor frequency response for its operational bandwidth (1kHz-100MHz). These prototypes were initially tested in the laboratories of the BI-PI section¿Beam Instrumentation - Position and Intensity¿ at CERN. In the second project phase the BPS monitor series, which were built based on the experience acquired during the prototyping phase, the work was focused on the realization of the characterization tests to measure the main operational parameters of each series monitor, for which it was designed and constructed two test benches with different purposes and frequency regions. The first one is designed to work in the low frequency region, between 1kHz-100MHz, in the time scale of the electron beam pulse with a repetition period of 1s and an approximate duration of 140ns. This kind of test setups called Wire Test-bench are commonly used in the accelerators instrumentation field in order to determine the characteristic parameters of a BPM (or pick-up) like its linearity and precision in the position measurement, and also its frequency response (bandwidth). This is done by emulating a low current intensity beam with a stretched wire carrying a current signals which can be precisely positioned with respect the device under test. This test bench was specifically made for the BPS monitor and conceived to perform the measurement data acquisition in an automated way, managing the measurement equipment and the wire positioning motors controller from a PC workstation. Each one of the BPS monitors series were characterized by using this system at the IFIC labs, and the test results and analysis are presented in this work. On the other hand, the high frequency tests, above the X band in the microwave spectrum and at the time scale of the micro-bunch pulses with a bunching period of 83ps (12GHz) inside a long 140ns pulse, were performed in order to measure the longitudinal impedance of the BPS monitor. This must be low enough in order to minimize the perturbations on the beam produced at crossing the monitor, which affects to its stability during the propagation along the line. For that, it was built the high frequency test bench as a coaxial waveguide structure of 24mm diameter matched at 50¿ and with a bandwidth from 18MHz to 30GHz, which was previously simulated, and having room in the middle to place the BPS as the device under test. This high frequency test bench is able to reproduce the TEM (Transversal Electro-Magnetic) propagative modes corresponding to an ultra-relativistic electron beam of 12GHz bunching frequency, so that the Scattering parameters can be measured to obtain the longitudinal impedance of the BPS in the frequency range of interest. Finally, it is also presented the results of the beam test made in the TBL line, with beam currents from 3.5A to 13A (max. available at the moment of the test). In order to determine the minimum resolution attainable by a BPS monitor in the measurement of the beam position, being the device figure of merit, with a resolution goal of 5¿m at maximum beam current of 28A according to the TBL specifications.
García Garrigós, JJ. (2013). Development of the Beam Position Monitors for the Diagnostics of the Test Beam Line in the CTF3 at CERN [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34327
TESIS
6

Plewa, Jérémie-Marie. "Etude de l'influence des plasmas dans les diodes à électrons pour la radiographie éclair." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30156/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La radiographie éclair par faisceau X intense est spécifique en ce sens qu'elle doit permettre de photographier la matière soumise à des conditions extrêmes de densification, de température et de vitesse de déplacement. Le succès de ce type de radiographie repose sur la qualité de la source X qui doit nécessairement être pénétrante (quelques MeV), intense (plusieurs rads), brève (quelques dizaines de ns) et de petite dimension (quelques mm). L'impulsion X est ainsi générée à partir du rayonnement de freinage émis lors de l'interaction avec une cible en métal d'un faisceau focalisé d'électrons de haute énergie (MeV) et de haute intensité (kA). Ce procédé lie très fortement les propriétés du faisceau d'électrons à ceux du faisceau X et donc à la qualité de la radiographie. Dans ce contexte, la thèse porte sur la compréhension de la dynamique du faisceau dans la diode à l'électron (c'est-à-dire juste avant son entrée dans la ligne accélératrice) ainsi que sur la caractérisation du plasma de velours dont sont issus les électrons qui composent le faisceau. Dans un premier temps, la dynamique du faisceau intense d'électrons a été étudiée à l'aide du code LSP reposant sur la méthode " Particle-In-Cell ". Les simulations réalisées ont été comparées avec des mesures effectuées sur l'injecteur d'un accélérateur linéaire à induction, implanté au CEA Valduc sur l'installation Epure. Grâce au modèle de simulation développé, une nouvelle diode à électrons mono-impulsion a été conçue, dimensionnée et réalisée pendant ce travail de thèse afin d'augmenter l'intensité du faisceau d'électrons de 2,0 kA à 2,6 kA permettant ainsi d'améliorer les performances radiographiques de l'installation. Dans un second temps, un modèle permettant d'étudier les mécanismes mis en jeu dans la production du faisceau d'électrons au niveau de plasma de cathode a été développé. Ce dernier est un modèle collisionnel-radiatif (MCR) 0D qui permet de décrire l'évolution de la densité des espèces d'un plasma dont la composition est directement liée aux molécules et atomes désorbés par la cathode de velours. Trois différents mélanges ont été étudiés impliquant de l'hydrogène, de l'oxygène et du carbone dont les proportions ont été estimées par des mesures LIBS (spectroscopie de plasma induit par laser).[...]
Intense X-ray flash radiography is used to take a stop-action picture of a material under extreme conditions like high densification, high temperature and high movement speed. The success of this kind of radiography is based on the quality of the X-ray source which must necessarily be penetrating (some MeV), intense (several rads), short (a few tens of ns) and small (a few mm). The X-ray pulse is generated from the bremsstrahlung radiation emitted during the interaction with a metal target of a focused electron beam of high energy (MeV) and high intensity (kA). This process strongly links the properties of the electron beam to those of the X-ray beam and thus to the quality of the radiography picture. In this context, the thesis is about the electron beam dynamics in the electron diode (i.e. just before electrons move towards the accelerator) as well as about the characterization of the velvet plasma from which electrons are extracted to form the beam. Firstly, the dynamics of the intense electron beam was studied using the LSP code based on the "Particle-In-Cell" method. The simulations were compared to measurements made on the injector of a linear induction accelerator, at the CEA Valduc center on the Epure facility. Based on the developed simulation model, a new single-pulse electron diode was designed, sized and realized during this thesis to increase the intensity of the electron beam from 2.0 kA to 2.6 kA, thus improving the radiographic performances of the facility. In a second step, a model allowing to study the mechanisms involved in the production of the electron beam from the cathode plasma was developed. This latter is a collisional-radiative model (CRM) 0D describing the evolution of the plasma species density of a plasma whose composition is directly related to the molecules and atoms desorbed by the velvet cathode. [...]

Books on the topic "Linear induction accelerators":

1

Vintizenko, Igor. Linear Induction Accelerators for High-Power Microwave Devices. CRC Press, 2018. http://dx.doi.org/10.1201/9780429488351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vintizenko, I. I. Linear Induction Accelerators for High-Power Microwave Devices. Taylor & Francis Group, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vintizenko, Igor. Linear Induction Accelerators for High-Power Microwave Devices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vintizenko, Igor. Linear Induction Accelerators for High-Power Microwave Devices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vintizenko, Igor. Linear Induction Accelerators for High-Power Microwave Devices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vintizenko, Igor. Linear Induction Accelerators for High-Power Microwave Devices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Vintizenko, Igor. Linear Induction Accelerators for High-Power Microwave Devices. Taylor & Francis Group, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Linear induction accelerators":

1

Westenskow*, Glen, and Yu-Jiuan Chen. "Applications of Electron Linear Induction Accelerators." In Induction Accelerators, 165–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13917-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Miller, R. B. "High-Current Electron-Beam Transport in Linear Induction Accelerators." In High-Brightness Accelerators, 303–68. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5508-3_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori, Tadashi Yamamoto, and Tetsuya Akitsu. "Induction Linear Accelerators with a High-Tc Bulk Superconductor Lens (Supertrons)." In Advances in Superconductivity IV, 1097–100. Tokyo: Springer Japan, 1992. http://dx.doi.org/10.1007/978-4-431-68195-3_240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bordry, F., L. Bottura, A. Milanese, D. Tommasini, E. Jensen, Ph Lebrun, L. Tavian, et al. "Accelerator Engineering and Technology: Accelerator Technology." In Particle Physics Reference Library, 337–517. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractMagnets are at the core of both circular and linear accelerators. The main function of a magnet is to guide the charged particle beam by virtue of the Lorentz force, given by the following expression:where q is the electrical charge of the particle, v its velocity, and B the magnetic field induction. The trajectory of a particle in the field depends hence on the particle velocity and on the space distribution of the field. The simplest case is that of a uniform magnetic field with a single component and velocity v normal to it, in which case the particle trajectory is a circle. A uniform field has thus a pure bending effect on a charged particle, and the magnet that generates it is generally referred to as a dipole.

Conference papers on the topic "Linear induction accelerators":

1

Birx, Daniel. "Induction linear accelerators." In The Physics of Particles Accelerators: Based in Part on the U.S. Particle Accelerator School (USPAS) Seminars and Courses in 1989 and 1990. AIP, 1992. http://dx.doi.org/10.1063/1.41961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ekdahl, Carl, and Martin Schulze. "Emittance growth in linear induction accelerators." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ekdahl, C. A., B. T. McCuistian, M. E. Schulze, C. A. Carlson, D. K. Frayer, C. Mostrum, and C. H. Thoma. "Emittance growth in linear induction accelerators." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Orzechowski, T. J. "Free-electron lasers driven by linear induction accelerators." In The Physics of Particles Accelerators: Based in Part on the U.S. Particle Accelerator School (USPAS) Seminars and Courses in 1989 and 1990. AIP, 1992. http://dx.doi.org/10.1063/1.41966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Melton, Charles N., Yu-Jiuan Chen, S. Eric Clark, Jennifer L. Ellsworth, Timothy L. Houck, and Nathaniel J. Pogue. "Cathode Side-emission Mitigation for Linear Induction Accelerators." In 2023 IEEE Pulsed Power Conference (PPC). IEEE, 2023. http://dx.doi.org/10.1109/ppc47928.2023.10311034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kanaev, Gennadii G., Nikolai M. Filipenko, Edvin G. Furman, and Alexander S. Sulakshin. "Synchronization of linear induction accelerators operating with relativistic magnetrons." In SPIE's 1995 International Symposium on Optical Science, Engineering, and Instrumentation, edited by Howard E. Brandt. SPIE, 1995. http://dx.doi.org/10.1117/12.218546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koglin, Jason E., Michael McKerns, Alex Scheinker, and Dan Wakeford. "Machine Learning for Radiographic Source Optimization at Linear Induction Accelerators*." In 3D Image Acquisition and Display: Technology, Perception and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/3d.2023.jtu4a.38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Adaptive machine learning (AML) techniques are being designed to use noninvasive diagnostic measurements to address the challenge of predicting the radiographic spot size, which depends on the accelerator performance and the conversion target.
8

Dolbilov, G. V., A. A. Fateev, V. A. Petrov, and A. I. Sidorov. "Powerful nanosecond pulsed generators for linear induction accelerators at JINR." In Space charge dominated beam physics for heavy ion fusion. AIP, 1999. http://dx.doi.org/10.1063/1.59508.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Newton, Mark A. "Pulse power issues for induction linac driven free-electron lasers." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.tukk1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The development of linear-induction accelerator-driven free-electron lasers (FELs) has had a significant impact on the design of the power conditioning systems that drive linear induction accelerators. These power conditioning systems must generate precision high voltage pulses and deliver this energy to the electron beam through a series of induction accelerator cells. (FEL requirements have resulted in the need for tight specifications on the allowable pulse-to-pulse and intrapulse variations in electron beam energy.) The voltage regulation requirements for the output pulse and the maximum allowable timing variations between the electron beam and the accelerating pulse are driven from these beam energy specifications. Pulse-to-pulse voltage variations of ⪯0.04% with intrapulse energy variations of ⪯0.4% into nonlinear, timevarying loads are examples of how tight these requirements can be. Maximum allowable timing variations range from a couple of nanoseconds down to a few hundred picoseconds depending on the system. Strategic defense initiative and fusion energy applications will require high average power FEL operation. Such operation requires high average power, high repetition rate switching capabilities, methods to control output pulse variations arising from thermal effects, and improvements in system efficiencies. We address each of these issues and summarize current work of the Beam Research Program at the Lawrence Livermore National Laboratory.
10

Logachev, P. V., A. R. Akhmetov, P. A. Bak, A. M. Batrakov, A. V. Burdakov, K. I. Zhivankov, O. A. Nikitin, et al. "DEVELOPMENT OF RESEARCH ON INDUCTION LINEAR ACCELERATORS AT THE INP SB RAS." In Plasma emission electronics. Buryat Scientific Center of SB RAS Press, 2023. http://dx.doi.org/10.31554/978-5-7925-0655-8-2023-27-33.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Linear induction accelerators":

1

Ekdahl, Carl August Jr. Optimum tunes for the DARHT and Scorpius linear induction accelerators. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1499288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Melton, C., N. Pogue, and T. Watson. 1013209497 - Cathode Side-emission Mitigation for Linear Induction Accelerators (AA). Office of Scientific and Technical Information (OSTI), July 2023. http://dx.doi.org/10.2172/1988208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ekdahl, Carl. Initial conditions for simulations of beam physics in linear induction accelerators. Office of Scientific and Technical Information (OSTI), January 2021. http://dx.doi.org/10.2172/1760554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Reed, K. W., and P. D. Kiekel. Synchronization of multiple magnetically switched modules to power linear induction adder accelerators. Office of Scientific and Technical Information (OSTI), February 1997. http://dx.doi.org/10.2172/522741.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ekdahl, Carl. Correct Initial Conditions for Simulations of Beam Physics in Linear Induction Accelerators. Office of Scientific and Technical Information (OSTI), January 2023. http://dx.doi.org/10.2172/1922753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Birx, D. L., G. J. Caporaso, and L. L. Reginato. Linear induction accelerator parameter options. Office of Scientific and Technical Information (OSTI), April 1986. http://dx.doi.org/10.2172/5331064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ekdahl, Carl August Jr, Martin E. Schulze, Carl A. Carlson, and Daniel K. Frayer. Retuning the DARHT Axis-II Linear Induction Accelerator. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1177181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ekdahl, Carl A. Tuning the DARHT Axis-II linear induction accelerator focusing. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1039313.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ekdahl, Jr., Carl August. Beam breakup in a solid-state powered linear induction accelerator. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1484603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ekdahl, Carl August Jr. Beam breakup in a solid state powered linear induction accelerator. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1608661.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography