To see the other types of publications on this topic, follow the link: Linear equations.

Journal articles on the topic 'Linear equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Linear equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rohn, Jiří. "Interval solutions of linear interval equations." Applications of Mathematics 35, no. 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kurzweil, Jaroslav, and Alena Vencovská. "Linear differential equations with quasiperiodic coefficients." Czechoslovak Mathematical Journal 37, no. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Patel, Roshni V., and Jignesh S. Patel. "Optimization of Linear Equations using Genetic Algorithms." Indian Journal of Applied Research 2, no. 3 (October 1, 2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fraňková, Dana. "Substitution method for generalized linear differential equations." Mathematica Bohemica 116, no. 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwabik, Štefan. "Linear Stieltjes integral equations in Banach spaces." Mathematica Bohemica 124, no. 4 (1999): 433–57. http://dx.doi.org/10.21136/mb.1999.125994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Cecchi, Mariella, Zuzana Došlá, Mauro Marini, and Ivo Vrkoč. "Asymptotic properties for half-linear difference equations." Mathematica Bohemica 131, no. 4 (2006): 347–63. http://dx.doi.org/10.21136/mb.2006.133970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davies, Alan, and Rainer Kress. "Linear Integral Equations." Mathematical Gazette 74, no. 470 (December 1990): 405. http://dx.doi.org/10.2307/3618171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

S., F., and Rainer Kress. "Linear Integral Equations." Mathematics of Computation 56, no. 193 (January 1991): 379. http://dx.doi.org/10.2307/2008551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

STEWART, G. W. "Solving Linear Equations." Science 236, no. 4800 (April 24, 1987): 461–62. http://dx.doi.org/10.1126/science.236.4800.461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

PAN, V., and J. H. REIF. "Response:Solving Linear Equations." Science 236, no. 4800 (April 24, 1987): 462–63. http://dx.doi.org/10.1126/science.236.4800.462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

BAME, Valmir, and Lulezim HANELLI. "Numerical Solution for Semi Linear Hyperbolic Differential Equations." International Journal of Innovative Research in Engineering & Management 6, no. 4 (July 2019): 28–32. http://dx.doi.org/10.21276/ijirem.2019.6.4.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Kačur, Jozef. "Smoothing effect and regularity for linear parabolic equations." Czechoslovak Mathematical Journal 36, no. 4 (1986): 564–85. http://dx.doi.org/10.21136/cmj.1986.102117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tvrdý, Milan. "Linear distributional differential equations of the second order." Mathematica Bohemica 119, no. 4 (1994): 415–36. http://dx.doi.org/10.21136/mb.1994.126120.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Došlá, Zuzana, and Denisa Škrabáková. "Phases of linear difference equations and symplectic systems." Mathematica Bohemica 128, no. 3 (2003): 293–308. http://dx.doi.org/10.21136/mb.2003.134182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Williamson, Alan G., and Chris Woodford. "Solving Linear and Non-Linear Equations." Mathematical Gazette 78, no. 481 (March 1994): 85. http://dx.doi.org/10.2307/3619460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Slavyanov, S. Y. "Relations Between Linear Equations and Painlevé’s Equations." Constructive Approximation 39, no. 1 (September 28, 2013): 75–83. http://dx.doi.org/10.1007/s00365-013-9216-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Neuman, František. "Covariant constructions in the theory of linear differential equations." Časopis pro pěstování matematiky 111, no. 2 (1986): 201–7. http://dx.doi.org/10.21136/cpm.1986.118277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Došlá, Zuzana. "On oscillatory solutions of third-order linear differential equations." Časopis pro pěstování matematiky 114, no. 1 (1989): 28–34. http://dx.doi.org/10.21136/cpm.1989.118363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schwabik, Štefan. "The Perron product integral and generalized linear differential equations." Časopis pro pěstování matematiky 115, no. 4 (1990): 368–404. http://dx.doi.org/10.21136/cpm.1990.118415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Thandapani, E., and S. Selvarangam. "Oscillation of third-order half-linear neutral difference equations." Mathematica Bohemica 138, no. 1 (2013): 87–104. http://dx.doi.org/10.21136/mb.2013.143232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ardjouni, Abdelouaheb, and Ahcene Djoudi. "Stability in linear neutral difference equations with variable delays." Mathematica Bohemica 138, no. 3 (2013): 245–58. http://dx.doi.org/10.21136/mb.2013.143436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hasan, Nabaa N. "Nonpolynomial Spline Method for Solving Linear Fractional Differential Equations." International Journal of Psychosocial Rehabilitation 24, no. 4 (February 28, 2020): 3819–27. http://dx.doi.org/10.37200/ijpr/v24i4/pr201495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Čadek, Martin. "Form of general pointwise transformations of linear differential equations." Czechoslovak Mathematical Journal 35, no. 4 (1985): 617–24. http://dx.doi.org/10.21136/cmj.1985.102052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Tvrdý, Milan. "Linear integral equations in the space of regulated functions." Mathematica Bohemica 123, no. 2 (1998): 177–212. http://dx.doi.org/10.21136/mb.1998.126306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Došlý, Ondřej. "Qualitative theory of half-linear second order differential equations." Mathematica Bohemica 127, no. 2 (2002): 181–95. http://dx.doi.org/10.21136/mb.2002.134170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Iosifidis, Damianos. "Solving Linear Tensor Equations." Universe 7, no. 10 (October 15, 2021): 383. http://dx.doi.org/10.3390/universe7100383.

Full text
Abstract:
We develop a systematic way to solve linear equations involving tensors of arbitrary rank. We start off with the case of a rank 3 tensor, which appears in many applications, and after finding the condition for a unique solution we derive this solution. Subsequently, we generalize our result to tensors of arbitrary rank. Finally, we consider a generalized version of the former case of rank 3 tensors and extend the result when the tensor traces are also included.
APA, Harvard, Vancouver, ISO, and other styles
27

Green, Benjamin, and Terence Tao. "Linear equations in primes." Annals of Mathematics 171, no. 3 (April 25, 2010): 1753–850. http://dx.doi.org/10.4007/annals.2010.171.1753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nguyen, K. A., and M. van der Put. "Solving Linear Differential Equations." Pure and Applied Mathematics Quarterly 6, no. 1 (2010): 173–208. http://dx.doi.org/10.4310/pamq.2010.v6.n1.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Steward, T. "Linear equations and spreadsheets." Teaching Mathematics and its Applications 17, no. 2 (June 1, 1998): 86–90. http://dx.doi.org/10.1093/teamat/17.2.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Balog, Antal. "Linear equations in primes." Mathematika 39, no. 2 (December 1992): 367–78. http://dx.doi.org/10.1112/s0025579300015096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Cha, Yongjae, Mark van Hoeij, and Giles Levy. "Solving linear recurrence equations." ACM Communications in Computer Algebra 44, no. 3/4 (January 28, 2011): 183–85. http://dx.doi.org/10.1145/1940475.1940515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Edelson, Allan L. "Asymptotically linear elliptic equations." Rendiconti del Seminario Matematico e Fisico di Milano 64, no. 1 (December 1994): 9–20. http://dx.doi.org/10.1007/bf02925186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Federson, M., R. Bianconi, and L. Barbanti. "Linear Volterra Integral Equations." Acta Mathematicae Applicatae Sinica, English Series 18, no. 4 (November 2002): 553–60. http://dx.doi.org/10.1007/s102550200057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Castro, Luis, Saburou Saitoh, Yoshihiro Sawano, and Anabela S. Silva. "Discrete linear differential equations." Analysis 32, no. 3 (August 2012): 181–91. http://dx.doi.org/10.1524/anly.2012.1104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sanabria Malagón, Camilo. "Reversible linear differential equations." Journal of Algebra 325, no. 1 (January 2011): 248–68. http://dx.doi.org/10.1016/j.jalgebra.2010.08.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jain, Himanshu, Edmund M. Clarke, and Orna Grumberg. "Efficient Craig interpolation for linear Diophantine (dis)equations and linear modular equations." Formal Methods in System Design 35, no. 1 (April 24, 2009): 6–39. http://dx.doi.org/10.1007/s10703-009-0069-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Górecki, Henryk. "Analytic solution of transcendental equations." International Journal of Applied Mathematics and Computer Science 20, no. 4 (December 1, 2010): 671–77. http://dx.doi.org/10.2478/v10006-010-0050-2.

Full text
Abstract:
Analytic solution of transcendental equationsA decomposition technique of the solution of ann-th order linear differential equation into a set of solutions of 2-nd order linear differential equations is presented.
APA, Harvard, Vancouver, ISO, and other styles
38

Hamid, Ihsanullah. "Balancing Chemical Equations by Systems of Linear Equations." Applied Mathematics 10, no. 07 (2019): 521–26. http://dx.doi.org/10.4236/am.2019.107036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Singer, Michael F. "Solving Homogeneous Linear Differential Equations in Terms of Second Order Linear Differential Equations." American Journal of Mathematics 107, no. 3 (June 1985): 663. http://dx.doi.org/10.2307/2374373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Šeda, Valter. "On a class of linear $n$-th order differential equations." Czechoslovak Mathematical Journal 39, no. 2 (1989): 350–69. http://dx.doi.org/10.21136/cmj.1989.102307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sadhasivam, Vadivel, Jayapal Kavitha, and Muthusamy Deepa. "On the Oscillation of Non-linear Functional Partial Differential Equations." Journal of Computational Mathematica 1, no. 2 (December 30, 2017): 29–39. http://dx.doi.org/10.26524/cm13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pelant, Martin, and Milan Tvrdý. "Linear distributional differential equations in the space of regulated functions." Mathematica Bohemica 118, no. 4 (1993): 379–400. http://dx.doi.org/10.21136/mb.1993.126158.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ligęza, J., and M. Tvrdý. "On systems of linear algebraic equations in the Colombeau algebra." Mathematica Bohemica 124, no. 1 (1999): 1–14. http://dx.doi.org/10.21136/mb.1999.125977.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Čermák, Jan. "Asymptotic behaviour of solutions of some linear delay differential equations." Mathematica Bohemica 125, no. 3 (2000): 355–64. http://dx.doi.org/10.21136/mb.2000.126125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Koshy, Thomas. "82.29 Linear Diophantine Equations, Linear Congruences, and Matrices." Mathematical Gazette 82, no. 494 (July 1998): 274. http://dx.doi.org/10.2307/3620412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Singer, Michael F., and Felix Ulmer. "Linear differential equations and products of linear forms." Journal of Pure and Applied Algebra 117-118 (May 1997): 549–63. http://dx.doi.org/10.1016/s0022-4049(97)00027-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Möbius, P. "Non-linear superposition in non-linear evolution equations." Czechoslovak Journal of Physics 37, no. 9 (September 1987): 1041–55. http://dx.doi.org/10.1007/bf01597449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Korter, M. "Linear equations and linear models in actuarial theory." Insurance: Mathematics and Economics 13, no. 2 (November 1993): 153–54. http://dx.doi.org/10.1016/0167-6687(93)90873-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sargent, A., and J. L. Fastook. "A linear algorithm for solving non-linear isothermal ice-shelf equations." Geoscientific Model Development Discussions 7, no. 2 (March 18, 2014): 1829–64. http://dx.doi.org/10.5194/gmdd-7-1829-2014.

Full text
Abstract:
Abstract. A linear non-iterative algorithm is suggested for solving nonlinear isothermal steady-state Morland–MacAyeal ice shelf equations. The idea of the algorithm is in replacing the problem of solving the non-linear second order differential equations for velocities with a system of linear first order differential equations for stresses. The resulting system of linear equations can be solved numerically with direct methods which are faster than iterative methods for solving corresponding non-linear equations. The suggested algorithm is applicable if the boundary conditions for stresses can be specified. The efficiency of the linear algorithm is demonstrated for one-dimensional and two-dimensional ice shelf equations by comparing the linear algorithm and the traditional iterative algorithm on derived manufactured solutions. The linear algorithm is shown to be as accurate as the traditional iterative algorithm but significantly faster. The method may be valuable as the way to increase the efficiency of complex ice sheet models a part of which requires solving the ice shelf model as well as to solve efficiently two-dimensional ice-shelf equations.
APA, Harvard, Vancouver, ISO, and other styles
50

Tyrsin, Alexander N., and Tamara A. Makarova. "IDENTIFICATION OF STRUCTURAL LINEAR EQUATIONS." Scholarly Notes of Komsomolsk-na-Amure State Technical University 1, no. 9 (March 30, 2012): 49–56. http://dx.doi.org/10.17084/2012.i-1(9).7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography