Dissertations / Theses on the topic 'Linear equations; Schwarz methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Linear equations; Schwarz methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Terkhova, Karina. "Capacitance matrix preconditioning." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244593.
Full textGaray, Jose. "Asynchronous Optimized Schwarz Methods for Partial Differential Equations in Rectangular Domains." Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/510451.
Full textPh.D.
Asynchronous iterative algorithms are parallel iterative algorithms in which communications and iterations are not synchronized among processors. Thus, as soon as a processing unit finishes its own calculations, it starts the next cycle with the latest data received during a previous cycle, without waiting for any other processing unit to complete its own calculation. These algorithms increase the number of updates in some processors (as compared to the synchronous case) but suppress most idle times. This usually results in a reduction of the (execution) time to achieve convergence. Optimized Schwarz methods (OSM) are domain decomposition methods in which the transmission conditions between subdomains contain operators of the form \linebreak $\partial/\partial \nu +\Lambda$, where $\partial/\partial \nu$ is the outward normal derivative and $\Lambda$ is an optimized local approximation of the global Steklov-Poincar\'e operator. There is more than one family of transmission conditions that can be used for a given partial differential equation (e.g., the $OO0$ and $OO2$ families), each of these families containing a particular approximation of the Steklov-Poincar\'e operator. These transmission conditions have some parameters that are tuned to obtain a fast convergence rate. Optimized Schwarz methods are fast in terms of iteration count and can be implemented asynchronously. In this thesis we analyze the convergence behavior of the synchronous and asynchronous implementation of OSM applied to solve partial differential equations with a shifted Laplacian operator in bounded rectangular domains. We analyze two cases. In the first case we have a shift that can be either positive, negative or zero, a one-way domain decomposition and transmission conditions of the $OO2$ family. In the second case we have Poisson's equation, a domain decomposition with cross-points and $OO0$ transmission conditions. In both cases we reformulate the equations defining the problem into a fixed point iteration that is suitable for our analysis, then derive convergence proofs and analyze how the convergence rate varies with the number of subdomains, the amount of overlap, and the values of the parameters introduced in the transmission conditions. Additionally, we find the optimal values of the parameters and present some numerical experiments for the second case illustrating our theoretical results. To our knowledge this is the first time that a convergence analysis of optimized Schwarz is presented for bounded subdomains with multiple subdomains and arbitrary overlap. The analysis presented in this thesis also applies to problems with more general domains which can be decomposed as a union of rectangles.
Temple University--Theses
Tang, Wei-pai. "Schwarz splitting and template operators." Stanford, CA : Dept. of Computer Science, Stanford University, 1987. http://doi.library.cmu.edu/10.1184/OCLC/19643650.
Full text"June 1987." "Also numbered Classic-87-03"--Cover. "This research was supported by NASA Ames Consortium Agreement NASA NCA2-150 and Office of Naval Research Contracts N00014-86-K-0565, N00014-82-K-0335, N00014-75-C-1132"--P. vi. Includes bibliographical references (p. 125-129).
Smith, James A. "“Looking for nothing" : Bayes linear methods for solving equations." Thesis, Durham University, 1993. http://etheses.dur.ac.uk/2207/.
Full textElmikkawy, M. E. A. "Embedded Runge-Kutta-Nystrom methods." Thesis, Teesside University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371400.
Full textSaravi, Masoud. "Numerical solution of linear ordinary differential equations and differential-algebraic equations by spectral methods." Thesis, Open University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446280.
Full textCampos, Frederico Ferreira. "Analysis of conjugate gradients-type methods for solving linear equations." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.282319.
Full textBlake, Kenneth William. "Moving mesh methods for non-linear parabolic partial differential equations." Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369545.
Full textShank, Stephen David. "Low-rank solution methods for large-scale linear matrix equations." Diss., Temple University Libraries, 2014. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/273331.
Full textPh.D.
We consider low-rank solution methods for certain classes of large-scale linear matrix equations. Our aim is to adapt existing low-rank solution methods based on standard, extended and rational Krylov subspaces to solve equations which may viewed as extensions of the classical Lyapunov and Sylvester equations. The first class of matrix equations that we consider are constrained Sylvester equations, which essentially consist of Sylvester's equation along with a constraint on the solution matrix. These therefore constitute a system of matrix equations. The second are generalized Lyapunov equations, which are Lyapunov equations with additional terms. Such equations arise as computational bottlenecks in model order reduction.
Temple University--Theses
Fischer, Rainer. "Multigrid methods for anisotropic and indefinite structured linear systems of equations." [S.l.] : [s.n.], 2006. http://mediatum2.ub.tum.de/doc/601806/document.pdf.
Full textLopes, Antonio Roldao. "Accelerating iterative methods for solving systems of linear equations using FPGAs." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.526401.
Full textNgounda, Edgard. "Numerical Laplace transformation methods for integrating linear parabolic partial differential equations." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/2735.
Full textENGLISH ABSTRACT: In recent years the Laplace inversion method has emerged as a viable alternative method for the numerical solution of PDEs. Effective methods for the numerical inversion are based on the approximation of the Bromwich integral. In this thesis, a numerical study is undertaken to compare the efficiency of the Laplace inversion method with more conventional time integrator methods. Particularly, we consider the method-of-lines based on MATLAB’s ODE15s and the Crank-Nicolson method. Our studies include an introductory chapter on the Laplace inversion method. Then we proceed with spectral methods for the space discretization where we introduce the interpolation polynomial and the concept of a differentiation matrix to approximate derivatives of a function. Next, formulas of the numerical differentiation formulas (NDFs) implemented in ODE15s, as well as the well-known second order Crank-Nicolson method, are derived. In the Laplace method, to compute the Bromwich integral, we use the trapezoidal rule over a hyperbolic contour. Enhancement to the computational efficiency of these methods include the LU as well as the Hessenberg decompositions. In order to compare the three methods, we consider two criteria: The number of linear system solves per unit of accuracy and the CPU time per unit of accuracy. The numerical results demonstrate that the new method, i.e., the Laplace inversion method, is accurate to an exponential order of convergence compared to the linear convergence rate of the ODE15s and the Crank-Nicolson methods. This exponential convergence leads to high accuracy with only a few linear system solves. Similarly, in terms of computational cost, the Laplace inversion method is more efficient than ODE15s and the Crank-Nicolson method as the results show. Finally, we apply with satisfactory results the inversion method to the axial dispersion model and the heat equation in two dimensions.
AFRIKAANSE OPSOMMING: In die afgelope paar jaar het die Laplace omkeringsmetode na vore getree as ’n lewensvatbare alternatiewe metode vir die numeriese oplossing van PDVs. Effektiewe metodes vir die numeriese omkering word gebasseer op die benadering van die Bromwich integraal. In hierdie tesis word ’n numeriese studie onderneem om die effektiwiteit van die Laplace omkeringsmetode te vergelyk met meer konvensionele tydintegrasie metodes. Ons ondersoek spesifiek die metode-van-lyne, gebasseer op MATLAB se ODE15s en die Crank-Nicolson metode. Ons studies sluit in ’n inleidende hoofstuk oor die Laplace omkeringsmetode. Dan gaan ons voort met spektraalmetodes vir die ruimtelike diskretisasie, waar ons die interpolasie polinoom invoer sowel as die konsep van ’n differensiasie-matriks waarmee afgeleides van ’n funksie benader kan word. Daarna word formules vir die numeriese differensiasie formules (NDFs) ingebou in ODE15s herlei, sowel as die welbekende tweede orde Crank-Nicolson metode. Om die Bromwich integraal te benader in die Laplace metode, gebruik ons die trapesiumreël oor ’n hiperboliese kontoer. Die berekeningskoste van al hierdie metodes word verbeter met die LU sowel as die Hessenberg ontbindings. Ten einde die drie metodes te vergelyk beskou ons twee kriteria: Die aantal lineêre stelsels wat moet opgelos word per eenheid van akkuraatheid, en die sentrale prosesseringstyd per eenheid van akkuraatheid. Die numeriese resultate demonstreer dat die nuwe metode, d.i. die Laplace omkeringsmetode, akkuraat is tot ’n eksponensiële orde van konvergensie in vergelyking tot die lineêre konvergensie van ODE15s en die Crank-Nicolson metodes. Die eksponensiële konvergensie lei na hoë akkuraatheid met slegs ’n klein aantal oplossings van die lineêre stelsel. Netso, in terme van berekeningskoste is die Laplace omkeringsmetode meer effektief as ODE15s en die Crank-Nicolson metode. Laastens pas ons die omkeringsmetode toe op die aksiale dispersiemodel sowel as die hittevergelyking in twee dimensies, met bevredigende resultate.
Shah, A. A. "Iteractive methods for the solution of unsymmetric linear systems of equations." Thesis, University of Kent, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333045.
Full textNicely, Dywayne A. Morgan Ronald Benjamin. "Restarting the Lanczos algorithm for large eigenvalue problems and linear equations." Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5219.
Full textEl-Nakla, Jehad A. H. "Finite difference methods for solving mildly nonlinear elliptic partial differential equations." Thesis, Loughborough University, 1987. https://dspace.lboro.ac.uk/2134/10417.
Full textChoi, Chi-Ho Francis. "Numerical methods for solving some non-linear reaction-diffusion equations in chemistry." Thesis, Brunel University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341555.
Full textOdland, Tove. "On Methods for Solving Symmetric Systems of Linear Equations Arising in Optimization." Doctoral thesis, KTH, Optimeringslära och systemteori, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166675.
Full textI denna avhandling betraktar vi matematiska egenskaper hos metoder för att lösa symmetriska linjära ekvationssystem som uppkommer i formuleringar och metoder för en mängd olika optimeringsproblem. I första och tredje artikeln (Paper A och Paper C), undersöks kopplingen mellan konjugerade gradientmetoden och kvasi-Newtonmetoder när dessa appliceras på strikt konvexa kvadratiska optimeringsproblem utan bivillkor eller ekvivalent på ett symmet- risk linjärt ekvationssystem med en positivt definit symmetrisk matris. Vi ställer upp villkor på kvasi-Newtonmatrisen och uppdateringsmatrisen så att sökriktningen som fås från motsvarande kvasi-Newtonmetod blir parallell med den sökriktning som fås från konjugerade gradientmetoden. I den första artikeln (Paper A), härleds villkor på uppdateringsmatrisen baserade på ett tillräckligt villkor för att få ömsesidigt konjugerade sökriktningar. Dessa villkor på kvasi-Newtonmetoden visas vara ekvivalenta med att uppdateringsstrategin tillhör Broydens enparameterfamilj. Vi tar också fram en ett-till-ett överensstämmelse mellan Broydenparametern och skalningen mellan sökriktningarna från konjugerade gradient- metoden och en kvasi-Newtonmetod som använder någon väldefinierad uppdaterings- strategi från Broydens enparameterfamilj. I den tredje artikeln (Paper C), ger vi tillräckliga och nödvändiga villkor på en kvasi-Newtonmetod så att nämnda ekvivalens med konjugerade gradientmetoden er- hålls. Mängden kvasi-Newtonstrategier som uppfyller dessa villkor är strikt större än Broydens enparameterfamilj. Vi visar också att denna mängd kvasi-Newtonstrategier innehåller ett oändligt antal uppdateringsstrategier där uppdateringsmatrisen är en sym- metrisk matris av rang ett. I den andra artikeln (Paper B), används ett ramverk för icke-normaliserade Krylov- underrumsmetoder för att lösa symmetriska linjära ekvationssystem. Dessa ekvations- system kan sakna lösning och matrisen kan vara indefinit/singulär. Denna typ av sym- metriska linjära ekvationssystem uppkommer i en mängd formuleringar och metoder för optimeringsproblem med bivillkor. I fallet då det symmetriska linjära ekvations- systemet saknar lösning ger vi ett certifikat för detta baserat på en projektion på noll- rummet för den symmetriska matrisen och karaktäriserar en minimum-residuallösning. Vi härleder även en minimum-residualmetod i detta ramverk samt ger explicita rekur- sionsformler för denna metod. I fallet då det symmetriska linjära ekvationssystemet saknar lösning så karaktäriserar vi en minimum-residuallösning av minsta euklidiska norm.
QC 20150519
Chow, Tanya L. M., of Western Sydney Macarthur University, and Faculty of Business and Technology. "Systems of partial differential equations and group methods." THESIS_FBT_XXX_Chow_T.xml, 1996. http://handle.uws.edu.au:8081/1959.7/43.
Full textFaculty of Business and Technology
Ernst, Oliver G. "Minimal and orthogonal residual methods and their generalizations for solving linear operator equations." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:swb:105-3293998.
Full textJohnsen, Pernilla. "Homogenization of Partial Differential Equations using Multiscale Convergence Methods." Licentiate thesis, Mittuniversitetet, Institutionen för matematik och ämnesdidaktik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42036.
Full textAlam, Md Shafiful. "Iterative Methods to Solve Systems of Nonlinear Algebraic Equations." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2305.
Full textEldred, Chris. "Linear and nonlinear properties of numerical methods for the rotating shallow water equations." Thesis, Colorado State University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3720474.
Full textThe shallow water equations provide a useful analogue of the fully compressible Euler equations since they have similar conservation laws, many of the same types of waves and a similar (quasi-) balanced state. It is desirable that numerical models posses similar properties, and the prototypical example of such a scheme is the 1981 Arakawa and Lamb (AL81) staggered (C-grid) total energy and potential enstrophy conserving scheme, based on the vector invariant form of the continuous equations. However, this scheme is restricted to a subset of logically square, orthogonal grids. The current work extends the AL81 scheme to arbitrary non-orthogonal polygonal grids, by combining Hamiltonian methods (work done by Salmon, Gassmann, Dubos and others) and Discrete Exterior Calculus (Thuburn, Cotter, Dubos, Ringler, Skamarock, Klemp and others).
It is also possible to obtain these properties (along with arguably superior wave dispersion properties) through the use of a collocated (Z-grid) scheme based on the vorticity-divergence form of the continuous equations. Unfortunately, existing examples of these schemes in the literature for general, spherical grids either contain computational modes; or do not conserve total energy and potential enstrophy. This dissertation extends an existing scheme for planar grids to spherical grids, through the use of Nambu brackets (as pioneered by Rick Salmon).
To compare these two schemes, the linear modes (balanced states, stationary modes and propagating modes; with and without dissipation) are examined on both uniform planar grids (square, hexagonal) and quasi-uniform spherical grids (geodesic, cubed-sphere). In addition to evaluating the linear modes, the results of the two schemes applied to a set of standard shallow water test cases and a recently developed forced-dissipative turbulence test case from John Thuburn (intended to evaluate the ability the suitability of schemes as the basis for a climate model) on both hexagonal-pentagonal icosahedral grids and cubed-sphere grids are presented. Finally, some remarks and thoughts about the suitability of these two schemes as the basis for atmospheric dynamical development are given.
Al-Shanfari, Fatima. "High-order in time discontinuous Galerkin finite element methods for linear wave equations." Thesis, Brunel University, 2017. http://bura.brunel.ac.uk/handle/2438/15332.
Full textAhmad, Ab Rahman bin. "The AGE iterative methods for solving large linear systems occurring in differential equations." Thesis, Loughborough University, 1993. https://dspace.lboro.ac.uk/2134/32905.
Full textErnst, Oliver G. "Minimal and orthogonal residual methods and their generalizations for solving linear operator equations." Doctoral thesis, [S.l. : s.n.], 2000. https://tubaf.qucosa.de/id/qucosa%3A22355.
Full textDonfack, Simplice. "Methods and algorithms for solving linear systems of equations on massively parallel computers." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112042.
Full textMulticore processors are considered to be nowadays the future of computing, and they will have an important impact in scientific computing. In this thesis, we study methods and algorithms for solving efficiently sparse and dense large linear systems on future petascale machines and in particular these having a significant number of cores. Due to the increasing communication cost compared to the time the processors take to perform arithmetic operations, our approach embrace the communication avoiding algorithm principle by doing some redundant computations and uses several adaptations to achieve better performance on multicore machines.We decompose the problem to solve into several phases that would be then designed or optimized separately. In the first part, we present an algorithm based on hypergraph partitioning and which considerably reduces the fill-in incurred in the LU factorization of sparse unsymmetric matrices. In the second part, we present two communication avoiding algorithms that are adapted to multicore environments. The main contribution of this part is to reorganize the computations such as to reduce bus contention and using efficiently resources. Then, we extend this work for clusters of multi-core processors. In the third part, we present a new scheduling and optimization approach. Data locality and load balancing are a serious trade-off in the choice of the scheduling strategy. On NUMA machines for example, where the data locality is not an option, we have observed that in the presence of noise, performance could quickly deteriorate and become difficult to predict. To overcome this bottleneck, we present an approach that combines a static and a dynamic scheduling approach to schedule the tasks of our algorithms.Our results obtained on several architectures show that all our algorithms are efficient and lead to significant performance gains. We can achieve from 30 up to 110% improvement over the corresponding routines of our algorithms in well known libraries
Tang, Shaowu [Verfasser]. "Multiscale and geometric methods for linear elliptic and parabolic partial differential equations / Shaowu Tang." Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2008. http://d-nb.info/1034787411/34.
Full textLiesen, Jörg. "Construction and analysis of polynomial iterative methods for non-hermitian systems of linear equations." [S.l. : s.n.], 1998. http://deposit.ddb.de/cgi-bin/dokserv?idn=955877776.
Full textFu, Hongbo. "Differential methods for intuitive 3D shape modeling /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?CSED%202007%20FU.
Full textKrueger, Denise A. "Stabilized Finite Element Methods for Feedback Control of Convection Diffusion Equations." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/11214.
Full textPh. D.
Wise, Steven M. "POLSYS_PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36933.
Full textMaster of Science
Indratno, Sapto Wahyu. "Numerical methods for solving linear ill-posed problems." Diss., Kansas State University, 2011. http://hdl.handle.net/2097/8109.
Full textDepartment of Mathematics
Alexander G. Ramm
A new method, the Dynamical Systems Method (DSM), justified recently, is applied to solving ill-conditioned linear algebraic system (ICLAS). The DSM gives a new approach to solving a wide class of ill-posed problems. In Chapter 1 a new iterative scheme for solving ICLAS is proposed. This iterative scheme is based on the DSM solution. An a posteriori stopping rules for the proposed method is justified. We also gives an a posteriori stopping rule for a modified iterative scheme developed in A.G.Ramm, JMAA,330 (2007),1338-1346, and proves convergence of the solution obtained by the iterative scheme. In Chapter 2 we give a convergence analysis of the following iterative scheme: u[subscript]n[superscript]delta=q u[subscript](n-1)[superscript]delta+(1-q)T[subscript](a[subscript]n)[superscript](-1) K[superscript]*f[subscript]delta, u[subscript]0[superscript]delta=0, where T:=K[superscript]* K, T[subscript]a :=T+aI, q in the interval (0,1),\quad a[subscript]n := alpha[subscript]0 q[superscript]n, alpha_0>0, with finite-dimensional approximations of T and K[superscript]* for solving stably Fredholm integral equations of the first kind with noisy data. In Chapter 3 a new method for inverting the Laplace transform from the real axis is formulated. This method is based on a quadrature formula. We assume that the unknown function f(t) is continuous with (known) compact support. An adaptive iterative method and an adaptive stopping rule, which yield the convergence of the approximate solution to f(t), are proposed in this chapter.
Voigtmann, Steffen. "General linear methods for integrated circuit design." Doctoral thesis, Berlin Logos-Verl, 2006. http://deposit.d-nb.de/cgi-bin/dokserv?id=2850248&prov=M&dok_var=1&dok_ext=htm.
Full textSolodukhov, Yuri Olegovich. "Reduced-basis methods applied to locally non-affine and locally non-linear partial differential equations." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32390.
Full textIncludes bibliographical references (p. 191-196).
In modern engineering and scientific applications there is a huge demand for solutions of parameter-based partial differential equations and associated outputs of interest expressed as functionals of these solutions. Areas that require solving partial differential equations include - but are not restricted to heat transfer, elasticity, and fluid dynamics. Since in most cases it is not feasible to obtain an analytic solution, many numerical approaches to obtain approximate numerical solutions - such as finite elements. finite differences, finite volumes have been developed. For applications like optimization. design, and inverse problems, where it is crucial to evaluate the field solution/output repeatedly, it might be overly computationally expensive to apply conventional numerical methods. To address this issue we present and compare two new reduced basis techniques for the rapid and reliable prediction of linear functional outputs of linear elliptic partial differential equations with locally non-affine parameter dependence: the partition of unity method (PUM) and the minimax coefficient approximation method (MCAM). We also describe the minimax coefficient approximation method (MCAM) in application to locally non-linear elliptic partial differential equations.
(cont.) The essential components for both the PUM and the MCAM are (i) (provably) rapidly convergent global reduced basis approximations Galerkin projection onto a low-dimensional space spanned by the solutions of the governing partial differential equation at N selected points in the parameter space; (ii) a posteriori error estimation - relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off- line/on-line computational procedures - methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage - in which, given a new parameter value, we calculate the output of interest and associated error bound depends only on N (typically very small), the affine parametric complexity of the problem ad the number of points in the region where the non-affine/non-linear dependence is observed. The ratio of the error bound to the real error (which we call effectivity or the sharpness of our error estimate) typically does not exceed 100. The partition of unity approach relies on domain decomposition with respect to the separation of the affine part from the non-affine part and estimation of contributions to the error bound from these two parts. The minimax coefficient approximation approach is based on approximating the non-affine/non-linear dependence with an affine-like approximation and the subsequent treatment of the problem based on the ideas previously developed for affine problems. As a test for these new methods we consider several model problems involving steady heat transfer.
(cont.) Numerical results are provided with respect to the accuracy and computational savings provided by the described reduced basis methods.
by Yuri Olegovich Solodukhov.
Ph.D.
Ramirez, Edgardo II. "Finite element methods for parameter identification problem of linear and nonlinear steady-state diffusion equations." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/28173.
Full textPh. D.
Zhang, Hong. "Efficient Time Stepping Methods and Sensitivity Analysis for Large Scale Systems of Differential Equations." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50492.
Full textPh. D.
Cunha, Rudnei Dias da. "A study of iterative methods for the solution of systems of linear equations on transputer networks." Thesis, University of Kent, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314642.
Full textEneyew, Eyaya Birara. "Efficient computation of shifted linear systems of equations with application to PDEs." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17827.
Full textENGLISH ABSTRACT: In several numerical approaches to PDEs shifted linear systems of the form (zI - A)x = b, need to be solved for several values of the complex scalar z. Often, these linear systems are large and sparse. This thesis investigates efficient numerical methods for these systems that arise from a contour integral approximation to PDEs and compares these methods with direct solvers. In the first part, we present three model PDEs and discuss numerical approaches to solve them. We use the first problem to demonstrate computations with a dense matrix, the second problem to demonstrate computations with a sparse symmetric matrix and the third problem for a sparse but nonsymmetric matrix. To solve the model PDEs numerically we apply two space discrerization methods, namely the finite difference method and the Chebyshev collocation method. The contour integral method mentioned above is used to integrate with respect to the time variable. In the second part, we study a Hessenberg reduction method for solving shifted linear systems with a dense matrix and present numerical comparison of it with the built-in direct linear system solver in SciPy. Since both are direct methods, in the absence of roundoff errors, they give the same result. However, we find that the Hessenberg reduction method is more efficient in CPU-time than the direct solver. As application we solve a one-dimensional version of the heat equation. In the third part, we present efficient techniques for solving shifted systems with a sparse matrix by Krylov subspace methods. Because of their shift-invariance property, the Krylov methods allow one to obtain approximate solutions for all values of the parameter, by generating a single approximation space. Krylov methods applied to the linear systems are generally slowly convergent and hence preconditioning is necessary to improve the convergence. The use of shift-invert preconditioning is discussed and numerical comparisons with a direct sparse solver are presented. As an application we solve a two-dimensional version of the heat equation with and without a convection term. Our numerical experiments show that the preconditioned Krylov methods are efficient in both computational time and memory space as compared to the direct sparse solver.
AFRIKAANSE OPSOMMING: In verskeie numeriese metodes vir PDVs moet geskuifde lineêre stelsels van die vorm (zI − A)x = b, opgelos word vir verskeie waardes van die komplekse skalaar z. Hierdie stelsels is dikwels groot en yl. Hierdie tesis ondersoek numeriese metodes vir sulke stelsels wat voorkom in kontoerintegraalbenaderings vir PDVs en vergelyk hierdie metodes met direkte metodes vir oplossing. In die eerste gedeelte beskou ons drie model PDVs en bespreek numeriese benaderings om hulle op te los. Die eerste probleem word gebruik om berekenings met ’n vol matriks te demonstreer, die tweede probleem word gebruik om berekenings met yl, simmetriese matrikse te demonstreer en die derde probleem vir yl, onsimmetriese matrikse. Om die model PDVs numeries op te los beskou ons twee ruimte-diskretisasie metodes, naamlik die eindige-verskilmetode en die Chebyshev kollokasie-metode. Die kontoerintegraalmetode waarna hierbo verwys is word gebruik om met betrekking tot die tydveranderlike te integreer. In die tweede gedeelte bestudeer ons ’n Hessenberg ontbindingsmetode om geskuifde lineêre stelsels met ’n vol matriks op te los, en ons rapporteer numeriese vergelykings daarvan met die ingeboude direkte oplosser vir lineêre stelsels in SciPy. Aangesien beide metodes direk is lewer hulle dieselfde resultate in die afwesigheid van afrondingsfoute. Ons het egter bevind dat die Hessenberg ontbindingsmetode meer effektief is in terme van rekenaartyd in vergelyking met die direkte oplosser. As toepassing los ons ’n een-dimensionele weergawe van die hittevergelyking op. In die derde gedeelte beskou ons effektiewe tegnieke om geskuifde stelsels met ’n yl matriks op te los, met Krylov subruimte-metodes. As gevolg van hul skuifinvariansie eienskap, laat die Krylov metodes mens toe om benaderde oplossings te verkry vir alle waardes van die parameter, deur slegs een benaderingsruimte voort te bring. Krylov metodes toegepas op lineêre stelsels is in die algemeen stadig konvergerend, en gevolglik is prekondisionering nodig om die konvergensie te verbeter. Die gebruik van prekondisionering gebasseer op skuif-en-omkeer word bespreek en numeriese vergelykings met direkte oplossers word aangebied. As toepassing los ons ’n twee-dimensionele weergawe van die hittevergelyking op, met ’n konveksie term en daarsonder. Ons numeriese eksperimente dui aan dat die Krylov metodes met prekondisionering effektief is, beide in terme van berekeningstyd en rekenaargeheue, in vergelyking met die direkte metodes.
Dolean, Victorita. "Algorithmes par decomposition de domaine et méthodes de discrétisation d'ordre elevé pour la résolution des systèmes d'équations aux dérivées partielles. Application aux problèmes issus de la mécanique des fluides et de l'électromagnétisme." Habilitation à diriger des recherches, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00413574.
Full textHoskins, Jeremy G. "The application of symmetry methods and conservation laws to ordinary differential equations and a linear wave equation." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43321.
Full textMagruder, Robin L. "SOLVING LINEAR EQUATIONS: A COMPARISON OF CONCRETE AND VIRTUAL MANIPULATIVES IN MIDDLE SCHOOL MATHEMATICS." UKnowledge, 2012. http://uknowledge.uky.edu/edc_etds/2.
Full textPipkins, Daniel Scott. "Non-linear analysis of (i) wave propagation using transform methods and (ii) plates and shells using integral equations." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/20052.
Full textGärtner, Christian [Verfasser], and Christian [Akademischer Betreuer] Bender. "Primal-dual methods for dynamic programming equations arising in non-linear option pricing / Christian Gärtner ; Betreuer: Christian Bender." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2017. http://d-nb.info/1154438392/34.
Full textArnold, Andrea. "Sequential Monte Carlo Parameter Estimation for Differential Equations." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1396617699.
Full textJung, Michael, and Todor D. Todorov. "On the Convergence Factor in Multilevel Methods for Solving 3D Elasticity Problems." Universitätsbibliothek Chemnitz, 2006. http://nbn-resolving.de/urn:nbn:de:swb:ch1-200601510.
Full textMurphy, Steven. "Methods for solving discontinuous-Galerkin finite element equations with application to neutron transport." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14650/1/murphy.pdf.
Full textIwamura, Chihiro, and chihiro_iwamura@ybb ne jp. "A fast solver for large systems of linear equations for finite element analysis on unstructured meshes." Swinburne University of Technology, 2004. http://adt.lib.swin.edu.au./public/adt-VSWT20051020.091538.
Full textSchneider, Olaf. "Krylov subspace methods and their generalizations for solving singular linear operator equations with applications to continuous time Markov chains." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:bsz:105-1148840.
Full textAnderson, Curtis James. "Estimating the Optimal Extrapolation Parameter for Extrapolated Iterative Methods When Solving Sequences of Linear Systems." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1383826559.
Full textCampos, Fabio Antonio Araujo de 1984. "Métodos matemáticos para o problema de acústica linear estocástica." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306070.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-26T19:33:01Z (GMT). No. of bitstreams: 1 Campos_FabioAntonioAraujode_D.pdf: 1374668 bytes, checksum: 6318414d486cf4810705b84e0d722e77 (MD5) Previous issue date: 2015
Resumo: Neste trabalho estudamos o sistema de equações diferenciais estocásticas obtido na linearização do modelo de propagação de ondas acústicas. Mais especificamente, analisamos métodos para solução do sistema de equações diferenciais usado na acústica linear, onde a matriz com dados aleatórios e um vetor de funções aleatórias que define as condições iniciais. Além do tradicional Método de Monte Carlo aplicamos o Método de Transformações de Variáveis Aleatórias e o Método de Galerkin Estocástico. Apresentamos resultados obtidos usando diferentes distribuições de probabilidades dos dados do problema. Também comparamos os métodos através da distribuição de probabilidade e momentos estatísticos da solução
Abstract: On the present work we study the system of stochastic differential equations obtained from the linearization of the propagation model of acoustic waves. More specifically we analyze methods for the solution of the system of differential equations used in the linear acoustics, where the matrix with random data and a vector of random functions defining initial conditions. In addition to the traditional Monte Carlo Method we apply the Variable Transformations of Random Method and the Galerkin Stochastic Method. We present results obtained using different probability distributions of problem data. We also compared the methods through the distribution of probabilities and statistical moments of the solution
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada