Academic literature on the topic 'Linear equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Linear equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Linear equations"
Rohn, Jiří. "Interval solutions of linear interval equations." Applications of Mathematics 35, no. 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.
Full textKurzweil, Jaroslav, and Alena Vencovská. "Linear differential equations with quasiperiodic coefficients." Czechoslovak Mathematical Journal 37, no. 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.
Full textPatel, Roshni V., and Jignesh S. Patel. "Optimization of Linear Equations using Genetic Algorithms." Indian Journal of Applied Research 2, no. 3 (October 1, 2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.
Full textFraňková, Dana. "Substitution method for generalized linear differential equations." Mathematica Bohemica 116, no. 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.
Full textSchwabik, Štefan. "Linear Stieltjes integral equations in Banach spaces." Mathematica Bohemica 124, no. 4 (1999): 433–57. http://dx.doi.org/10.21136/mb.1999.125994.
Full textCecchi, Mariella, Zuzana Došlá, Mauro Marini, and Ivo Vrkoč. "Asymptotic properties for half-linear difference equations." Mathematica Bohemica 131, no. 4 (2006): 347–63. http://dx.doi.org/10.21136/mb.2006.133970.
Full textDavies, Alan, and Rainer Kress. "Linear Integral Equations." Mathematical Gazette 74, no. 470 (December 1990): 405. http://dx.doi.org/10.2307/3618171.
Full textS., F., and Rainer Kress. "Linear Integral Equations." Mathematics of Computation 56, no. 193 (January 1991): 379. http://dx.doi.org/10.2307/2008551.
Full textSTEWART, G. W. "Solving Linear Equations." Science 236, no. 4800 (April 24, 1987): 461–62. http://dx.doi.org/10.1126/science.236.4800.461.
Full textPAN, V., and J. H. REIF. "Response:Solving Linear Equations." Science 236, no. 4800 (April 24, 1987): 462–63. http://dx.doi.org/10.1126/science.236.4800.462.
Full textDissertations / Theses on the topic "Linear equations"
Yesilyurt, Deniz. "Solving Linear Diophantine Equations And Linear Congruential Equations." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19247.
Full textChen, Huyuan. "Fully linear elliptic equations and semilinear fractionnal elliptic equations." Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Full textThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Goedhart, Eva Govinda. "Explicit bounds for linear difference equations /." Electronic thesis, 2005. http://etd.wfu.edu/theses/available/etd-05102005-222845/.
Full textJonklass, Raymond. "Learners' strategies for solving linear equations." Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52915.
Full textENGLISH ABSTRACT: Algebra deals amongst others with the relationship between variables. It differs from Arithmetic amongst others as there is not always a numerical solution to the problem. An algebraic expression can even be the solution to the problem in Algebra. The variables found in Algebra are often represented by letters such as X, y, etc. Equations are an integral part of Algebra. To solve an equation, the value of an unknown must be determined so that the left hand side of the equation is equal to the right hand side. There are various ways in which the solving of equations can be taught. The purpose of this study is to determine the existence of a cognitive gap as described by Herseovies & Linchevski (1994) in relation to solving linear equations. When solving linear equations, an arithmetical approach is not always effective. A new way of structural thinking is needed when solving linear equations in their different forms. In this study, learners' intuitive, informal ways of solving linear equations were examined prior to any formal instruction and before the introduction of algebraic symbols and notation. This information could help educators to identify the difficulties learners have when moving from solving arithmetical equations to algebraic equations. The learners' errors could help educators plan effective ways of teaching strategies when solving linear equations. The research strategy for this study was both quantitative and qualitative. Forty-two Grade 8 learners were chosen to individually do assignments involving different types of linear equations. Their responses were recorded, coded and summarised. Thereafter the learners' responses were interpreted, evaluated and analysed. Then a representative sample of fourteen learners was chosen randomly from the same class and semi-structured interviews were conducted with them From these interviews the learners' ways of thinking when solving linear equations, were probed. This study concludes that a cognitive gap does exist in the context of the investigation. Moving from arithmetical thinking to algebraic thinking requires a paradigm shift. To make adequate provision for this change in thinking, careful curriculum planning is required.
AFRIKAANSE OPSOMMING: Algebra behels onder andere die verwantskap tussen veranderlikes. Algebra verskil van Rekenkunde onder andere omdat daar in Algebra nie altyd 'n numeriese oplossing vir die probleem is nie. InAlgebra kan 'n algebraïese uitdrukking somtyds die oplossing van 'n probleem wees. Die veranderlikes in Algebra word dikwels deur letters soos x, y, ens. voorgestel. Vergelykings is 'n integrale deel van Algebra. Om vergelykings op te los, moet 'n onbekende se waarde bepaal word, om die linkerkant van die vergelyking gelyk te maak aan die regterkant. Daar is verskillende maniere om die oplossing van algebraïese vergelykings te onderrig. Die doel van hierdie studie is om die bestaan van 'n sogenaamde "kognitiewe gaping" soos beskryf deur Herseovies & Linchevski (1994), met die klem op lineêre vergelykings, te ondersoek. Wanneer die oplossing van 'n linêere vergelyking bepaal word, is 'n rekenkundige benadering nie altyd effektiefnie. 'n Heel nuwe, strukturele manier van denke word benodig wanneer verskillende tipes linêere vergelykings opgelos word. In hierdie studie word leerders se intuitiewe, informele metodes ondersoek wanneer hulle lineêre vergelykings oplos, voordat hulle enige formele metodes onderrig is en voordat hulle kennis gemaak het met algebraïese simbole en notasie. Hierdie inligting kan opvoeders help om leerders se kognitiewe probleme in verband met die verskil tussen rekenkundige en algebraïese metodes te identifiseer.Die foute wat leerders maak, kan opvoeders ook help om effektiewe onderrigmetodes te beplan, wanneer hulle lineêre vergelykings onderrig. As leerders eers die skuif van rekenkundige metodes na algebrarese metodes gemaak het, kan hulle besef dat hul primitiewe metodes nie altyd effektief is nie. Die navorsingstrategie wat in hierdie studie aangewend is, is kwalitatief en kwantitatief Twee-en-veertig Graad 8 leerders is gekies om verskillende tipes lineêre vergelykings individueel op te los. Hul antwoorde is daarna geïnterpreteer, geëvalueer en geanaliseer. Daarna is veertien leerders uit hierdie groep gekies en semigestruktureerde onderhoude is met hulle gevoer. Vanuit die onderhoude kon 'n dieper studie van die leerders se informele metodes van oplossing gemaak word. Die gevolgtrekking wat in hierdie studie gemaak word, is dat daar wel 'n kognitiewe gaping bestaan in die konteks van die studie. Leerders moet 'n paradigmaskuif maak wanneer hulle van rekenkundige metodes na algebraïese metodes beweeg. Hierdie klemverskuiwing vereis deeglike kurrikulumbeplanning.
Altassan, Alaa Abdullah. "Linear equations over free Lie algebras." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/linear-equations-over-free-liealgebras(6e29b286-1869-4207-b054-8baab98e70df).html.
Full textChen, Hua, Wei-Xi Li, and Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations." Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Full textHafez, Salah Taha. "Continued fractions and solutions of linear and non-linear lattice equations." Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236725.
Full textTorshage, Axel. "Linear Functional Equations and Convergence of Iterates." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56450.
Full textGrey, David John. "Parallel solution of power system linear equations." Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5429/.
Full textSerna, Rodrigo. "Solving Linear Systems of Equations in Hardware." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200610.
Full textBooks on the topic "Linear equations"
Kanwal, Ram P. Linear Integral Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6012-1.
Full textKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97146-4.
Full textKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0559-3.
Full textKanwal, Ram P. Linear Integral Equations. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-0765-8.
Full textKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9593-2.
Full textLinear integral equations. 2nd ed. Boston: Birkhäuser, 1997.
Find full textLovitt, William Vernon. Linear integral equations. Mineola, N.Y: Dover Publications, 2005.
Find full textKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999.
Find full textKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Find full textWoodford, Chris. Solving linear and non-linear equations. New York: Ellis Horwood, 1992.
Find full textBook chapters on the topic "Linear equations"
Afriat, S. N. "Linear Equations." In Linear Dependence, 67–88. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4273-5_7.
Full textMiyake, Toshitsune. "Linear Equations." In Linear Algebra, 33–59. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6994-1_2.
Full textMüller, P. C., and W. O. Schiehlen. "Matrix equations." In Linear vibrations, 296–306. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5047-4_13.
Full textStroud, K. A., and Dexter Booth. "Linear equations and simultaneous linear equations." In Foundation Mathematics, 184–202. London: Macmillan Education UK, 2009. http://dx.doi.org/10.1057/978-0-230-36672-5_5.
Full textKinzel, Wolfgang, and Georg Reents. "Linear Equations." In Physics by Computer, 47–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_3.
Full textHolden, K., and A. W. Pearson. "Linear Equations." In Introductory Mathematics for Economics and Business, 1–42. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_1.
Full textWoodford, C., and C. Phillips. "Linear Equations." In Numerical Methods with Worked Examples: Matlab Edition, 17–45. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_2.
Full textRedfern, Darren, and Colin Campbell. "Linear Equations." In The Matlab® 5 Handbook, 21–41. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2170-8_3.
Full textRao, A. Ramachandra, and P. Bhimasankaram. "Linear equations." In Texts and Readings in Mathematics, 185–217. Gurgaon: Hindustan Book Agency, 2000. http://dx.doi.org/10.1007/978-93-86279-01-9_6.
Full textVerhulst, Ferdinand. "Linear Equations." In Universitext, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61453-8_6.
Full textConference papers on the topic "Linear equations"
Bronstein, Manuel. "Linear ordinary differential equations." In Papers from the international symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143242.143264.
Full textZadrzyńska, Ewa, and Wojciech M. Zajączkowski. "Some linear parabolic system in Besov spaces." In Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-36.
Full textFREDET, A. "ALGORITHMS AROUND LINEAR DIFFERENTIAL EQUATIONS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770752_0018.
Full textBerkenbosch, Maint. "Moduli spaces for linear differential equations." In The Conference on Differential Equations and the Stokes Phenomenon. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776549_0002.
Full textMIGUEL, JOSÉ J., ANDREI SHINDIAPIN, and ARCADY PONOSOV. "STABILITY AND LINEAR CHAIN TRICK." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0194.
Full textGuihong Wang, Haiyan Liu, and Xiangfeng Liu. "The application of excel in solving linear equations and nonlinear equation." In 2011 International Conference on Computer Science and Service System (CSSS). IEEE, 2011. http://dx.doi.org/10.1109/csss.2011.5974400.
Full textČermák, Jan A. N. "The Schröder equation and asymptotic properties of linear delay differential equations." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.6.
Full textChochiev, T. Z. "On non-linear equation, generalizing the equations of the Riccati class." In General question of world science. "Л-Журнал", 2018. http://dx.doi.org/10.18411/gq-31-03-2018-01.
Full textStevens, B. L. "Derivation of aircraft, linear state equations from implicit nonlinear equations." In 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203642.
Full textLASSAS, MATTI. "INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0199.
Full textReports on the topic "Linear equations"
Jain, Himanshu, Edmund M. Clarke, and Orna Grumberg. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada476801.
Full textCohen, Herbert E. The Instability of Linear Heterogeneous Lanchester Equations. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada243519.
Full textNirenberg, Louis. Techniques in Linear and Nonlinear Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1987. http://dx.doi.org/10.21236/ada187109.
Full textRundell, William, and Michael S. Pilant. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada256012.
Full textPilant, Michael S., and William Rundell. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, December 1989. http://dx.doi.org/10.21236/ada218462.
Full textSubasi, Yigit. Quantum algorithms for linear systems of equations [Slides]. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1774402.
Full textMathia, Karl. Solutions of linear equations and a class of nonlinear equations using recurrent neural networks. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.1354.
Full textParzen, George. Linear Orbits Parameters for the Exact Equations of Motion. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/1119381.
Full textChen, Goong, and Han-Kun Wang. Pointwise Stabilization for Coupled Quasilinear and Linear Wave Equations. Fort Belvoir, VA: Defense Technical Information Center, January 1988. http://dx.doi.org/10.21236/ada190031.
Full textHerzog, K. J., M. D. Morris, and T. J. Mitchell. Bayesian approximation of solutions to linear ordinary differential equations. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6242347.
Full text