Academic literature on the topic 'Limonin'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Limonin.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Limonin"
Yang, Jingguo, Yuhong Hu, and Kuan Chang. "Limonin Derivatives via Hydrogenation: Structural Identification and Anti-Inflammatory Activity Evaluation." Applied Sciences 12, no. 21 (November 4, 2022): 11169. http://dx.doi.org/10.3390/app122111169.
Full textSETHI, A. P. S., M. SINGH, M. WADHWA, M. BAWA, R. WAGH, G. KAUR, K. S. PANNU, and R. S. SETHI. "Impact of kinnow peel and nano-limonin on the performance and meat quality of commercial broilers." Indian Journal of Animal Sciences 90, no. 6 (September 21, 2020): 917–22. http://dx.doi.org/10.56093/ijans.v90i6.105005.
Full textFan, Zhang, Luo, Wang, Tang, Chen, and Yu. "Limonin: A Review of Its Pharmacology, Toxicity, and Pharmacokinetics." Molecules 24, no. 20 (October 12, 2019): 3679. http://dx.doi.org/10.3390/molecules24203679.
Full textKang, Jung-Il, Youn Kyoung Choi, Sang-Chul Han, Hyeon Gyu Kim, Seok Won Hong, Jungeun Kim, Jae Hoon Kim, Jin Won Hyun, Eun-Sook Yoo, and Hee-Kyoung Kang. "Limonin, a Component of Immature Citrus Fruits, Activates Anagen Signaling in Dermal Papilla Cells." Nutrients 14, no. 24 (December 16, 2022): 5358. http://dx.doi.org/10.3390/nu14245358.
Full textJin, Jie, Xinhuang Lv, Ben Wang, Chenghao Ren, Jingtao Jiang, Hongyu Chen, Ximiao Chen, et al. "Limonin Inhibits IL-1β-Induced Inflammation and Catabolism in Chondrocytes and Ameliorates Osteoarthritis by Activating Nrf2." Oxidative Medicine and Cellular Longevity 2021 (November 9, 2021): 1–15. http://dx.doi.org/10.1155/2021/7292512.
Full textTakahashi, K., M. Obayashi, and M. Nakatani. "Structure of limonin." Acta Crystallographica Section C Crystal Structure Communications 46, no. 3 (March 15, 1990): 425–27. http://dx.doi.org/10.1107/s0108270189007225.
Full textYu*, Jun, Romeo Toledo, Rakesh Singh, Leonard Pike, and Bhimanagouda Patil. "Supercritical Fluid Extraction of Limonoids from Grapefruit Seeds." HortScience 39, no. 4 (July 2004): 806D—806. http://dx.doi.org/10.21273/hortsci.39.4.806d.
Full textLiu, C., J. Liu, Y. Rong, N. Liang, and L. Rong. "Aqueous extraction of limonin from Citrus reticulate Blanco." Czech Journal of Food Sciences 30, No. 4 (June 13, 2012): 364–68. http://dx.doi.org/10.17221/108/2011-cjfs.
Full textFernández-Mateos, A., P. Herrero Teijón, G. Pascual Coca, R. Rubio González, and M. S. J. Simmonds. "Synthesis of limonoid CDE fragments related to limonin and nimbinim." Tetrahedron 66, no. 36 (September 2010): 7257–61. http://dx.doi.org/10.1016/j.tet.2010.07.020.
Full textZhang, Jun, Zhiqiang Yang, Yan Liang, Linyan Zhang, Wei Ling, Can Guo, Guangling Liang, Guotian Luo, Qin Ye, and Balian Zhong. "Effects of Postharvest Time, Heat Treatment, pH and Filtration on the Limonin Content in Newhall Navel Orange (Citrus sinensis Osbeck cv. Newhall) Juice." Molecules 23, no. 10 (October 19, 2018): 2691. http://dx.doi.org/10.3390/molecules23102691.
Full textDissertations / Theses on the topic "Limonin"
Rizza, Giorgio. "Citrus Limonoids: Functional Chemicals in Agriculture and Foods." Doctoral thesis, Università di Catania, 2016. http://hdl.handle.net/10761/4026.
Full textKim, Wooki. "Molecular mechanisms of immunosuppressive effects of dietary n-3 pufa, curcumin and limonin on murine cd4+ t cells." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-3212.
Full textWillrodt, Christian. "Synthetic biology for synthetic chemistry - Microbial production and selective functionalization of limonene." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-201140.
Full textGraebin, Cedric Stephan. "Síntese e avaliação da atividade farmacológica in vitro de aminas derivadas do limoneno." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/76986.
Full textLimonene is a natural product from the terpene family, found in great proportions in citrical plants, being reported in the literature as having interesting pharmacological activities, such as antibacterial, antifungical, antileishmanial, nociceptive and citotoxic. This thesis reports the funcionalization of limonene via Solid-Phase Organic Synthesis and classical solution-phase synthesis. Twenty products were obtained from the solution-phase protocols, especially from reactions such as hydroformylation and hydroaminomethylation. The compounds were tested for several pharmacological activities, e.g.: antibacterial, antifungical, anti-tripanossomal and anti-leishmanial. Seventeen of those compounds were tested against in vitro promastigote strains of Leishmania (V.) braziliensis and seven compounds were found to have greater anti-leishmanial activity than pentamidine, the standard drug used in this test, presenting IC50 values ranging from 11,5 to 35,6 μM.
Fayoux, Stéphane C. "Interactions between plasticised PVC films and citrus juice components." Thesis, View thesis, 2004. http://handle.uws.edu.au:8081/1959.7/35863.
Full textBonon, Anderson de Jesus 1986. "Obtenção de monômeros naturais através da epoxidação de limoneno." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/322678.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-20T08:38:40Z (GMT). No. of bitstreams: 1 Bonon_AndersonDeJesus_M.pdf: 18231652 bytes, checksum: 5f90aa98f05330f8a92f9b1163036e84 (MD5) Previous issue date: 2012
Resumo: Uma das olefinas de fontes renováveis de maior importância no Brasil é o Limoneno, terpeno que compõe cerca de 90% do óleo da casca da laranja. O Brasil é o maior produtor mundial de laranja, com uma produção, entre 2010-2011, de cerca de 15,33 milhões de toneladas do fruto, dos quais 89% da produção são destinadas à produção de suco, sendo a casca e o óleo fixo, resíduos do processo. A parte volátil do óleo é constituída majoritariamente de (R)-limoneno (90 %). Terpenos como o limoneno, podem ser submetidos a reações de oxidação catalítica nos quais os epóxidos são os principais produtos, e podem ser utilizados como precursores para uma ampla variedade de produtos como fármacos, fragrâncias e na fabricação de biopolímeros e resinas. Mediante ao exposto, este trabalho tem por objetivo o estudo da epoxidação de limoneno para a obtenção de epóxidos que possam ser utilizados como monômeros para a síntese de biomateriais para a construção de dispositivos médicos, sendo que avaliou-se sistemas epoxidativos contenho metiltrioxorênio, montmorilonita e alumina. O sistema mais promissor, utilizando H2O2 como oxidante, ?-Al2O3 como catalisador em acetato de etila, foi avaliado em condições reacionais brandas, a 80 °C em pressão atmosférica, caracterizando um sistema verde. As variações na concentração inicial de reagentes a fim de entender o sistema foram estudadas, o que direcionou o estudo para sua otimização via planejamento de experimentos, sendo atingida uma conversão de 100 % em 10 h de reação. A obtenção de limoneno por evaporação de passo curto do óleo de laranja também foi estudada e otimizada, chegando-se à pureza de 99,6 %. O ensaio nas condições ótimas de reação com o limoneno obtido do óleo de laranja mostrou-se idêntico ao limoneno comercial. Os resultados obtidos demonstram a eficácia tanto do processo de obtenção do limoneno, como do sistema reacional com uma produção limpa, uma característica imprescindível para biofabricação
Abstract: One of the most important olefins from a renewable source of in Brazil is limonene. The orange peel oil is about 90% limonene. Brazil is the largest producer of orange in the world wild, with a 2010-2011 production about 15.33 million tons of fruit. About 89% of the fruits are intended for the production of juice, which peel and fixed oil are residue from the process. The volatile oil portion is composed predominantly of (R)-limonene. Terpenes such as limonene, may be subjected to catalytic oxidation reactions where the epoxides are the main products, and can be used as precursors for a wide variety of products such as pharmaceuticals, fragrances and the manufacture of biopolymers and resins. By the above, this work is dedicated to study the epoxidation of limonene in order to obtaining epoxides that may be used as monomers for the synthesis of biomaterials with chemical quality to medical devices manufacturing. Thus, some systems like methyltrioxorhenium, montmorillonite and alumina were tested. The most promissory system, using H2O2 as oxidant, ?-Al2O3 as catalyst and ethyl acetate as solvent, was evaluated in mild reaction conditions, at 80 °C at atmospheric pressure, featuring a green system. It was carried out the initial concentration of the substrate, oxidant and catalyst variation studies in order to understand the system, which directed for the optimization by experimental design. It was achieved a 100% of conversion in 10 hours of reaction. It was also studied the limonene purification by short path evaporation of the orange oil. It was achieved a limonene with 99.6 % of purity. The optimum reaction conditions were performed with limonene obtained from orange oil, the comparative result showed and an identical behavior between the commercial and the distillated limonene. These results demonstrate the effectiveness of both the process, the limonene obtainment and the reaction system with a clean and no toxic production, an essential feature for biofabrication
Mestrado
Desenvolvimento de Processos Químicos
Mestre em Engenharia Química
Wanderley, Kristine Bruce. "Recuperação de magnésio do licor de lixiviação de minério limonítico por cristalização." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/3/3137/tde-23052018-084841/.
Full textIn the process of obtaining nickel from sources of limonite ore, the acid leaching of the ore results in the dissolution of metallic ions in solution. With the use of appropriate technology, it is possible to recover these metal ions instead of discarding them. The present study aims to recover magnesium from a solution containing magnesium and sulfate ions using high temperature crystallization. The application of high temperature crystallization to recover magnesium in the form of hydrated magnesium sulfate may be advantageous since its thermal decomposition results in MgO and SO2, products which can be reused in the limonite mining process. This reduces the volume of waste formed and the cost of reagents in the process. A crystallizer coupled to a filtration system was designed and the influence of the temperature, residence time and pH of the solution on the amount of crystallized magnesium from solution was investigated. The residual solution was analyzed by ion chromatography to quantify the magnesium in the solution. The crystals formed were analyzed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM-EDS) and sieve shakers in order to evaluate the chemical composition, morphology and grain size of the crystals. The solubility of magnesium sulphate was determined experimentally to increase the understanding of the solubility of the salt and obtain values of Kps. In 5 hours of residence time the system was stabilized, indicating that there will be no more crystalline growth at residence times greater than 5 hours. At pH 5.7 at 230 ° C and in 5 hours of residence time 81% of Mg crystallized. The crystals presented spherical morphology except for crystals obtained at 230 °C, at pH 2, which presented a rectangular shape. XRD analysis showed the presence of a product consisting mainly of magnesium sulphate monohydrate.
Bicas, Juliano Lemos 1982. "Estudos de obtenção de bioaromas pela biotransformação de compostos terpenicos." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256672.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-12T23:31:35Z (GMT). No. of bitstreams: 1 Bicas_JulianoLemos_D.pdf: 1661445 bytes, checksum: 73851fe13d8b9c41e2fbd0029e3dbb53 (MD5) Previous issue date: 2009
Resumo: O objetivo do presente trabalho foi efetuar estudos de biotransformação de substratos terpênicos para a obtenção de compostos de aromas naturais, ou bioaromas, enfatizando os processos bioquímicos envolvidos nos procedimentos empregados e a otimização da produção para possíveis aplicações industriais. Assim, o estudo se iniciou com o isolamento de quase 300 linhagens, das quais 121 mostraram-se resistentes a concentrações de 2% de R-(+)-limoneno e 70 foram capazes de utilizar este substrato como única fonte de carbono. Dentre todas as linhagens potencialmente degradantes do R-(+)-limoneno, nenhuma mostrou acúmulo significativo de metabólito de interesse em concentrações que justificassem estudos de otimização. A seguir, o método de Superfície de Resposta foi empregado para otimizar os principais parâmetros do processo de produção de R-(+)-a-terpineol a partir do R-(+)-limoneno pelo fungo Fusarium oxysporum 152b. Dentre os 10 parâmetros analisados (concentração de glicose, peptona, extrato de malte e de levedura no meio de biotransformação; concentração de R-(+)- limoneno; concentração de biosurfactantes; temperatura; agitação; pH; tamanho do inóculo), três (concentração de substrato, temperatura e agitação) influenciaram significativamente (p < 0,10) a produção de R-(+)-a-terpineol, dentro das faixas estudadas. A otimização dessas variáveis por um Delineamento Composto Central Rotacional revelou que as condições ótimas para a biotransformação foram de 0,5% de R-(+)-limoneno, 26 °C e 240 rpm, resultando em uma concentração de cerca de 2,4 g.L-1 de R-(+)-a-terpineol ao final de 72 h de processo. Aproveitando-se do fato de essa linhagem fúngica ser reconhecida pela produção de lípase alcalina, um sistema integrado de produção foi posteriormente proposto a fim de explorar todo potencial biotecnológico do microrganismo. Assim, a biomassa resultante da produção de lipase, antes descartada, foi avaliada quanto à preservação da atividade de biotransformar o R-(+)- limoneno. Os resultados demonstraram ser possível a coprodução de lipase/R-(+)-a-terpineol, apesar de que o rendimento máximo do bioaroma foi cerca de 50% inferior quando comparado ao do procedimento convencional. Os estudos com duas linhagens bacterianas (Pseudomonas rhodesiae CIP 107491 e P. fluorescens NCIMB 11671) para a bioconversão de alguns monoterpenos indicaram a presença de uma via metabólica envolvendo ß-pineno, a-pineno, a-pineno oxido, isonovalal e ácido dimetil pentanóico para ambas espécies, além de outras duas vias de degradação do limoneno para P. fluorescens. Nesse caso, a bactéria usava o limoneno como única fonte de carbono e energia, passando por limoneno-1,2-diol, e também hidroxilava este substrato na posição 8 formando R-(+)-a-terpineol como forma de diminuir a toxicidade do substrato (metabolismo de xenobióticos). Essa última via ocorria em ausência de cofatores graças à ação de uma hidratase enantioespecífica capaz de converter anaerobicamente R-(+)-limoneno a R-(+)-a-terpineol e S-(¿)-limoneno a S-(¿)-a-terpineol em meios bifásicos, empregando n-hexadecano como fase orgânica. Foi posteriormente demonstrado que os rendimentos e produtividade poderiam ser significativamente elevados e que a produção poderia ser mais que duplicada (de ~10 para ~25 g.L-1) com o uso de fases orgânicas não convencionais, como óleos vegetais. Finalmente, estudos preliminares de avaliação do potencial bioativo do principal produto relatado nessa tese demonstraram que o a-terpineol revelou uma elevada capacidade de absorção de radical de oxigênio (ORAC) e atividade antiploriferativa contra cinco linhagens de células cancerosas, apesar da baixa atividade de captura de radical DPPH. Esses resultados abrem precedentes para que pesquisas in vivo sejam consideradas a fim de determinar o potencial funcional desse bioaroma, algo ainda praticamente inexplorado
Abstract: The objective of the present work was to study the biotransformation of terpene substrates to obtain natural flavor compounds (bioflavors), focusing the biochemical processes involved in the procedures investigated and optimization of production for possible industrial applications. Therefore, the study started with the isolation of more than 300 wild strains followed by the selection of 121 capable of resisting to 2% (v.v-1) of R-(+)-limonene and 70 that could use this terpene as sole carbon and energy source. None of the strains tested showed accumulation of intermediate metabolites in levels that justified further optimization studies. Subsequently, the Response Surface Methodology was employed to optimize the main parameters of the process of biotransformation of R-(+)-limonene to R-(+)-a-terpineol by the fungal strain Fusarium oxysporum 152b. Only three (R-(+)-limonene concentration, temperature and agitation) of the ten parameters tested (concentration of glucose, peptone, malt extract and yeast extract; substrate concentration; biosurfactant concentration; temperature; agitation; pH; inoculum size) influenced significantly (p < 0.1) the R-(+)-a-terpineol production. The optimization of these variables applying a Central Composite Design revealed that the optimal biotrasformation conditions were 0.5% of R-(+)-limonene, 26 °C and 240 rpm, resulting in a R- (+)-a-terpineol concentration close to 2,4 g.L-1 after a 72 h. Since this fungus has been recognized for its high alkaline lipase production, an integrated process was proposed to explore the full biotechnological potential of this microorganism. Therefore, the biomass resulting from the lipase production, which was previously discharded, was tested to evaluate the preservation of R-(+)-limonene-biotransformation activity. The results have shown that the co-production of lipase/R-(+)-a-terpineol was feasible, although the maximal yield of the bioflavor was approximately 50 % lower when compared to the conventional process. The studies with two pseudomonad strains (Pseudomonas rhodesiae CIP 107491 e P. fluorescens NCIMB 11671) for the conversion of some monoterpenes indicated the presence of one metabolic route involving ß-pinene a-pinene a-pinene oxide, isonovalal and dimethyl pentanoic acid for both species, besides two other pathways for the degradation of limonene by P. fluorescens. In this case, the bacterium used the substrate as sole carbon and energy source, with limonene-1,2-diol as intermediate, and also hydroxylated limonene in the position 8 to R-(+)-a- terpineol as a detoxifying strategy (xenobiotic metabolism). The last pathway occurred in the absence of cofactors due to the action of an enantiospecific hydratase capable of converting anaerobically R-(+)-limonene to R-(+)-a-terpineol and S-(¿)-limonene to S-(¿)-a-terpineol in biphasic mediums, employing n-hexadecane as organic phase. It was later demonstrated that the yields and productivities could be significantly enhanced and that the final concentration of the product could be more than duplicated (from ~10 to ~25 g.L-1) if unconventional organic phases (vegetable oils) were used. Finally, preliminary studies evaluating the bioactive potential of the main product reported in this thesis have revealed that the a-terpineol demonstrated an oxygen radical absorbance capacity (ORAC) and an antiproliferative activity against five cancer lines, although the DPPH radical scavenging activity was low. These results encourages in vivo research to determine the functional potential of this bioflavor, something practically unexplored
Doutorado
Doutor em Ciência de Alimentos
Zhang, Yujie. "Copolymerization of Limonene." Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31221.
Full textCharbonneau, Luc. "Époxydation du limonène." Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33260.
Full textLimonene has been highlighted as a key molecule for the development of bio-based polymers as an alternative to conventional monomers from petroleum sources, but the direct polymerization of this leads to low quality plastics. However, its epoxidation products such as 1,2-limonene oxide and limonene dioxide are essential to produce green polycarbonates and polyurethanes without the use of isocyanate, therefore the production of these two molecules becomes a major issue. First, the epoxidation of limonene was carried out using low coordination titanium catalyst supported on a SBA-16 mesoporous silica in the presence of TBHP in the decane as oxidizing agent. The conversion to limonene was 80% with a selectivity of 79% 1,2-oxide of limonene and 21% of 8,9-limonene oxide after 24 hours of reaction time. The reaction conditions were optimized, and the reaction should be carried out in the presence of 300 mg of the catalyst at 75 ° C in acetonitrile as solvent with a molar ratio TBHP / limonene of 11 / 6.2. However, the use of a titanium catalyst supported on a mesoporous silica has proved ineffective for the double epoxidation of limonene to limonene dioxide. Different alternatives have been considered in order to produce this molecule. A relatively green approach is to perform the double epoxydation under semi-continuous conditions using DMDO generated in situ by the reaction of acetone with an aqueous solution of Oxone® at room temperature. Two methods have been studied and compared. First, the reaction was carried out in a conventional biphasic water-organic solvent system phase at room temperature. Ethyl acetate was used as the organic phase. The conversion obtained under these conditions was 95% with a yield of 33% for limonene dioxide. When the same reaction was carried out in excess of acetone, the obtained conversion of limonene was 100% leading to 97% of limonene dioxide in only 1.5 hours. The conditions of the reaction have been optimized. The reaction must be carried out with a flow rate of Oxone® aqueous solution of 4 mL min-1 and a stoichiometric excess of 33% with a reaction time of 45 min at room temperature. On the other hand, the multiphasic nature of this reaction causes limitations in the mass transfer of DMDO from the aqueous phase to the acetone phase. Ultrasound has been used to accelerate the mass transfer. process of DMDO and thereby reduce the reaction time. The double epoxidation of limonene in the presence of ultrasound with a nominal power of 50W achieved a yield of 100% of limonene dioxide with a reaction time of only 4.5 min at room temperature. From these results, other terpenes have also been epoxidized to generalize the technique. Both isomers of pinene were converted to 100% in their respective epoxide in just 4 min. Farnesol, a tri-alkene, has been converted to 100% farnesol tri-epoxide in 8 min. Carveol, a derivative of limonene was converted to 100% after 5 min of reaction time. The diepoxide yield was higher than 95%. The by-products of the reaction consisted of both carveol monoepoxide and the presence of carvone was also detected. Carvone, another derivative of limonene, was also converted to 100% after 5 min of reaction time. Only 7,8-epoxide carvone, a monoepoxide, was produced.
Books on the topic "Limonin"
Limoniana, ili Neizvestnyĭ Limonov. Moskva: Zebra E, 2012.
Find full textKekeliże, Besik. Limoni: Krebuli. Tʻbilisi: Gamomcʻemloba "Pvoriti", 2001.
Find full textḤol ṿe-limonim. Tel Aviv: ʻAm ʻoved, 2006.
Find full textMarín, Mario Arango. Limonium. Bogotá, Colombia: Ediciones Hortitecnia Ltda, 2001.
Find full textBalabanian, Olivier. Limousin. Paris: Bonneton, 2000.
Find full textCarrère, Emmanuel. Limonov. Paris: P.O.L., 2011.
Find full textSof ʻonat ha-limonim. Yerushalayim: Keter, 2007.
Find full textLimousin cattle in the United Kingdom. East Molesey: Keystock Associates, 1986.
Find full textZagrebelʹnyĭ, M. P. Ėduard Limonov. Kharʹkov: Folio, 2010.
Find full text(Firm), Pneu Michelin. Berry, Limousin. Paris: Pneu Michelin, 1987.
Find full textBook chapters on the topic "Limonin"
Schomburg, Dietmar, and Margit Salzmann. "Limonin-D-ring-lactonase." In Enzyme Handbook 3, 155–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76463-9_32.
Full textHasegawa, Shin. "Limonin Bitterness in Citrus Juices." In Flavor Chemistry, 89–106. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4693-1_9.
Full textHasegaw, S., C. Suhayda, M. Omura, and M. Berhow. "Creation of Transgenic Citrus Free from Limonin Bitterness." In ACS Symposium Series, 79–87. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0637.ch007.
Full textLam, Luke K. T., Shin Hasegawa, Carl Bergstrom, Sylvia H. Lam, and Patrick Kenney. "Limonin and Nomilin Inhibitory Effects on Chemical-Induced Tumorigenesis." In ACS Symposium Series, 185–200. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0758.ch014.
Full textAzimova, Shakhnoza S., and Anna I. Glushenkova. "Citrus limonum Burm. (C. limonia Osbeck.)." In Lipids, Lipophilic Components and Essential Oils from Plant Sources, 805. London: Springer London, 2012. http://dx.doi.org/10.1007/978-0-85729-323-7_2633.
Full textMansell, R. L., and C. A. McIntosh. "Citrus spp.: In Vitro Culture and the Production of Naringin and Limonin." In Biotechnology in Agriculture and Forestry, 193–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84071-5_12.
Full textBährle-Rapp, Marina. "Limonen." In Springer Lexikon Kosmetik und Körperpflege, 322. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_6015.
Full textLim, T. K. "Limonia acidissima." In Edible Medicinal And Non-Medicinal Plants, 884–89. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4053-2_101.
Full textWidmer, W. W., and C. A. Haun. "Analysis of Limonin and Flavonoids in Citrus Juices and Byproduct Extracts by Direct Injection and In-Line Sample Clean-Up." In ACS Symposium Series, 60–72. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0758.ch005.
Full textMcIntosh, C. A. "Quantification of Limonin and Limonoate A-Ring Monolactone During Growth and Development of Citrus Fruit and Vegetative Tissues by Radioimmunoassay." In ACS Symposium Series, 73–95. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0758.ch006.
Full textConference papers on the topic "Limonin"
Agisimanto, Dita, Farida Yulianti, and Hidayatul Arisah. "Cells density affects cell production of Citrus limonia in flask and air-lift bioreactor cultures and limonin farming." In THE SECOND INTERNATIONAL CONFERENCE ON GENETIC RESOURCES AND BIOTECHNOLOGY: Harnessing Technology for Conservation and Sustainable Use of Genetic Resources for Food and Agriculture. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0075651.
Full textGhanem, Fred. "Juice Debittering: Basic Science, Optimization, and Recent Advances." In ASME 2012 Citrus Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/cec2012-5701.
Full textOSSEIRAN, Noureddin, Therese Huet, Manuel Goubet, Pascal Dréan, and Annunziata Savoia. "MICROWAVE SPECTROSCOPY STUDY SUPPORTED BY QUANTUM CHEMISTRY CALCULATIONS OF LIMONA KETONE, A KEY OXIDATION PRODUCT OF LIMONENE." In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.re07.
Full textOdio, Carlos. "d-Limonene Recovery." In ASME 1996 Citrus Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/cec1996-4204.
Full textMcBride, Joseph J. "Limonene: A Versatile Chemical." In ASME 1990 Citrus Engineering Conference. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/cec1990-3605.
Full textMathews, Tanya Ann, Jairo Cortes, and Berna Hascakir. "Evaluation of Environmentally Friendly Green Solvents for the Recovery of Heavy Oils." In SPE Improved Oil Recovery Conference. SPE, 2022. http://dx.doi.org/10.2118/209433-ms.
Full textJulie Anne R, BACAYO, EVIO Esteven G, PELAYO David Manfred S, Deang Michael Sean P, and Tumolva Terence P. "Dissolution Kinetics of Low-Density Polyethylene in D-Limonene/Xylene Solutions for the Chemical Recycling of Waste Plastic Laminates." In 7th GoGreen Summit 2021. Technoarete, 2021. http://dx.doi.org/10.36647/978-93-92106-02-6.11.
Full textAloisa, K., and J. Kenny. "399. An Analytical Method for Limonene." In AIHce 1996 - Health Care Industries Papers. AIHA, 1999. http://dx.doi.org/10.3320/1.2765078.
Full textMathews, Tanya Ann, Paul Azzu, Jairo Cortes, and Berna Hascakir. "Effective Extraction of a Heavy Oil Resource by an Environmentally Friendly Green Solvent: Limonene." In SPE Annual Technical Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210138-ms.
Full textWidmer, Wilbur, Weiyang Zhou, and Karel Grohmann. "Converting Citrus Waste to Ethanol and Other Co-Products." In ASME 2009 Citrus Engineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/cec2009-5502.
Full textReports on the topic "Limonin"
Naim, Michael, Andrew Spielman, Shlomo Nir, and Ann Noble. Bitter Taste Transduction: Cellular Pathways, Inhibition and Implications for Human Acceptance of Agricultural Food Products. United States Department of Agriculture, February 2000. http://dx.doi.org/10.32747/2000.7695839.bard.
Full textRoth, R., D. Ebert, and T. J. Shepodd. The evaluation of potential limonene scavengers. Office of Scientific and Technical Information (OSTI), January 1995. http://dx.doi.org/10.2172/10114752.
Full textSomer, T. A. Aging of D-limonene-cleaned assemblies. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10170070.
Full textSomer, T. A. Aging of d-Limonene-cleaned assemblies. Final report. Office of Scientific and Technical Information (OSTI), August 1995. http://dx.doi.org/10.2172/95178.
Full textTaiz, Lincoln. Regulation of Vacuolar pH in Citrus limon. Office of Scientific and Technical Information (OSTI), June 2005. http://dx.doi.org/10.2172/841076.
Full textLee, Jungjae, Hailin Su, Rohan L. Fernando, Dorian J. Garrick, and Jeremy Taylor. Characterization of the F94L Double Muscling Mutation in Pure- and Crossbred Limousin Animals. Ames (Iowa): Iowa State University, January 2015. http://dx.doi.org/10.31274/ans_air-180814-1278.
Full textDroby, Samir, Tim R. Gottwald, Richard Stange, Efraim Lewinsohn, and T. Gregory McCollum. Characterization of the biochemical basis of host specificity of Penicillium digitatum and Penicillium italicum on citrus fruit. United States Department of Agriculture, May 2008. http://dx.doi.org/10.32747/2008.7587726.bard.
Full textHistoric trail map of the Limon 1 degree x 2 degrees Quadrangle, Colorado and Kansas. US Geological Survey, 1994. http://dx.doi.org/10.3133/i2468.
Full text