Academic literature on the topic 'Limbic circuit'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Limbic circuit.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Limbic circuit"
Mehlman, Max L., Shawn S. Winter, Stephane Valerio, and Jeffrey S. Taube. "Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. I. Recording studies." Journal of Neurophysiology 121, no. 2 (February 1, 2019): 350–70. http://dx.doi.org/10.1152/jn.00143.2018.
Full textJoel, Daphna. "The limbic basal-ganglia-thalamocortical circuit and goal-directed behavior." Behavioral and Brain Sciences 22, no. 3 (June 1999): 525–26. http://dx.doi.org/10.1017/s0140525x99292047.
Full textKaushal, Parth Sarthi, Brijesh Saran, Abhay Bazaz, and Harshit Tiwari. "A brief review of limbic system anatomy, function, and its clinical implication." Santosh University Journal of Health Sciences 10, no. 1 (January 2024): 26–32. http://dx.doi.org/10.4103/sujhs.sujhs_19_24.
Full textMehlman, Max L., Shawn S. Winter, and Jeffrey S. Taube. "Functional and anatomical relationships between the medial precentral cortex, dorsal striatum, and head direction cell circuitry. II. Neuroanatomical studies." Journal of Neurophysiology 121, no. 2 (February 1, 2019): 371–95. http://dx.doi.org/10.1152/jn.00144.2018.
Full textFrenois, F. "A Specific Limbic Circuit Underlies Opiate Withdrawal Memories." Journal of Neuroscience 25, no. 6 (February 9, 2005): 1366–74. http://dx.doi.org/10.1523/jneurosci.3090-04.2005.
Full textKalin, Ned H. "Prefrontal Cortical and Limbic Circuit Alterations in Psychopathology." American Journal of Psychiatry 176, no. 12 (December 1, 2019): 971–73. http://dx.doi.org/10.1176/appi.ajp.2019.19101036.
Full textGabriel, Michael, and David M. Smith. "What does the limbic memory circuit actually do?" Behavioral and Brain Sciences 22, no. 3 (June 1999): 451. http://dx.doi.org/10.1017/s0140525x99282039.
Full textPleil, K. E., J. F. DiBerto, A. M. Kendra, A. Shirke, S. Chien, and T. L. Kash. "A thalamo-limbic neuropeptide circuit driving binge drinking behavior." Alcohol 60 (May 2017): 223. http://dx.doi.org/10.1016/j.alcohol.2017.02.269.
Full textPanzer, Annie, and Margaretha Viljoen. "The mother as hidden regulator." Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 22, no. 4 (September 26, 2003): 103–5. http://dx.doi.org/10.4102/satnt.v22i4.218.
Full textKeser, Zafer, Arash Kamali, Kyan Younes, Paul E. Schulz, Flavia M. Nelson, and Khader M. Hasan. "Yakovlev's Basolateral Limbic Circuit in Multiple Sclerosis Related Cognitive Impairment." Journal of Neuroimaging 28, no. 6 (June 12, 2018): 596–600. http://dx.doi.org/10.1111/jon.12531.
Full textDissertations / Theses on the topic "Limbic circuit"
Comte, Magali. "Neuro-imagerie fonctionnelle du circuit cortico-limbique lors du traitement émotionnel chez le patient schizophrène et le volontaire sain." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM5071/document.
Full textWithin the cortico-limbic circuit, complementary regions are believed to be involved in either the appraisal or the regulation of affective state. However, the respective contribution of these bottom-up and top-down mechanisms during emotion processing remains to be clarified. First, we validated a new fMRI paradigm designed to dissociate the components of the cortico-limbic circuit, that is, the dorsal cognitive circuit intertwined with the ventral affective circuit. We found that the amygdala and its connections to the dorsal circuit was engaged by bottom-up emotional processing. The dorsal anterior cingulate cortex (ACC) and its connections to the dorsolateral prefrontal cortex (DLPFC) and amygdala, was recruited by top-down resolution of emotional conflict. The DLPFC and its connections to dorsal ACC was engaged by top-down attentional control. Secondly, we investigated the impact of anxiety on the circuit. We demonstrated that higher levels of anxiety were associated with stronger conflict-related activation in ACC but with reduced connectivity between ACC and LPFC. Finally, we examined the variation in functional activity and connectivity in schizophrenia patients. In patients compared to controls, bottom-up processes were associated with reduced functional interaction between the amygdala and both dorsal and ventral ACC as well as DLPFC. Top-down resolution of emotional conflict led to stronger functional connectivity between the dorsal ACC and both ventral parts of ACC and DLPFC. Increased top-down attentional control caused higher functional coupling between the DLPFC and ventral ACC
Carey, Guillaume. "Imaging anxiety in Parkinson's disease." Electronic Thesis or Diss., Université de Lille (2022-....), 2024. https://pepite-depot.univ-lille.fr/ToutIDP/EDBSL/2024/2024ULILS023.pdf.
Full textAnxiety in Parkinson's disease (PD) is a frequent and disabilitating non-motor symptom. It is difficult to manage, partly due to a poor knowledge of the underlying mechanisms. The objective of this thesis was to identify the underlying mechanisms of PD-related anxiety, using multimodal brain MRI.A systematic review of the literature on imaging data in PD-related anxiety was first carried out, allowing the generation of initial hypotheses. Then, several studies including structural and functional brain MRI analyses were carried out in PD patients with or without clinically significant anxiety. Our analyses focused on the fear circuit, known to be involved in anxiety disorders and fear processing, and the limbic cortico-striato-thalamo-cortical circuit, known for its involvement in the neuropsychiatric symptoms of PD.Our results suggest that PD-related anxiety is the consequence of a functional and structural imbalance between these two circuits. Certain overlapping structures, such as the thalamus, the striatum or the brainstem nuclei, could be key areas whose alteration could explain the high prevalence of these disorders in PD. Further works based in particular on technological advances in imaging and new concepts concerning the pathophysiology of PD will be necessary to answer the remaining questions
Parkinson, John Anthony. "Limbic cortico-striatal circuitry underlying Pavlovian associative learning." Thesis, University of Cambridge, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.625012.
Full textBuscher, Nathalie. "Cognition and the balance of excitation and inhibition in mouse cortico-limbic circuits." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690894.
Full textZhu, Ning. "Advances in Non-Foster Circuit Augmented, Broad Bandwidth, Metamaterial-Inspired, Electrically Small Antennas." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581683.
Full textThere are always some intrinsic tradeoffs among the performance characteristics: radiation efficiency, directivity, and bandwidth, of electrically small antennas (ESAs). A non-Foster enhanced, broad bandwidth, metamaterial-inspired, electrically small, Egyptian axe dipole (EAD) antenna has been successfully designed and measured to overcome two of these restrictions. By incorporating a non-Foster circuit internally in the near-field resonant parasitic (NFRP) element, the bandwidth of the resulting electrically small antenna was enhanced significantly. The measured results show that the 10 dB bandwidth (BW10dB) of the non-Foster circuit-augmented EAD antenna is more than 6 times the original BW10dB value of the corresponding passive EAD antenna.
Borkowski, M. (Maciej). "Digital Δ-Σ Modulation:variable modulus and tonal behaviour in a fixed-point digital environment." Doctoral thesis, University of Oulu, 2008. http://urn.fi/urn:isbn:9789514289101.
Full textBerg, Junker Maria Constance. "Neural correlates of romantic love and romantic attachment." Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-16055.
Full textJebari, Salha. "The inelastic Cooper pair tunneling amplifier (ICTA)." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY036/document.
Full textJosephson parametric amplifiers (JPA), have proven to be an indispensable tool for awide range of experiments on quantum devices in the microwave frequency regime, becausethey provide the lowest possible noise. However, JPAs remain much more difficult to use andoptimize than conventional microwave amplifiers. Recent experiments with superconductingcircuits consisting of a DC voltage-biased Josephson junction in series with a resonator,showed that a tunneling Cooper pair can emit one or several photons with a total energyof 2e times the applied voltage. In this thesis we show that such q circuit can be used toimplement a new type of phase preserving microwave amplifier, which we call InelasticCooper pair Tunneling Amplifier (ICTA). It is powered by a simple DC bias and offers nearquantum-limited noise performance.We start this work by presenting a brief and simple picture of the basic ICTA operatingprinciples. In analogy with the quantum theory of JPAs, we calculate the performances ofthis amplifier such as the gain, bandwidth and noise. Then, we present the first experimentalproof that amplification close to the quantum limit is possible without microwave drive inan extremely simple setup. These measurements are made on a first generation of samplesbased on aluminium junctions. According to our theoretical and experimental results, wehave designed microwave circuits presenting specific frequency-dependent impedances tothe junction in order to optimize the performances of our amplifier. This second generationof ICTA samples is fabricated from niobium nitride and provide significantly lower noiseand higher gain.We expect that once fully optimized, such an amplifier, powered by simple DC voltagescould then make measuring microwave signals at the single photon level much easier andallow to deploy many amplifiers on a chip. It could therefore be an important ingredient forqubit readout in large-scale quantum processors
Nevřivý, Tomáš. "Kompaktní měnič pro BLDC motor." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-219927.
Full textCarvalho, Ana Raquel Franky Gomes. "Modulation of limbic noradrenergic circuits by cannabinoids." Doctoral thesis, 2010. http://hdl.handle.net/1822/11751.
Full textThe endocannabinoid system has been implicated in the regulation of several physiological functions. The widespread distribution of the endocannabinoid system in the central nervous system (CNS) accounts for many effects attributed to cannabinoids. Importantly, cannabinoids have been shown to modulate mood, cognition and memory. There is growing evidence suggesting that cannabinoids can interact with the noradrenergic system. Noradrenergic transmission in the CNS has also been implicated in the regulation of mood, cognition and memory. In the present work, the hypothesis that cannabinoids can impact noradrenergic transmission in the limbic system was examined. Firstly, localization of the cannabinoid receptor type 1 (CB1r) was performed in the nucleus accumbens (Acb) and in the nucleus of the solitary tract (NTS), using immunohistochemical techniques, to clarify the anatomical substrates underlying potential interactions. It was shown that CB1r is present in noradrenergic neurons of the NTS. In addition, CB1r was found in the Acb but rarely in noradrenergic terminals. Furthermore, the effects of cannabinoid administration on adrenergic receptor (AR) expression in the Acb were studied. Western blot analysis of accumbal tissue revealed that exogenous administration of the synthetic cannabinoid WIN 55,212-2 decreases α2A- and β1-AR expression. Finally, the importance of norepinephrine (NE) in cannabinoid-induced behaviors was tested. Using the place conditioning paradigm and the elevated zero maze (EZM), the effects of cannabinoids on aversion and anxiety, respectively, were tested following depletion or blockade of noradrenergic transmission in the Acb or in the bed nucleus of the stria terminalis (BNST). Using an immunotoxin approach, NE depletion restricted to the Acb, but not BNST, blocked the expression of aversion to WIN 55,212-2. Depletion of NE had no effect on WIN 55,212-2-induced anxiety. Moreover, the fact that blockade of β1-AR in the Acb prevents WIN 55,212-2-induced aversion suggests that noradrenergic transmission via β1-AR is critical for eliciting this behavior. In conclusion, the present work provides new evidence supporting the idea that cannabinoids can impact noradrenergic transmission in the limbic system. In addition, cannabinoid-induced aversion is dependent on intact noradrenergic transmission in the Acb. Taken together, the studies provide herein clarify the anatomical and neurochemical substrates for cannabinoid actions in the CNS.
O sistema endocanabinóide tem sido implicado na regulação de várias funções fisiológicas. A dispersa distribuição do sistema endocanabinóide no sistema nervoso central (SNC) explica os muitos efeitos atribuídos aos canabinóides. De realçar que tem sido demonstrado que os canabinóides modelam o humor, cognição e memória. Existe uma crescente evidência sugerindo uma interacção entre o sistema endocanabinóide e o sistema noradrenérgico. Por seu lado, transmissão noradrenérgica no SNC tem sido implicada na regulação do humor, cognição e memória. No presente trabalho, a hipótese de que os canabinóides podem afectar a transmissão noradrenérgica no sistema límbico foi examinada. Inicialmente, a localização do receptor dos canabinóides tipo 1 (CB1r) no núcleo accumbens (Acb) e no núcleo do tracto solitário (NTS) foi efectuada utilizando técnicas de imunohistoquímica, de forma a clarificar os substratos anatómicos subjacente a potenciais interacções. Foi demonstrado que CB1r está presente em neurónios noradrenérgicos do NTS. Para além disso, CB1r foi encontrado no Acb mas raramente em terminais noradrenérgicos. Adicionalmente, os efeitos da administração de canabinóides na expressão de receptores adrenérgicos no Acb foram estudados. Análise por western blot de tecido do Acb revelou que administração exógenea do canabinóide sintético WIN 55,212-2 diminui a expressão dos receptores adrenérgicos α2A e β1. Finalmente, a importância da noradrenalina (NA) nos comportamentos induzidos pelos canabinóides foi testada. Utilizando o paradigma de “place conditioning” e o teste “elevated zero maze” (EZM), os efeitos dos canabinóides na aversão e anxiedade foram testados após depleção ou bloqueio da transmissão noradrenérgica no Acb ou no núcleo da estria terminalis (BNST). Utilizando uma imunotoxina, a depleção restrita de NA no Acb, mas não no BNST, bloqueou a aversão ao WIN 55,212-2. Enquanto que depleção de NA não teve nenhum efeito na anxiedade provocada por WIN 55,212- 2. Mais, o facto de o bloqueio do receptor adrenérgico β1 no Acb prevenir a aversão induzida por WIN 55,212-2 sugere que a transmissão noradrenérgica via este receptor é fundamental para a expressão deste comportamento. Em conclusão, o presente trabalho fornece nova evidência suportando a ideia de que os canabinóides podem afectar a transmissão noradrenérgica no sistema límbico. Mais, a aversão induzida por canabinóides é dependente da transmissão noradrenérgica no Acb. Em conjunto, os estudos apresentados neste trabalho esclarecem os substratos anatómicos e neuroquímicos das acções dos canabinóides no SNC.
Books on the topic "Limbic circuit"
1952-, Kalivas Peter W., and Barnes Charles D. 1935-, eds. Limbic motor circuits and neuropsychiatry. Boca Raton: CRC Press, 1993.
Find full textRobert, Philippe, Elsa Leone, Hélène Amieva, and David Renaud. Managing behavioural and psychological symptoms in Alzheimer’s disease. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198779803.003.0009.
Full textKalivas, Peter W., and Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Edited by Peter W. Kalivas and Charles D. Barnes. CRC Press, 2019. http://dx.doi.org/10.1201/9780429274411.
Full textKalivas, Peter W., and Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Find full textKalivas, Peter W., and Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Find full textKalivas, Peter W., and Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Find full textKalivas, Peter W., and Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2020.
Find full textKalivas, Peter W., and Charles D. Barnes. Limbic Motor Circuits and Neuropsychiatry. Taylor & Francis Group, 2019.
Find full textFisch, Adam. Limbic and Olfactory Systems. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199845712.003.0276.
Full textMacNamara, Annmarie, and K. Luan Phan. Prefrontal-Limbic Brain Circuitry and the Regulation of Emotion. Edited by Israel Liberzon and Kerry J. Ressler. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190215422.003.0009.
Full textBook chapters on the topic "Limbic circuit"
Leo, Jonathan. "Limbic Circuit and Lesions." In Medical Neuroanatomy for the Boards and the Clinic, 91–98. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-88835-0_11.
Full textRuiyong, Wu. "Papez Circuit and Limbic System." In The ECPH Encyclopedia of Psychology, 1–2. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-6000-2_42-1.
Full textLeo, Jonathan. "The Limbic Circuit, Learning, Memory, and How the Brain Works." In Medical Neuroanatomy for the Boards and the Clinic, 131–38. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-41123-6_11.
Full textBraak, Heiko, and Eva Braak. "Alzheimer Neuropathology and Limbic Circuits." In Neurobiology of Cingulate Cortex and Limbic Thalamus, 606–26. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4899-6704-6_22.
Full textGroenewegen, Henk J., Pieter Voorn, and Jørgen Scheel-Krüger. "Limbic-Basal Ganglia Circuits Parallel and Integrative Aspects." In Innovations in Cognitive Neuroscience, 11–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42743-0_2.
Full textCanteras, Newton S., Dayu Lin, and Joshua G. Corbin. "Development of Limbic System Stress-Threat Circuitry." In Masterclass in Neuroendocrinology, 317–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40002-6_12.
Full textAluf, Ofer. "Optoisolation Circuits with Limit Cycles." In Advance Elements of Optoisolation Circuits, 1–92. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55316-0_1.
Full textBlatt, Gene J., Adrian L. Oblak, and Jeremy D. Schmahmann. "Cerebellar Connections with Limbic Circuits: Anatomy and Functional Implications." In Handbook of the Cerebellum and Cerebellar Disorders, 479–96. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-1333-8_22.
Full textMicevych, Paul, and Kevin Sinchak. "The Neurochemistry of Limbic-Hypothalamic Circuits Regulating Sexual Receptivity." In Handbook of Neurochemistry and Molecular Neurobiology, 151–93. Boston, MA: Springer US, 2007. http://dx.doi.org/10.1007/978-0-387-30405-2_4.
Full textSchmahmann, Jeremy D., Adrian L. Oblak, and Gene J. Blatt. "Cerebellar Connections with Limbic Circuits: Anatomy and Functional Implications." In Handbook of the Cerebellum and Cerebellar Disorders, 1–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-319-97911-3_22-2.
Full textConference papers on the topic "Limbic circuit"
Fyrillas, Andreas, Olivier Faure, Nicolas Maring, Jean Senellart, and Nadia Belabas. "High-Fidelity Quantum Information Processing with Machine Learning-Characterized Photonic Circuits." In Quantum 2.0, QW4A.1. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw4a.1.
Full textZhang, Junyin, Zihan Li, Johann Riemensberger, Grigory Lihachev, Guanhao Huang, and Tobias J. Kippenberg. "Observation of fundamental charge noise in electro-optic photonic integrated circuits." In CLEO: Science and Innovations, STh3F.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sth3f.2.
Full textGómez-Carreño, Carlos Rodríguez, Antonio Ramírez García, Luis Beato Fernández, Irene Díaz Quero, and Estefanía Segura Escobar. "Craving and Priming of alcohol in depressive disorders. Bibliographic review and new therapies." In 22° Congreso de la Sociedad Española de Patología Dual (SEPD) 2020. SEPD, 2020. http://dx.doi.org/10.17579/sepd2020p140.
Full textCăruntu-Caraman, Livia. "Utilizarea englezismelor în limba română în contexte adecvate." In Conferinta stiintifica nationala cu participare internationala „Lecturi in memoriam acad. Silviu Berejan”. “Bogdan Petriceicu-Hasdeu” Institute of Romanian Philology, Republic of Moldova, 2021. http://dx.doi.org/10.52505/lecturi.2021.05.05.
Full textTajima, Yuki, Hiroshi Hosaka, and Yoshinori Oonishi. "Study on Motor-Driven Gyroscopic Generator: Part 2 — Self-Acceleration by Power Feedback." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86444.
Full textChen, Yung-Tin, and Steve Radigan. "Pushing KrF photolithography limit for 3D integrated circuit." In Microlithography 2004, edited by Bruce W. Smith. SPIE, 2004. http://dx.doi.org/10.1117/12.544386.
Full textGregory, George, and Kevin J. Lippert. "Applying LV Circuit Breakers to Limit Arc Energy." In Conference Record of 2007 Annual Pulp and Paper Industry Technical Conference. IEEE, 2007. http://dx.doi.org/10.1109/papcon.2007.4286293.
Full textZhao, Yilun, Yu Chen, He Li, Ying Wang, Kaiyan Chang, Bingmeng Wang, Bing Li, and Yinhe Han. "Full State Quantum Circuit Simulation Beyond Memory Limit." In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2023. http://dx.doi.org/10.1109/iccad57390.2023.10323666.
Full textTiwari, Ankit, Trevor Davey, and Matthew Willis. "CFD Analysis of Transient Heat Conduction in the Electronic Control Circuitry of Steering Wheel Column Adjustment System." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-63973.
Full textWang, Ning, Ying Zhang, Enguang Qi, and Yue Cheng. "An LDO Current Limit Protection Circuit With Hiccup Mode." In 2023 8th International Conference on Integrated Circuits and Microsystems (ICICM). IEEE, 2023. http://dx.doi.org/10.1109/icicm59499.2023.10365917.
Full textReports on the topic "Limbic circuit"
Haight, Richard A., Brian E. McCandless, Andrew C. Kummel, and Roy G. Gordon. Driving CZTS to the SQ Limit: Solving the Open Circuit Voltage Problem. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1335851.
Full text