Journal articles on the topic 'Lignocellulosic inhibitor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Lignocellulosic inhibitor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sjulander, Nikki, and Timo Kikas. "Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review." Energies 13, no. 18 (September 11, 2020): 4751. http://dx.doi.org/10.3390/en13184751.
Full textVanmarcke, Gert, Quinten Deparis, Ward Vanthienen, Arne Peetermans, Maria R. Foulquié-Moreno, and Johan M. Thevelein. "A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors." PLOS Genetics 17, no. 10 (October 8, 2021): e1009826. http://dx.doi.org/10.1371/journal.pgen.1009826.
Full textPiva, Victor de Freitas, Vanessa Souza Reis Melo, Bruna Vieira Cabral, and Diego Andrade Lemos. "Extraction of furfural inhibitor from biomass hydrolysate of rice husk." Ciência e Natura 44 (April 18, 2022): e15. http://dx.doi.org/10.5902/2179460x68832.
Full textElgharbawy, Amal A. M., Md Zahangir Alam, Muhammad Moniruzzaman, and Hamzah Mohd Salleh. "Hydrolysis Kinetics of Oil Palm Empty Fruit Bunch in Ionic Liquids and Cellulase Integrated System." International Journal of Chemistry 11, no. 2 (July 26, 2019): 95. http://dx.doi.org/10.5539/ijc.v11n2p95.
Full textWestman, Johan O., Valeria Mapelli, Mohammad J. Taherzadeh, and Carl Johan Franzén. "Flocculation Causes Inhibitor Tolerance in Saccharomyces cerevisiae for Second-Generation Bioethanol Production." Applied and Environmental Microbiology 80, no. 22 (August 29, 2014): 6908–18. http://dx.doi.org/10.1128/aem.01906-14.
Full textRoscini, Luca, Lorenzo Favaro, Laura Corte, Lorenzo Cagnin, Claudia Colabella, Marina Basaglia, Gianluigi Cardinali, and Sergio Casella. "A yeast metabolome-based model for an ecotoxicological approach in the management of lignocellulosic ethanol stillage." Royal Society Open Science 6, no. 1 (January 2019): 180718. http://dx.doi.org/10.1098/rsos.180718.
Full textPadmapriya, G., V. Dhivya, M. Vishal, Y. A. J. Roshni, T. Akila, and S. Ramalingam. "Development of tolerance to aldehyde-based inhibitors of pretreated lignocellulosic biomass sugars in E. coli MG1655 by sequential batch adaptive evolution." Journal of Environmental Biology 42, no. 5 (September 27, 2021): 1239–48. http://dx.doi.org/10.22438/jeb/42/5/mrn-1812.
Full textChanda, Kakoli, Atifa Begum Mozumder, Ringhoilal Chorei, Ridip Kumar Gogoi, and Himanshu Kishore Prasad. "A Lignocellulolytic Colletotrichum sp. OH with Broad-Spectrum Tolerance to Lignocellulosic Pretreatment Compounds and Derivatives and the Efficiency to Produce Hydrogen Peroxide and 5-Hydroxymethylfurfural Tolerant Cellulases." Journal of Fungi 7, no. 10 (September 22, 2021): 785. http://dx.doi.org/10.3390/jof7100785.
Full textGreetham, Darren, Abdelrahman Saleh Zaky, and Chenyu Du. "Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production." Sustainable Energy & Fuels 3, no. 6 (2019): 1545–53. http://dx.doi.org/10.1039/c9se00029a.
Full textLam, Felix H., Burcu Turanlı-Yıldız, Dany Liu, Michael G. Resch, Gerald R. Fink, and Gregory Stephanopoulos. "Engineered yeast tolerance enables efficient production from toxified lignocellulosic feedstocks." Science Advances 7, no. 26 (June 2021): eabf7613. http://dx.doi.org/10.1126/sciadv.abf7613.
Full textMa, Kedong, Mingxiong He, Huiyan You, Liwei Pan, Guoquan Hu, Yubo Cui, and Toshinari Maeda. "Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis." RSC Advances 7, no. 50 (2017): 31180–88. http://dx.doi.org/10.1039/c7ra04049k.
Full textBertini, Alessandro, Mattia Gelosia, Gianluca Cavalaglio, Marco Barbanera, Tommaso Giannoni, Giorgia Tasselli, Andrea Nicolini, and Franco Cotana. "Production of Carbohydrates from Cardoon Pre-Treated by Acid-Catalyzed Steam Explosion and Enzymatic Hydrolysis." Energies 12, no. 22 (November 11, 2019): 4288. http://dx.doi.org/10.3390/en12224288.
Full textBhatt, Sheelendra M., and Shilpa. "Lignocellulosic feedstock conversion, inhibitor detoxification and cellulosic hydrolysis – a review." Biofuels 5, no. 6 (November 2, 2014): 633–49. http://dx.doi.org/10.1080/17597269.2014.1003702.
Full textLiu, Zonglin Lewis, Jaewoong Moon, and Mingzhou Joe Song. "Genomic mechanisms of inhibitor-detoxification for low-cost lignocellulosic bioethanol conversion." Journal of Biotechnology 136 (October 2008): S218. http://dx.doi.org/10.1016/j.jbiotec.2008.07.460.
Full textThontowi, Ahmad. "Evaluation of Non-Saccharomyces Cerevisiae Strains Isolated from Sea Water Against Inhibitory Compounds for Ethanol Production." Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology 12, no. 2 (August 5, 2017): 57. http://dx.doi.org/10.15578/squalen.v12i2.284.
Full textRiyanti, Eny Ida, and Edy Listanto. "INHIBITION OF THE GROWTH OF TOLERANT YEAST Saccharomyces cerevisiae STRAIN I136 BY A MIXTURE OF SYNTHETIC INHIBITORS." Indonesian Journal of Agricultural Science 18, no. 1 (September 14, 2017): 17. http://dx.doi.org/10.21082/ijas.v18n1.2017.p17-24.
Full textTesfaw, Asmamaw, and Fassil Assefa. "Current Trends in Bioethanol Production by Saccharomyces cerevisiae: Substrate, Inhibitor Reduction, Growth Variables, Coculture, and Immobilization." International Scholarly Research Notices 2014 (December 8, 2014): 1–11. http://dx.doi.org/10.1155/2014/532852.
Full textTu, Wei-Lin, Tien-Yang Ma, Chung-Mao Ou, Gia-Luen Guo, and Yu Chao. "Simultaneous saccharification and co-fermentation with a thermotolerant Saccharomyces cerevisiae to produce ethanol from sugarcane bagasse under high temperature conditions." BioResources 16, no. 1 (January 5, 2021): 1358–72. http://dx.doi.org/10.15376/biores.16.1.1358-1372.
Full textTeixeira, Vanessa S., Suéllen P. H. Azambuja, Priscila H. Carvalho, Fátima A. A. Costa, Patricia R. Kitaka, Claudia Stekelgerb, Silvio R. Andrietta, Maria G. S. Andrietta, and Rosana Goldbeck. "Robustness and Ethanol Production of Industrial Strains of Saccharomyces cerevisiae Using Different Sugarcane Bagasse Hydrolysates." Journal of Applied Biotechnology 7, no. 1 (May 7, 2019): 23. http://dx.doi.org/10.5296/jab.v7i1.14599.
Full textYan, Xiongying, Xia Wang, Yongfu Yang, Zhen Wang, Haoyu Zhang, Yang Li, Qiaoning He, Mian Li, and Shihui Yang. "Cysteine supplementation enhanced inhibitor tolerance of Zymomonas mobilis for economic lignocellulosic bioethanol production." Bioresource Technology 349 (April 2022): 126878. http://dx.doi.org/10.1016/j.biortech.2022.126878.
Full textWongsurakul, Peerawat, Mutsee Termtanun, Worapon Kiatkittipong, Jun Wei Lim, Kunlanan Kiatkittipong, Prasert Pavasant, Izumi Kumakiri, and Suttichai Assabumrungrat. "Comprehensive Review on Potential Contamination in Fuel Ethanol Production with Proposed Specific Guideline Criteria." Energies 15, no. 9 (April 20, 2022): 2986. http://dx.doi.org/10.3390/en15092986.
Full textNilsson, Anneli, Marie F. Gorwa-Grauslund, Bärbel Hahn-Hägerdal, and Gunnar Lidén. "Cofactor Dependence in Furan Reduction by Saccharomyces cerevisiae in Fermentation of Acid-Hydrolyzed Lignocellulose." Applied and Environmental Microbiology 71, no. 12 (December 2005): 7866–71. http://dx.doi.org/10.1128/aem.71.12.7866-7871.2005.
Full textJansen, Trudy, Justin Wallace Hoff, Neil Jolly, and Willem Heber van Zyl. "Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance." Folia Microbiologica 63, no. 2 (September 8, 2017): 155–68. http://dx.doi.org/10.1007/s12223-017-0546-3.
Full textZhou, Long, Fabio Santomauro, Jiajun Fan, Duncan Macquarrie, James Clark, Christopher J. Chuck, and Vitaliy Budarin. "Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides." Faraday Discussions 202 (2017): 351–70. http://dx.doi.org/10.1039/c7fd00102a.
Full textWang, Yanan, Peng Zhan, Lishu Shao, Lin Zhang, and Yan Qing. "Effects of Inhibitors Generated by Dilute Phosphoric Acid Plus Steam-Exploded Poplar on Saccharomyces cerevisiae Growth." Microorganisms 10, no. 7 (July 19, 2022): 1456. http://dx.doi.org/10.3390/microorganisms10071456.
Full textCavalaglio, Gianluca, Mattia Gelosia, Tommaso Giannoni, Ramoon Barros Lovate Temporim, Andrea Nicolini, Franco Cotana, and Alessandro Bertini. "Acid-catalyzed steam explosion for high enzymatic saccharification and low inhibitor release from lignocellulosic cardoon stalks." Biochemical Engineering Journal 174 (October 2021): 108121. http://dx.doi.org/10.1016/j.bej.2021.108121.
Full textSinghania, Reeta Rani, Anil Kumar Patel, Tirath Raj, Mei-Ling Tsai, Chiu-Wen Chen, and Cheng-Di Dong. "Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production." Catalysts 12, no. 6 (June 3, 2022): 615. http://dx.doi.org/10.3390/catal12060615.
Full textLuo, Xingxing, Baiquan Zeng, Yanan Zhong, and Jienan Chen. "Production and detoxification of inhibitors during the destruction of lignocellulose spatial structure." BioResources 17, no. 1 (December 9, 2021): 1939–61. http://dx.doi.org/10.15376/biores.17.1.luo.
Full textAbdel-Rahman, Mohamed Ali, Saad El-Din Hassan, Amr Fouda, Ahmed A. Radwan, Mohammed G. Barghoth, and Salha G. Desouky. "Evaluating the Effect of Lignocellulose-Derived Microbial Inhibitors on the Growth and Lactic Acid Production by Bacillus coagulans Azu-10." Fermentation 7, no. 1 (January 27, 2021): 17. http://dx.doi.org/10.3390/fermentation7010017.
Full textLin, Feng-Ming, Bin Qiao, and Ying-Jin Yuan. "Comparative Proteomic Analysis of Tolerance and Adaptation of Ethanologenic Saccharomyces cerevisiae to Furfural, a Lignocellulosic Inhibitory Compound." Applied and Environmental Microbiology 75, no. 11 (April 10, 2009): 3765–76. http://dx.doi.org/10.1128/aem.02594-08.
Full textSato, Trey K., Tongjun Liu, Lucas S. Parreiras, Daniel L. Williams, Dana J. Wohlbach, Benjamin D. Bice, Irene M. Ong, et al. "Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass." Applied and Environmental Microbiology 80, no. 2 (November 8, 2013): 540–54. http://dx.doi.org/10.1128/aem.01885-13.
Full textChen, Kun, Long Jun Xu, and Jun Yi. "Bioconversion of Lignocellulose to Ethanol: A Review of Production Process." Advanced Materials Research 280 (July 2011): 246–49. http://dx.doi.org/10.4028/www.scientific.net/amr.280.246.
Full textForsberg, Kevin J., Sanket Patel, Evan Witt, Bin Wang, Tyler D. Ellison, and Gautam Dantas. "Identification of Genes Conferring Tolerance to Lignocellulose-Derived Inhibitors by Functional Selections in Soil Metagenomes." Applied and Environmental Microbiology 82, no. 2 (November 6, 2015): 528–37. http://dx.doi.org/10.1128/aem.02838-15.
Full textWang, X., E. N. Miller, L. P. Yomano, X. Zhang, K. T. Shanmugam, and L. O. Ingram. "Increased Furfural Tolerance Due to Overexpression of NADH-Dependent Oxidoreductase FucO in Escherichia coli Strains Engineered for the Production of Ethanol and Lactate." Applied and Environmental Microbiology 77, no. 15 (June 17, 2011): 5132–40. http://dx.doi.org/10.1128/aem.05008-11.
Full textMishra, Abhishek, Ajay K. Sharma, Sumit Sharma, A. S. Mathur, R. P. Gupta, and D. K. Tuli. "Lignocellulosic bioethanol production employing newly isolated inhibitor and thermotolerant Saccharomyces cerevisiae DBTIOC S24 strain in SSF and SHF." RSC Advances 6, no. 29 (2016): 24381–90. http://dx.doi.org/10.1039/c6ra00007j.
Full textSemencenko, Valentina, Ljiljana Mojovic, Slobodan Petrovic, and Ozren Ocic. "Recent trends in bioethanol production." Chemical Industry 65, no. 2 (2011): 103–14. http://dx.doi.org/10.2298/hemind100913068s.
Full textSárvári Horváth, Ilona, Carl Johan Franzén, Mohammad J. Taherzadeh, Claes Niklasson, and Gunnar Lidén. "Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats." Applied and Environmental Microbiology 69, no. 7 (July 2003): 4076–86. http://dx.doi.org/10.1128/aem.69.7.4076-4086.2003.
Full textLong, Tingting, Peng Zhang, Jingze Yu, Yushan Gao, Xiaoqin Ran, and Yonghao Li. "Regulation of β-Disaccharide Accumulation by β-Glucosidase Inhibitors to Enhance Cellulase Production in Trichoderma reesei." Fermentation 8, no. 5 (May 17, 2022): 232. http://dx.doi.org/10.3390/fermentation8050232.
Full textBaptista, Marlene, Joana T. Cunha, and Lucília Domingues. "Establishment of Kluyveromyces marxianus as a Microbial Cell Factory for Lignocellulosic Processes: Production of High Value Furan Derivatives." Journal of Fungi 7, no. 12 (December 7, 2021): 1047. http://dx.doi.org/10.3390/jof7121047.
Full textRani, Devitra Saka, and Cut Nanda Sari. "Dilute Acid Pretreatment And Enzymatic Hydrolysis Of Lignocellulosic Biomass For Butanol Production As Biofuel." Scientific Contributions Oil and Gas 35, no. 1 (February 15, 2022): 39–48. http://dx.doi.org/10.29017/scog.35.1.776.
Full textMedina, Víctor Guadalupe, Marinka J. H. Almering, Antonius J. A. van Maris, and Jack T. Pronk. "Elimination of Glycerol Production in Anaerobic Cultures of a Saccharomyces cerevisiae Strain Engineered To Use Acetic Acid as an Electron Acceptor." Applied and Environmental Microbiology 76, no. 1 (November 13, 2009): 190–95. http://dx.doi.org/10.1128/aem.01772-09.
Full textNevoigt, Elke. "Progress in Metabolic Engineering of Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 72, no. 3 (September 2008): 379–412. http://dx.doi.org/10.1128/mmbr.00025-07.
Full textLennartsson, Patrik R., Keikhosro Karimi, Lars Edebo, and Mohammad J. Taherzadeh. "Effects of different growth forms of Mucor indicus on cultivation on dilute-acid lignocellulosic hydrolyzate, inhibitor tolerance, and cell wall composition." Journal of Biotechnology 143, no. 4 (September 2009): 255–61. http://dx.doi.org/10.1016/j.jbiotec.2009.07.011.
Full textAbdel-Rahman, Mohamed Ali, Saad El-Din Hassan, Hassan M. A. Alrefaey, and Tamer Elsakhawy. "Efficient Co-Utilization of Biomass-Derived Mixed Sugars for Lactic Acid Production by Bacillus coagulans Azu-10." Fermentation 7, no. 1 (February 18, 2021): 28. http://dx.doi.org/10.3390/fermentation7010028.
Full textChen, Yudian, Nian Peng, Yushan Gao, Qian Li, Zancheng Wang, Bo Yao, and Yonghao Li. "Two-Stage Pretreatment of Jerusalem Artichoke Stalks with Wastewater Recycling and Lignin Recovery for the Biorefinery of Lignocellulosic Biomass." Processes 11, no. 1 (January 1, 2023): 127. http://dx.doi.org/10.3390/pr11010127.
Full textMadadi, Meysam, Yuanyuan Tu, and Aqleem Abbas. "Pretreatment of Lignocelollusic Biomass Based on Improving Enzymatic Hydrolysis." International Journal of Applied Sciences and Biotechnology 5, no. 1 (March 25, 2017): 1–11. http://dx.doi.org/10.3126/ijasbt.v5i1.17018.
Full textLedingham, Edward T., Kieran P. Stockton, and Ben W. Greatrex. "Efficient Synthesis of an Indinavir Precursor from Biomass-Derived (–)-Levoglucosenone." Australian Journal of Chemistry 70, no. 10 (2017): 1146. http://dx.doi.org/10.1071/ch17227.
Full textvan der Maas, Lucas, Jasper L. S. P. Driessen, and Solange I. Mussatto. "Effects of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysates on the Growth of Bacillus subtilis." Energies 14, no. 24 (December 14, 2021): 8419. http://dx.doi.org/10.3390/en14248419.
Full textZhang, Dongyan, Yuyang Fan, Anqing Zheng, Zengli Zhao, Fengyun Wang, and Haibin Li. "Maximizing Anhydrosugar Production from Fast Pyrolysis of Eucalyptus Using Sulfuric Acid as an Ash Catalyst Inhibitor." Catalysts 8, no. 12 (December 3, 2018): 609. http://dx.doi.org/10.3390/catal8120609.
Full textBian, Huiyang, Xinxing Wu, Jing Luo, Yongzhen Qiao, Guigan Fang, and Hongqi Dai. "Valorization of Alkaline Peroxide Mechanical Pulp by Metal Chloride-Assisted Hydrotropic Pretreatment for Enzymatic Saccharification and Cellulose Nanofibrillation." Polymers 11, no. 2 (February 14, 2019): 331. http://dx.doi.org/10.3390/polym11020331.
Full text