Academic literature on the topic 'Lignocellulose pretreatments'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lignocellulose pretreatments.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lignocellulose pretreatments"

1

Naini, Al-Arofatus, Nurwahdah Nurwahdah, Ratri Yuli Lestari, and Sunardi Sunardi, Ph.D. "Praperlakuan secara Hidrotermal Limbah Lignoselulosa untuk Produksi Bioetanol Generasi Kedua (Pretreatment of Lignocellulose Wastes Using Hydrothermal Method for Producing Second Generation Bioethanol)." Jurnal Riset Industri Hasil Hutan 10, no. 2 (December 28, 2018): 93–102. http://dx.doi.org/10.24111/jrihh.v10i2.4078.

Full text
Abstract:
The second generation of bioethanol derived from various cellulosic biomass materials is one of the latest renewable energy as the alternative of fossil fuel. The cellulosic waste based wood and non-wood materials are the most abundant natural resource on the earth, renewable, and inexpensive. Currently, second generation bioethanol development is still not optimally done due to various obstacles, especially the pretreatment process to eliminate lignin, influencing the conversion process of cellulose into reducing sugar. Hydrothermal method is one of lignocellulose pretreatments, which is widely developed because this method is relatively cheap and environmentally friendly with the utilization of water-based solvent. Hydrothermal methods performed at high temperature and pressure in a relatively short time are able to deconstruct the lignocellulose structure that enables cellulase enzymes to access cellulose for hydrolysis. This study discussed about the development of hydrothermal method for lignocellulose pretreatment process to increase production of second-generation bioethanol. Some aspects studied in this research were structural change, chemical composition, lignocellulosic crystallinity before and after hydrothermal processes, and hydrothermal effect on the production of reducing sugars. Hydrothermal method could be used and developed as an efficient and cheap method as the first treatment of lignocellulose waste in attempt to increase the production of bioethanol.
APA, Harvard, Vancouver, ISO, and other styles
2

Zahoor, Wen Wang, Xuesong Tan, Qiang Yu, Yongming Sun, Zhenhong Yuan, Kyoungseon Min, Jinsuk Lee, Zi Shang Bai, and Xinshu Zhuang. "Comparison of Low-Temperature Alkali/Urea Pretreatments for Ethanol Production from Wheat Straw." Journal of Biobased Materials and Bioenergy 15, no. 3 (June 1, 2021): 399–407. http://dx.doi.org/10.1166/jbmb.2021.2062.

Full text
Abstract:
NaOH/urea (NU) pretreatment at lower than 0 °C has been frequently applied for improving bio-conversion of lignocellulose, but the wastewater generated from the pretreatment process is hard to dispose. KOH/urea (KU) pretreatment for enhancing bioconversion of lignocellulose has recently attracted researchers’ attention due to the recycling of wastewater for facilitating crops’ growth. This study compared the effects of NU and KU pretreatments at cold conditions on the enzymatic hydrolysis and bioethanol yield from wheat straw (WS). By using response surface methodology an optimal pretreatment with an equal ratio of alkali/urea (4% w/v) at −20 °C for 3 h was established. The enzymatic hydrolysis of KU-treated WS was 81.17%, which was similar to that of NU-treated WS (83.72%) under the same condition. It means that KU pretreatment has equal ability to NU pretreatment to improve enzymatic saccharification of lignocellulose. KU pretreatment has the promising potential to replace NU pretreatment for facilitating bioconversion of lignocellulose in cold conditions due to the clean way to recycle its wastewater as fertilizer for crop growth. Hence, KU pretreatment combined with enzymatic hydrolysis and fermentation could be a promising green way to cellulosic ethanol production with zero waste emission.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Ao, Qiaomei Yang, Yu Li, Shiguang Zhou, Jiangfeng Huang, Meng Hu, Yuanyuan Tu, Bo Hao, Liangcai Peng, and Tao Xia. "Mild physical and chemical pretreatments to enhance biomass enzymatic saccharification and bioethanol production from Erianthus arundinaceus." BioResources 14, no. 1 (December 3, 2018): 650–68. http://dx.doi.org/10.15376/biores.14.1.650-668.

Full text
Abstract:
Diverse cell wall compositions were subjected to pretreatment and saccharification to produce bioethanol from 20 Erianthus arundinaceus accessions. Using four typical pairs of biomass samples, various physical and chemical pretreatments were employed to extract cell wall polymers. Mild chemical pretreatment (2% NaOH and 50 °C) yielded complete biomass saccharification, whereas the liquid hot water pretreatment achieved the highest bioethanol yield with a full sugar-ethanol conversion rate. Notably, the extraction of the lignin p-coumaryl alcohol (H) monomer greatly enhanced biomass saccharification, which may be attributed either to the improved accessibility of cellulose to enzymes after effective removal of lignin or to the maintained native cellulose microfibrils from the relatively less co-extraction of hemicellulose. Hence, the results suggested that the H-monomer-rich lignin may slightly associate with cell wall networks for greatly enhanced lignocellulose enzymatic hydrolysis after mild pretreatments. The present findings provide a strategy for both cost-effective biomass process technology and precise lignocellulose modification for bioenergy.
APA, Harvard, Vancouver, ISO, and other styles
4

Oates, Nicola C., Amira Abood, Alexandra M. Schirmacher, Anna M. Alessi, Susannah M. Bird, Joseph P. Bennett, Daniel R. Leadbeater, et al. "A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from Parascedosporium putredinis NO1." Proceedings of the National Academy of Sciences 118, no. 18 (April 26, 2021): e2008888118. http://dx.doi.org/10.1073/pnas.2008888118.

Full text
Abstract:
Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major β-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.
APA, Harvard, Vancouver, ISO, and other styles
5

Costa, Stefania, Irene Rugiero, Christian Larenas Uria, Paola Pedrini, and Elena Tamburini. "Lignin Degradation Efficiency of Chemical Pre-Treatments on Banana Rachis Destined to Bioethanol Production." Biomolecules 8, no. 4 (November 9, 2018): 141. http://dx.doi.org/10.3390/biom8040141.

Full text
Abstract:
Valuable biomass conversion processes are highly dependent on the use of effective pretreatments for lignocellulose degradation and enzymes for saccharification. Among the nowadays available treatments, chemical delignification represents a promising alternative to physical-mechanical treatments. Banana is one of the most important fruit crops around the world. After harvesting, it generates large amounts of rachis, a lignocellulosic residue, that could be used for second generation ethanol production, via saccharification and fermentation. In the present study, eight chemical pretreatments for lignin degradation (organosolv based on organic solvents, sodium hypochlorite, hypochlorous acid, hydrogen peroxide, alkaline hydrogen peroxide, and some combinations thereof) have been tested on banana rachis and the effects evaluated in terms of lignin removal, material losses, and chemical composition of pretreated material. Pretreatment based on lignin oxidation have demonstrated to reach the highest delignification yield, also in terms of monosaccharides recovery. In fact, all the delignified samples were then saccharified with enzymes (cellulase and beta-glucosidase) and hydrolysis efficiency was evaluated in terms of final sugars recovery before fermentation. Analysis of Fourier transform infrared spectra (FTIR) has been carried out on treated samples, in order to better understand the structural effects of delignification on lignocellulose. Active chlorine oxidations, hypochlorous acid in particular, were the best effective for lignin removal obtaining in the meanwhile the most promising cellulose-to-glucose conversion.
APA, Harvard, Vancouver, ISO, and other styles
6

Huang, Caoxing, Ruolin Li, Wei Tang, Yayue Zheng, and Xianzhi Meng. "Improve Enzymatic Hydrolysis of Lignocellulosic Biomass by Modifying Lignin Structure via Sulfite Pretreatment and Using Lignin Blockers." Fermentation 8, no. 10 (October 20, 2022): 558. http://dx.doi.org/10.3390/fermentation8100558.

Full text
Abstract:
Even traditional pretreatments can partially remove or degrade lignin and hemicellulose from lignocellulosic biomass for enhancing its enzymatic digestibility, the remaining lignin in pretreated biomass still restricts its enzymatic hydrolysis by limiting cellulose accessibility and lignin-enzyme nonproductive interaction. Therefore, many pretreatments that can modify lignin structure in a unique way and approaches to block the lignin’s adverse impact have been proposed to directly improve the enzymatic digestibility of pretreated biomass. In this review, recent development in sulfite pretreatment that can transform the native lignin into lignosulfonate and subsequently enhance saccharification of pretreated biomass under certain conditions was summarized. In addition, we also reviewed the approaches of the addition of reactive agents to block the lignin’s reactive sites and limit the cellulase-enzyme adsorption during hydrolysis. It is our hope that this summary can provide a guideline for workers engaged in biorefining for the goal of reaching high enzymatic digestibility of lignocellulose.
APA, Harvard, Vancouver, ISO, and other styles
7

Pérez-Merchán, Antonio Manuel, Gabriela Rodríguez-Carballo, Benjamín Torres-Olea, Cristina García-Sancho, Pedro Jesús Maireles-Torres, Josefa Mérida-Robles, and Ramón Moreno-Tost. "Recent Advances in Mechanochemical Pretreatment of Lignocellulosic Biomass." Energies 15, no. 16 (August 17, 2022): 5948. http://dx.doi.org/10.3390/en15165948.

Full text
Abstract:
Biorefineries are industrial facilities where biomass is converted into chemicals, fuels and energy. The use of lignocellulose as raw material implies the development of pretreatments to reduce its recalcitrant character prior to the processes that lead to the synthesis of the products of interest. These treatments are based on physico-chemical processes where it is necessary to use acids, bases, oxidants, and high pressure and temperature conditions that lead to the depolymerization of lignocellulose at the expense of generating a series of streams that must be treated later or to the production of by-products. In recent years, mechanochemistry is becoming relevant in the design of processes that help in the depolymerization of lignocellulose. These mechanochemical processes are being used in combination with chemicals and/or enzymes, allowing the use of minor loads of reagents or enzymes. In this review, the advances achieved in the use of mechanochemistry for treating lignocellulosic biomass or cellulose will be presented, with special emphasis on how these mechanochemical processes modify the structure of lignocellulose and help subsequent treatments. It will focus on using ball milling or extrusion, ending with a section dedicated to future work needed to implement these technologies at the industrial level.
APA, Harvard, Vancouver, ISO, and other styles
8

Mahmood, Hamayoun, Saqib Mehmood, Ahmad Shakeel, Tanveer Iqbal, Mohsin Ali Kazmi, Abdul Rehman Khurram, and Muhammad Moniruzzaman. "Glycerol Assisted Pretreatment of Lignocellulose Wheat Straw Materials as a Promising Approach for Fabrication of Sustainable Fibrous Filler for Biocomposites." Polymers 13, no. 3 (January 26, 2021): 388. http://dx.doi.org/10.3390/polym13030388.

Full text
Abstract:
Glycerol pretreatment is a promising method for the environmentally-friendly transformation of lignocellulosic materials into sustainable cellulose-rich raw materials (i.e., biopolymer) to fabricate biocomposites. Here, a comparison of aqueous acidified glycerol (AAG) pretreatment of wheat straw (WS) with alkaline, hot water, and dilute acid pretreatments on the thermal and mechanical characteristics of their fabricated composite board is presented. A comparison of total energy expenditure during WS pretreatment with AAG and other solutions was estimated and a comparative influence of AAG processing on lignocellulosic constituents and thermal stability of WS fiber was studied. Results imply that AAG pretreatment was superior in generating cellulose-rich fiber (CRF) as compared to other pretreatments and enhanced the cellulose contents by 90% compared to raw WS fiber. Flexural strength of acidic (40.50 MPa) and hot water treated WS composite (38.71 MPa) was higher compared to the value of 33.57 MPa for untreated composite, but AAG-treated composites exhibited lower values of flexural strength (22.22 MPa) compared to untreated composite samples. Conversely, AAG pretreatment consumed about 56% lesser energy for each kg of WS processed as compared to other pretreatments. These findings recognize that glycerol pretreatment could be a clean and new pretreatment strategy to convert agricultural waste into high-quality CRF as a sustainable raw material source for engineered biocomposite panels.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Haiyan, Yuanchen Zhu, Yan Jin, Fuhou Lei, Zhengjun Shi, and Jing Yang. "Pseudo-lignin retarded bioconversion of sugarcane bagasse holocellulose after liquid hot water and acid pretreatments." BioResources 16, no. 2 (April 22, 2021): 4052–63. http://dx.doi.org/10.15376/biores.16.2.4052-4063.

Full text
Abstract:
Pseudo-lignin derived from the condensation of carbohydrate degradation products can retard the bioconversion of lignocellulose. In this work, liquid hot water (150 to 190 °C) and 1% H2SO4 pretreatments (130 to 190 °C) were used on sugarcane bagasse holocellulose for 3 h to generate pseudo-lignin. The effects of pseudo-lignin generation on structural characteristics and bioconversion of substrates were evaluated. The results showed that the formation of pseudo-lignin increased the hydrophobicity of the substrates. After LHW pretreatments and acid pretreatments at low temperatures (<150 °C), most of the xylans were removed, yielding 2.1 to 5.4% pseudo-lignin. Increasing acid pretreatment temperature to 170 and 190 °C yielded 34.3% and 93.6% pseudo-lignin, respectively. After pretreatment, the accessibilities and bioconversions of substrates were enhanced by degradation of xylans, increasing glucose conversions and bioethanol productions of substrates from 53.2 to 85.3%, and 9.9 to 13.1 g/L, respectively. However, large amounts of pseudo-lignin were generated during acid pretreatments at 170 °C, reducing glucose conversion and bioethanol yield to 45.6% and 6.3 g/L, respectively.
APA, Harvard, Vancouver, ISO, and other styles
10

Valdés, Gabriela, Regis Teixeira Mendonça, and George Aggelis. "Lignocellulosic Biomass as a Substrate for Oleaginous Microorganisms: A Review." Applied Sciences 10, no. 21 (October 30, 2020): 7698. http://dx.doi.org/10.3390/app10217698.

Full text
Abstract:
Microorganisms capable of accumulating lipids in high percentages, known as oleaginous microorganisms, have been widely studied as an alternative for producing oleochemicals and biofuels. Microbial lipid, so-called Single Cell Oil (SCO), production depends on several growth parameters, including the nature of the carbon substrate, which must be efficiently taken up and converted into storage lipid. On the other hand, substrates considered for large scale applications must be abundant and of low acquisition cost. Among others, lignocellulosic biomass is a promising renewable substrate containing high percentages of assimilable sugars (hexoses and pentoses). However, it is also highly recalcitrant, and therefore it requires specific pretreatments in order to release its assimilable components. The main drawback of lignocellulose pretreatment is the generation of several by-products that can inhibit the microbial metabolism. In this review, we discuss the main aspects related to the cultivation of oleaginous microorganisms using lignocellulosic biomass as substrate, hoping to contribute to the development of a sustainable process for SCO production in the near future.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Lignocellulose pretreatments"

1

Munns, Craig Christopher Robert. "Development of physio-chemical pretreatments and mixed microbial cultures for the conversion of lignocellulosic biomass to useful products." Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28768.

Full text
Abstract:
There is increasing interest in producing biofuels; biofuels are preferable to fossil fuels as the biomass from which they are derived is seen as a renewable source, as opposed to fossil fuels which are a finite resource. “First Generation” biofuels are derived from food crops such as grains and sugar cane. The use of food crops is not sustainable in this age of increasing food insecurity. A promising alternative appears to be what is termed “Second Generation” feedstocks, such as energy crops like Miscanthus spp., and agricultural by-products. The problem with the use of second generation feedstocks is firstly that the sugars are locked up in the cell wall polymers (CWP), which need to be released by physio-chemical pre-treatments, that are costly and time consuming. The second problem is that not all the sugars that are released from CWP are able to be utilised by wild type product-forming organisms. However, model chassis organisms can be genetically modified to utilise these sugars and /or produce enzymes to degrade biomass which reduces the time and costs involved in the process. While engineering these organisms to utilise a range of monosaccharides has already been successful, engineering them to produce degradation enzymes is proving to be problematic. A potentially more effective system is to use co-cultures of both cellulose-degrading and product-forming organisms. Since this is a novel approach it is not known whether the two organisms are able to live together without any adverse effects. The aims of this study were firstly to determine whether mixed cultures of both cellulose-degrading and potential product-forming organisms could survive in the presence of one another, secondly whether the cellulose-degrading organisms could degrade potential feedstock down into their monosaccharide building blocks and thirdly whether the potential product-forming organisms could survive and utilise these monosaccharides for growth and potential fermentation. It was discovered that C. hutchinsonii can degrade both paper and Triticum aestivum straw polymers into their monosaccharide components and that B. subtilis can survive on the sugars released by C. hutchinsonii. It was also discovered that C. hutchinsonii and B. subtilis 168 can only tolerate an ethanol concentration of up to 2% (v/v) and that this is below the baseline for a biofuel system to be economically viable. Likewise, C. hutchinsonii and B. subtilis 168 have an even poorer tolerance for butanol; growth is inhibited by < 1% butanol in its growth media. A series of physio-chemical pre-treatments were developed in order to make the monosaccharides present in the cell wall polymers more accessible to microbial saccharification. Sequential pre-treatments, both physical milling and chemical hydrolysis in tandem, had the greatest effect on the bio chemistry of the biomass, but that these physio-chemical pre-treatments produced inhibitory compounds in the medium that retarded microbial growth. Attempts were made to genetically modified Bacillus subtilis 168 to produce lactic acid and ethanol by over expressing the native ldh gene under the highly-expressed promoter of the cspD gene and by integrating the fused pdc:adh gene from Z. mobilis under the same promoter. Transformation of B. subtilis to over express LDH was successful, with PCR confirmation of the correct insertion and enzyme activity for the ldh both in vitro and in vivo, with the latter producing more lactic acid aerobically than the wild type. Transformation of B. subtilis to express pdc:adh and subsequent production of ethanol was not successful.
APA, Harvard, Vancouver, ISO, and other styles
2

Badalato, Nelly. "Structure de déchets lignocellulosiques : effets sur la colonisation, les communautés microbienne et les performances de méthanisation, caractérisés par des approches fonctionnelles et haut-débit." Electronic Thesis or Diss., Paris, AgroParisTech, 2014. http://www.theses.fr/2014AGPT0002.

Full text
Abstract:
La méthanisation des composés lignocellulosiques présente un fort intérêt en raison de leur haut potentiel énergétique et de leur abondance, notamment dans les ordures ménagères résiduelles. Toutefois, leur complexité de structure et de composition rend ces matériaux difficilement dégradables en conditions anaérobies et l’utilisation de prétraitements est généralement requise afin d’améliorer leurs rendements de biodégradation. Outre l’effet de ces prétraitements sur la biodégradation de ces composés, la colonisation des lignocelluloses par les micro-organismes cellulolytiques est une étape clé pour l’efficacité de sa dégradation. Dans ce cadre, le travail de thèse a pour objectifs de mieux comprendre le déterminisme de la colonisation de déchets, d’établir le lien entre la colonisation des déchets lignocellulosiques et l'efficacité de leur dégradation et enfin de caractériser plus finement les mécanismes et interactions mises en jeu au sein de la biomasse. Afin de répondre à ces questions, une approche transversale a été développée, combinant des modèles de cultures de souches pures et des systèmes de méthanisation en laboratoire par des communautés complexes. Des approches intégratives ont été appliquées à l’étude de ces systèmes, couplant des analyses haut-débit (métagénomique/(méta)protéomique), un suivi physico-chimique de la biodégradation et des caractérisations physico-chimiques des composés lignocellulosiques étudiés. L’ensemble des résultats met en évidence le rôle des propriétés chimiques, micro-et macro¬structurales des composés lignocellulosiques dans leur récalcitrance, leur performances de dégradation et la réponse du compartiment microbien. La réalisation de la première étude de protéomique totale et quantitative sur la souche pure cellulolytique Clostridium cellulolyticum, modèle des Clostridia cellulolytiques mésophiles, a permis de mettre en évidence que la vitesse maximale de biodégradation du mouchoir en papier est supérieure à celle du coton et que cette dégradation est associée à un profil métabolique particulier, à une colonisation plus rapide et plus étendue et à une modulation quantitative du système cellulasique. D’autre part, une étude sur un système plus réaliste pour l’étude de la méthanisation des déchets lignocellulosiques a confirmé la bonne concordance entre ce système et le système modèle utilisé et a également permis de mettre en évidence les effets substrats sur la structure des communautés microbienne avec la dominance de la classe Bacteroidia en présence de mouchoir en papier et la forte proportion de la classe Spirochaetes en présence de coton. Enfin l’étude des effets de broyages très fins de la paille de blé et du carton plat ont mis en évidence les limites de ces prétraitements sur les performances de leur dégradation, avec l’effet positif modéré du broyage fin de la paille. Ils ont également montré la sensibilité des communautés microbiennes aux changements de surface du substrat, qui se manifeste par l'émergence de communautés parfois différentes en fonction du prétraitement mécanique appliqué. En conclusion, ce travail a permis de traiter sous un angle nouveau les questions liées à la récalcitrance des déchets lignocellulosiques en abordant à la fois les aspects structuraux, écologiques et fonctionnels. Ces résultats alimentent le corps de connaissances fondamentales sur les bioprocédés. Ils confirment que les matériaux lignocellulosiques sont particuliers parmi les déchets non-dangereux et qu’une exploitation plus large de leur potentiel énergétique nécessiterait la mise en œuvre de procédés spécifiquement adaptés
Lignocellulosic materials have a high energy potential and are abundant, especially in municipal solid waste and their methanization is a promising waste-to-energy bioprocess. However, owing to their highly complex and heterogeneous structure, they are recalcitrant to anaerobic conditions and the use of pre-treatments is usually required to improve their biodegradation yields. Besides, lignocellulose colonization by cellulolytic microorganisms is a key step for an efficient biodegradation. In this context, the PhD work aimed to better understand the factors affecting waste colonization, to establish the link between lignocellulosic waste colonization and its biodegradation efficiency and to characterize more precisely the mechanisms and interactions within the biomass. A transversal approach was developed, combining cultures of model pure strains and lab-scale methanization microcosms with a complex biomass. Integrated approaches were applied to these studies, combining high-throughput analyses (metagenomics/(meta) proteomics), physico-chemical monitoring of bioconversion and finally physico-chemical characterization of substrates. The main results highlight the important role of lignocellulosic materials chemical and micro-and macro -structural features for their recalcitrance, their biodegradation efficiency and the response of the microbial compartment. The first global quantitative proteomic study on the cellulolytic model Clostridium cellulolyticum was conducted. Results showed an increased biodegradation rate of the facial tissue compared to cotton. This enhanced biodegradation was associated to a particular metabolic profile, a faster and more extensive colonization and finally a quantitative modulation of the cellulasic system. On the other hand, study of lignocellulosic waste methanization confirmed the good agreement between this more realistic system and the above-described model system. It also provided new information about the effects of substrate on microbial community structure. Noticeably, Bacteroidia members predominated in the presence of tissue and a high proportion of Spirochaetes members was observed in the presence of cotton. Finally, study of the effects of wheat straw and cardboard dry grinding revealed the limitations of these pretreatments on biodegradation efficiency. Main key points were a moderate positive effect of wheat straw fine grinding, and the sensitivity of the microbial communities to substrate surface characteristics, as evidenced by the emergence of different microbial communities according to the applied mechanical pretreatment. In conclusion, this work brings new perspectives to the study of lignocellulosic waste recalcitrance by addressing both the structural, functional and ecological aspects. These results contribute to the core fundamental knowledge on bioprocesses. They confirm that the lignocellulosic materials are specific among non-hazardous waste and require the implementation of adapted specific processes
APA, Harvard, Vancouver, ISO, and other styles
3

Monlau, Florian. "Application of pretreatments to enhance biohydrogen and/or biomethane from lignocellulosic residues : linking performances to compositional and structural features." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20178/document.

Full text
Abstract:
Dans le futur, différentes sources d'énergies renouvelables comme les énergies de seconde génération produites à partir de déchets lignocellulosiques seront nécessaires pour palier à l'épuisement des énergies fossiles. Parmi ces énergies de seconde génération, le biohydrogène, le méthane et l'hythane produits à partir de procédés fermentaires anaérobies représentent des alternatives prometteuses. Cependant la production de biohydrogène et de méthane à partir de résidus lignocellulosiques est limitée par leurs structures récalcitrantes et une étape de prétraitement en amont des procédés fermentaires est souvent nécessaire. Ce travail a pour but d'étudier l'impact des facteurs biochimiques et structurels des résidus lignocellulosiques sur les performances de production d'hydrogène et de méthane, pour pouvoir par la suite développer des stratégies de prétaitements adaptées. Tout d'abord, sur un panel de vingt substrats lignocellulosiques, les potentiels hydrogène et méthane ont été corrélés aux paramètres biochimiques et structurels. Les résultats ont mis en évidence que le potentiel hydrogène est uniquement corrélé positivement à la teneur en sucres solubles. La production de méthane quant à elle est négativement corrélée à la teneur en lignine et, à un moindre degré, à la cristallinité de la cellulose, mais positivement à la teneur en sucres solubles, holocelluloses amorphes et protéines. Par la suite, des stratégies de prétraitements ont été établies pour améliorer la production d'hydrogène et de méthane. Le couplage prétaitements alcalins/enzymatique ainsi que les prétraitements à l'acide dilué, efficaces pour solubiliser les holocelluloses en sucres solubles ont été appliqués en amont de la production d'hydrogène. En combinant le pretraitement alcalin avec une hydrolyse enzymatique, le potentiel hydrogène des tiges de tournesol fut multiplié par quinze. En revanche, suite aux prétraitements acides, la production d'hydrogène fut inhibée à cause de la libération de sous-produits (furfural, 5-HMF et composés phénoliques) engendrant un changement d'espèces bactériennes vers des espèces non productrices d'hydrogène. Pour la production de méthane, cinq prétraitements thermo-chimiques (NaOH, H2O2, Ca(OH)2, HCl and FeCl3) efficaces pour délignifier ou solubiliser les holocelluloses ont été étudiés. Parmi ces prétraitements, la meilleure condition fut 55°C à une concentration de 4% NaOH pendant 24 h, résulant en une augmentation du potentiel méthane variant de 29 à 44 % en fonction des tiges de tournesol. Cette condition fut par la suite validée en réacteurs anaérobies continusavec une augmentation de 26.5% de la production de méthane. Un procédé à deux étages couplant la production d'hydrogène en batch suivi de la production de méthane en continu fut aussi étudié. Néanmoins, aucune différence significative en termes d'énergie produite ne fut observée entre les procédés à deux étages (H2/CH4) et à un étage (CH4)
In the future, various forms of renewable energy, such as second generation biofuels from lignocellulosic residues, will be required to replace fossil fuels. Among these, biohydrogen and methane produced through fermentative processes appear as interesting candidates. However, biohydrogen and/or methane production of lignocellulosic residues is often limited by the recalcitrant structure and a pretreatment step prior to fermentative processes is often required. Up to date, informations on lignocellulosic characteristics limiting both hydrogen and methane production are limited.Therefore, this work aims to investigate the effect of compositional and structural features of lignocellulosic residues on biohydrogen and methane performances for further developping appropriate pretreatments strategies. Firstly, a panel of twenty lignocellulosic residues was used to correlate both hydrogen and methane potentials with the compositional and structural characteristics. The results showed that hydrogen potential positively correlated with soluble carbohydrates only. Secondly, methane potential correlated negatively with lignin content and, in a lesser extent, with crystalline cellulose, but positively with the soluble carbohydrates, amorphous holocelluloses and protein contents. Pretreatments strategies were further developed to enhance both hydrogen and methane production of sunflower stalks. Dilute-acid and combined alkaline-enzymatic pretreatments, which were found efficient in solubilizing holocelluloses into soluble carbohydrates, were applied prior to biohydrogen potential tests. By combined alkaline-enzymatic pretreatment, hydrogen potential was fifteen times more than that of untreated samples. On the contrary, hydrogen production was inhibited after dilute-acid pretreatments due to the release of byproducts (furfural, 5-HMF and phenolic compounds) that led to microbial communities shift toward no hydrogen producing bacteria. Similarly, methane production, five thermo-chemical pretreatments (NaOH, H2O2, Ca(OH)2, HCl and FeCl3) found efficient in delignification or solubilization of holocelluloses, were considered. Among these pretreatments, the best conditions were 55°C with 4% NaOH for 24 h and led to an increase of 29-44 % in methane potential of sunflower stalks. This pretreatment condition was validated in one stage anaerobic mesophilic continuous digester for methane production and was found efficient to enhance from 26.5% the total energy produced compared to one stage-CH4 alone. Two-stage H2 (batch) / CH4 (continuous) process was also investigated. Nevertheless, in term of energy produced, no significant differences were observed between one-stage CH4 and two-stage H2 /CH4
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Wei. "Pretreatment and enzymatic hydrolysis of lignocellulosic materials." Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=1951.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2001.
Title from document title page. Document formatted into pages; contains xii, 173 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 138-142).
APA, Harvard, Vancouver, ISO, and other styles
5

Warsame, Mohamed. "Saccharification of lignocellulose." Thesis, Malmö högskola, Fakulteten för hälsa och samhälle (HS), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-25910.

Full text
Abstract:
Den ökande efterfrågan på energi och den förväntade nedgången i råoljeproduktion har lett till ett enormt sökande efter nya energikällor.Cellväggen i växter består till stor del av lignocellulosa som i sin tur innehåller cellulosa och hemicellulosa. Dessa polysackarider är av stor betydelse för sökandet efter förnyelsebar energi.Cellväggen måste förbehandlas innan den kan brytas ner till enkla sockerarter. Efter nedbrytning kan monosackariderna användas till produktion av etanol eller biogas genom väl etablerade fermenteringstekniker. Syftet med denna studie var att jämföra och utvärdera några metoder som används vid degradering av lignocellulosa. Tre behandlingar har jämfört för att se vilken som ger mest avkastning i form av monosackarider. Vetehalm användes som substrat och hydrolyseras med hjälp av tre kommersiella enzymblandningar. Proverna förbehandlades före den enzymatiska reaktionen med antingen mikrovågor eller ångexplosion.Resultaten visade att en behandling med mikrovågsbestrålning eller ångexplosion kombinerad med enzymhydrolys gav högst avkastning. De slutsatser som kan dras är att en mekanisk förbehandling ökar utbytet drastiskt men är otillräcklig i sig. Ytterligare enzymatisk behandling är nödvändig att erhålla större mängder enkla sockerarter från lignocellulosa.
The increasing energy demand and the anticipated decline in crude oil production has led to an immense search for new energy sources. Plant cell walls contain lignocellulose that conserve great amounts of energy. These polysaccharides are of high importance for the search of renewable energy sources. Pretreatment of the cell wall is necessary in order to hydrolyse it to its component sugars. Once degraded to monomeric sugars it can be fermented to either ethanol or biogas through established fermentation technologies.The aim of this thesis was to compare and evaluate some of the methods used for sacchrification of lignocellulose. Three treatments where compared to determine which is highest yielding. These are enzymatic hydrolysis, microwave irradiation and steam explosion.Wheat straw was used as substrate and hydrolysed by three commercial enzyme mixtures. Samples were pretreated before the enzymatic reaction with either microwave or steam explosion. Results showed that a treatment of either microwave irradiation or steam explosion combined with enzyme hydrolysis gives the highest yield in monomeric sugars. The conclusions that can be drawn are that mechanical pretreatment increases yield drastically but is insufficient in its self. Further enzymatic treatment of wheat straw is necessary to obtain high amounts of simple sugars.
APA, Harvard, Vancouver, ISO, and other styles
6

Brandt, Agnieszka. "Ionic liquid pretreatment of lignocellulosic biomass." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9166.

Full text
Abstract:
This thesis is concerned with the thermal treatment of lignocellulosic biomass using ionic liquids for the purpose of comminution via dissolution, for fractionating the biological composite and for obtaining aqueous solutions of carbohydrate monomers from the pulp via enzymatic hydrolysis. A major focus was the relationship between the choice of the anion and the effectiveness of the treatment. The synthesis of a range of 1-butyl-3-methylimidazolium ionic liquids with strongly hydrogen-bond basic anions was accomplished. Selected, process-relevant physicochemical properties were measured, such as the Kamlet-Taft solvent polarity, hygroscopicity and thermal stability. It was shown that 1-butyl-3-methylimidazolium acetate is not stable at 120°C, while other ionic liquids e.g. 1-butyl-3-methylimidazolium hydrogen sulfate exhibit very good long-term thermal stability. It was shown that hydrogen-bond basic 1-butyl-3-methylimidazolium ionic liquids attract more than stoichiometric quantities of water when exposed to air, suggesting that ionic liquid pretreatment under anhydrous conditions is difficult to achieve. Dissolution of air-dried wood chips in 1-butyl-3-methylimidazolium ionic liquids was attempted. It was shown that the large particle size and the moisture contained in the biomass hamper complete dissolution. The hydrogen-bond basicity of the ionic liquid, described by the Kamlet-Taft parameter ß, was correlated with the ability to expand as well as partially and anisotropically dissolve wood chips. Pretreatment of lignocellulosic biomass with 1-butyl-3- methylimidazolium methyl sulfate, 1-butyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium methanesulfonate was explored and high saccharification yields were reported. It was found that successful application of methyl sulfate and hydrogen sulfate ionic liquids requires addition of water and that comparatively high water contents are tolerated. Fractionation of lignocellulose into an insoluble cellulose fraction, a solubilised hemicellulose fraction and a lignin containing precipitate was achieved. The influence of water content, pretreatment time and biomass type on the enzymatic saccharification yield and the extent of hemicellulose solubilisation, hydrolysis and dehydration were examined.
APA, Harvard, Vancouver, ISO, and other styles
7

Corredor, Deisy Y. "Pretreatment and enzymatic hydrolysis of lignocellulosic biomass." Diss., Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/693.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kvillborn, Carin. "Enzymatic Pretreatment of Lignocellulose Rich Waste for Improved Biogas Production." Thesis, Linköpings universitet, Tema vatten i natur och samhälle, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-104974.

Full text
Abstract:
The present study aimed to investigate the methane yield from anaerobic digestion of a lignocellulosic substrate subjected to different pretreatments. The lignocellulosic forest residues materials were milled and then pretreated with the organic solvent NMMO (N-Methylmorpholine N-oxide) and/or the lignolytic enzymes laccase and versatile peroxidase at a dosage of 60 U g-1 total solids (TS) substrate. The amount of methane produced was studied in a biomethane potential assay with inocula from a thermophilic biogas reactor treating municipal waste. All samples were run in triplicates. Due to the large amount of samples, two biomethane potential assays were conducted: series 10 & 20 and series 30 & 40. The gas production results show that NMMO-treated forest residues yielded 130 NmL CH4 g-1 volatile solids (VS) substrate and the untreated forest residues yielded 95 NmL CH4 g-1 VS substrate for series 10 & 20. For series 30 & 40, both untreated and NMMO-treated forest residues yielded 140 NmL CH4 g-1 VS substrate. NMMO-treatment appears to be favourable and no advantages from the enzyme pretreatment could be seen in terms of gas yield. An analysis of the reaction fluid after the enzymatic treatment showed presence of phenols, an indication of successful lignin hydrolysis.
Studien avsåg att undersöka metanutbytet från anaerob nedbrytning med förbehandlad lignocellulosa som substrat. Lignocellulosamaterialet, i form av skogsavfall, maldes och förbehandlades därefter med det organiska lösningsmedlet NMMO (N-metylmorfolin-N-oxid) och/eller de lignolytiska enzymerna laccase och versatile peroxidas med dosen 60 U g-1 torrsubstanshalt (TS). Mängden producerad metan undersöktes i en biometanpotentialanalys med inocula från en termofil biogasreaktor, som behandlade hushållsavfall. Triplikat av varje prov användes för att öka den statistiska stabiliteten. På grund av det stora antalet prover genomfördes studien i två omgångar: Serie 10 & 20 samt serie 30 & 40. Resultaten visade att det NMMO-behandlade skogsavfallet gav 130 NmL CH4 g-1 organisk substans (VS) och det obehandlade skogsavfallet gav 95 NmL CH4 g-1 VS i serie 10 & 20. Både obehandlat och NMMO- behandlat skogsavfall gav 140 NmL CH4 g-1 VS i serie 30 & 40. Förbehandling med NMMO verkar vara fördelaktig medan enzymbehandling endast resulterade i en smärre ökning av gasproduktionen. En analys av vätskan efter enzymbehandlingen visade förekomst av fenoler, vilket visar på en lyckad ligninnedbrytning.
APA, Harvard, Vancouver, ISO, and other styles
9

Narayana, Swamy Naveen. "Supercritical Carbon Dioxide Pretreatment of Various Lignocellulosic Biomasses." Ohio University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1269524607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Moxley, Geoffrey W. "Studies of Cellulosic Ethanol Production from Lignocellulose." Thesis, Virginia Tech, 2007. http://hdl.handle.net/10919/43372.

Full text
Abstract:
At present, the worldâ s transportation sector is being principally supplied by fossil fuels. However, energy consumption in this sector is drastically increasing and there are concerns with supply, cost, and environmental issues with the continuing use of fossil fuels. Utilizing non-petroleum ethanol in the transportation sector reduces the dependence on oil, and allows for cleaner burning of gasoline.

Lignocellulose materials are structurally composed of five types of polymeric sugars, glucan, galactan, mannan, arabinan, and xylan. NREL has developed a quantitative saccharification (QS) method for determining carbohydrate composition. We proposed a new protocol based on the NREL 2006 Laboratory Analytical Procedure â Determination of Structural Carbohydrates and Lignin in Biomassâ (Sluiter et al. 2006a) with a slight modification, in which xylose concentration was determined after the secondary hydrolysis by using 1% sulfuric acid rather than 4% sulfuric acid. We found that the current NREL protocol led to a statistically significant overestimation of acid-labile xylan content ranging from 4 to 8 percent.

Lignocellulosic biomass is naturally recalcitrant to enzymatic hydrolysis, and must be pretreated before it can be effectively used for bioethanol production. One such pretreatment is a fractionation process that separates lignin and hemicellulose from the cellulose and converts crystalline cellulose microfibrils to amorphous cellulose. Here we evaluated the feasibility of lignocellulose fractionation applicable to the hurds of industrial hemp. Hurds are the remaining material of the stalk after all leaves, seeds, and fiber have been stripped from the plant. After optimizing acid concentration, reaction time and temperature, the pretreated cellulosic samples were hydrolyzed to more than 96% after 24 hours of hydrolysis (enzyme loading conditions of 15 FPU/g glucan Spezyme CP and 60 IU/g glucan Novozyme 188) at the optimal pretreatment condition (> 84% H3PO4, > 50 °C and > 1 hour). The overall glucose and xylose yields were 89% (94% pretreatment; 96% digestibility) and 61%, respectively. All data suggest the technical feasibility of building a biorefinery based on the hurds of industrial hemp as a feedstock and a new lignocellulose fractionation technology for producing cellulosic ethanol. The choice of feedstock and processing technology gives high sugar yields, low processing costs, low cost feedstock, and low capital investment.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Lignocellulose pretreatments"

1

Bajpai, Pratima. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0687-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bajpai, Pratima. Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4013-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Humbird, David. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol: Dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Golden, CO: National Renewable Energy Laboratory, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bajpai, Pratima. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bajpai, Pratima. Pretreatment of Lignocellulosic Biomass for Biofuel Production. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bajpai, Pratima. Deep Eutectic Solvents for Pretreatment of Lignocellulosic Biomass. Springer Singapore Pte. Limited, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lignocellulose pretreatments"

1

Shafiei, Marzieh, Rajeev Kumar, and Keikhosro Karimi. "Pretreatment of Lignocellulosic Biomass." In Lignocellulose-Based Bioproducts, 85–154. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14033-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Takara, Devin, Prachand Shrestha, and Samir Kumar Khanal. "Lignocellulosic Biomass Pretreatment." In Bioenergy and Biofuel from Biowastes and Biomass, 172–200. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/9780784410899.ch09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Hongzhang. "Pretreatment and Primary Refining of Lignocelluloses." In Biotechnology of Lignocellulose, 143–85. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6898-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Roy, Shyamal. "Physicochemical Pretreatments." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 13–22. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Roy, Shyamal. "Physical Pretreatments." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 6–12. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roy, Shyamal. "Chemical Pretreatments." In Pre-Treatment Methods of Lignocellulosic Biomass for Biofuel Production, 23–44. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003203414-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Woiciechowski, Adenise Lorenci, Luciana Porto de Souza Vandenberghe, Susan Grace Karp, Luiz Alberto Junior Letti, Júlio Cesar de Carvalho, Adriane Bianchi Pedroni Medeiros, Michele Rigon Spier, Vincenza Faraco, Vanete Thomaz Soccol, and Carlos Ricardo Soccol. "The Pretreatment Step in Lignocellulosic Biomass Conversion: Current Systems and New Biological Systems." In Lignocellulose Conversion, 39–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37861-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Tae Hyun. "Pretreatment of Lignocellulosic Biomass." In Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers, 91–110. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118642047.ch6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bajpai, Pratima. "Pretreatment of Lignocellulosic Biomass." In SpringerBriefs in Molecular Science, 17–70. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0687-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McMillan, James D. "Pretreatment of Lignocellulosic Biomass." In ACS Symposium Series, 292–324. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/bk-1994-0566.ch015.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lignocellulose pretreatments"

1

BICHOT, Aurélie, Jean Philippe DELGENES, Marilena RADOIU, and Diana GARCIA BERNET. "MICROWAVE PRETREATMENT OF LIGNOCELLULOSIC BIOMASS TO RELEASE MAXIMUM PHENOLIC ACIDS." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9629.

Full text
Abstract:
The objectives fixed by world’s governments concerning energy transition have aroused interest on lignocellulosic biomass utilization for bioenergy and green chemistry applications. However, due to their resistant structure, deconstructive pretreatments are necessary to render possible biological conversions of these lignocellulosic residues. Microwave (MW) treatment has been reported as efficient in many biotechnology fields; biomass pretreatment for biorefinery purposes is another possible application. This work presents the effects of MW pretreatment on underexploited natural agri-food biomass of economic interest: wheat bran, miscanthus stalks and corn stalks. Various parameters were studied including solvent, power density, treatment duration, pressure. Effects were evaluated by a complete biomass characterization before and after treatment, with main focus on phenolic acids release. In the tested conditions and when compared to the high NaOH consumption reference extraction method for phenolic acids, the atmospheric pressure (open vessel) microwave treatment did not allow attaining high acid yields (Fig.1). The most important parameters for improving treatment efficiency were power density and solvent. In order to increase yields, microwave treatments under pressure were carried out to reach higher temperatures while taking care as to not exceed the acid denaturation temperature (150°C) and to avoid the formation of inhibitors. Phenolic acids yields and biomass composition are currently being processed and will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Nikolić, Valentina, Slađana Žilić, Danka Milovanović, Beka Sarić, and Marko Vasić. "NOVEL TRENDS IN APPLICATION AND PRETREATMENT OF LIGNOCELLULOSIC AGRICULTURAL WASTE." In 1st International Symposium on Biotechnology. University of Kragujevac, Faculty of Agronomy, 2023. http://dx.doi.org/10.46793/sbt28.271n.

Full text
Abstract:
Lignocellulosic biomass represents the most abundant renewable material in the world, whereas agricultural residues, including those from maize cultivation, comprise a significant fraction of the total plant waste that can be repurposed for various applications. Lignocellulosic feedstocks are non-edible and consist mainly of: cellulose, hemicellulose, and lignin, along with extractive compounds. Pretreatment is required to separate the lignocellulosic biomass into its constituents for efficient utilization. Even after extensive research and development of numerous techniques, pretreatment remains one of the most expensive phases in converting lignocellulosic biomass into biobased products.
APA, Harvard, Vancouver, ISO, and other styles
3

Weitao Zhang, Minliang Yang, and Kurt A. Rosentrater. "Pretreatment Methods for Lignocellulosic Biomass to Ethanol." In 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131594712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Toma, Magdalena-Laura, Gheorghe Voicu, Mariana Ferdes, and Mirela-Nicoleta Dinca. "Preliminary research in microorganism pretreatment of biomass for lignocellulose degradation." In 17th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2018. http://dx.doi.org/10.22616/erdev2018.17.n422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chatteriee, Sayan, Abhirup Ghosh, Talha Khan, Soumyadip Roy, Anustup Chatterjee, and Mainak Biswas. "Modeling of Pretreatment Process of Lignocellulosic Biomass by Dilute Acid Hydrolysis." In 2019 3rd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). IEEE, 2019. http://dx.doi.org/10.1109/iementech48150.2019.8981124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guo, Wanqian, Ze He, and Jing Li. "The Development Of Hydrogen Production From Lignocellulosic Biomass: Pretreatment And Process." In 2016 International Conference on Advances in Energy, Environment and Chemical Science. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/aeecs-16.2016.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mutrakulcharoen, Parita, Malinee Sriariyanun, Wasinee Pongprayoon, Theerawut Phusantisampan, and Supacharee Roddecha. "Recycling of 1-ethyl-3-methylimidazolium acetate in lignocellulosic biomass pretreatment." In the 8th International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3323716.3323723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiele Xu, Ximing Zhang, Pankaj Pandey, and Jay J Cheng. "Pretreatment of Lignocellulosic Biomass with Recycled Black Liquor for Sugar Production." In 2012 Dallas, Texas, July 29 - August 1, 2012. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.41807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Luo, Shaohua, Jinghua Cheng, Ruming Zhao, and Dachun Gong. "Evaluation of enzymatic hydrolysis on the process of wet explosion pretreatment for the lignocellulose." In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE, 2011. http://dx.doi.org/10.1109/iceceng.2011.6058347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ARASTEH, ALI, and RASOOL GHASEMZADEH. "Biological pretreatment of lignocellulosic materials with white rot fungi for enzymatic hydrolysis." In Fourth International Conference on Advances in Bio-Informatics and Environmental Engineering - ICABEE 2016. Institute of Research Engineers and Doctors, 2016. http://dx.doi.org/10.15224/978-1-63248-100-9-14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Lignocellulose pretreatments"

1

Zhu, Junyong, Chao Zhang, Roland Gleisner, Carl Houtman, and Xuejun Pan. Bioconversion of woody biomass to biofuel and lignin co-product using sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2016. http://dx.doi.org/10.2737/fpl-gtr-240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Humbird, D., R. Davis, L. Tao, C. Kinchin, D. Hsu, A. Aden, P. Schoen, et al. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1013269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography