Academic literature on the topic 'Lightweight protokol'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lightweight protokol.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lightweight protokol"
Prasetyo, Inung Bagus, Mahar Faiqurahman, and Zamah Sari. "Rancang Bangun Control dan Monitoring Sensor Node WSN Menggunakan Protokol Message Queue Telemetry Transport (MQTT)." Jurnal Repositor 2, no. 1 (January 4, 2020): 15. http://dx.doi.org/10.22219/repositor.v2i1.476.
Full textYu, Song Sen, Yun Peng, and Jia Jing Zhang. "A Lightweight RFID Mechanism Design." Advanced Materials Research 216 (March 2011): 120–23. http://dx.doi.org/10.4028/www.scientific.net/amr.216.120.
Full textTsai, Chia-Wei, Chun-Wei Yang, and Narn-Yih Lee. "Lightweight mediated semi-quantum key distribution protocol." Modern Physics Letters A 34, no. 34 (November 5, 2019): 1950281. http://dx.doi.org/10.1142/s021773231950281x.
Full textWu, Yongdong, and Hweehua Pang. "A Lightweight Buyer-Seller Watermarking Protocol." Advances in Multimedia 2008 (2008): 1–7. http://dx.doi.org/10.1155/2008/905065.
Full textSafkhani, Masoumeh, Nasour Bagheri, and Mahyar Shariat. "On the Security of Rotation Operation Based Ultra-Lightweight Authentication Protocols for RFID Systems." Future Internet 10, no. 9 (August 21, 2018): 82. http://dx.doi.org/10.3390/fi10090082.
Full textOh, JiHyeon, SungJin Yu, JoonYoung Lee, SeungHwan Son, MyeongHyun Kim, and YoungHo Park. "A Secure and Lightweight Authentication Protocol for IoT-Based Smart Homes." Sensors 21, no. 4 (February 21, 2021): 1488. http://dx.doi.org/10.3390/s21041488.
Full textMansoor, Khwaja, Anwar Ghani, Shehzad Chaudhry, Shahaboddin Shamshirband, Shahbaz Ghayyur, and Amir Mosavi. "Securing IoT-Based RFID Systems: A Robust Authentication Protocol Using Symmetric Cryptography." Sensors 19, no. 21 (November 1, 2019): 4752. http://dx.doi.org/10.3390/s19214752.
Full textHe, Hong, Qi Li, and Zhi Hong Zhang. "RFID Security Authentication Protocol Based on Hash for the Lightweight RFID Systems." Applied Mechanics and Materials 380-384 (August 2013): 2831–36. http://dx.doi.org/10.4028/www.scientific.net/amm.380-384.2831.
Full textChen, Chien-Ming, Shuai-Min Chen, Xinying Zheng, Pei-Yu Chen, and Hung-Min Sun. "A Secure RFID Authentication Protocol Adopting Error Correction Code." Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/704623.
Full textAseeri, Aisha, and Omaimah Bamasag. "Achieving protection against man-in-the-middle attack in HB family protocols implemented in RFID tags." International Journal of Pervasive Computing and Communications 12, no. 3 (September 5, 2016): 375–90. http://dx.doi.org/10.1108/ijpcc-03-2016-0015.
Full textDissertations / Theses on the topic "Lightweight protokol"
Dvorský, Petr. "Datový koncentrátor." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442455.
Full textVidal, Allan. "libfluid: a lightweight OpenFlow framework." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/639.
Full textRedes-definidas por software (SDN) introduzem um paradigma de controle de redes que é centralizado em um software controlador, que se comunica com dispositivos de rede através de protocolos padronizados para configurar suas políticas de encaminhamento. Implementações existentes de protocolos SDN (como OpenFlow) são geralmente construídas para uma plataforma de controlador ou dispositivo de rede e restringem escolhas como linguagem de programação, versões do protocolo a serem usadas e características suportadas. Uma arquitetura de software que permita controladores e dispositivos de rede usarem o protocolo OpenFlow (em versões existentes e futuras) pode beneficiar desenvolvedores de aplicações de redes e fabricantes, reduzindo o esforço de de desenvolvimento. Para este fim, apresentamos libfluid: um arcabouço leve (simples e minimalista) para adicionar suporte a OpenFlow onde ele for necessário. Construímos uma única base de código para implementar suporte ao protocolo de maneira portável, rápida e fácil de usar, um desafio que envolve escolhas de tecnologia, decisões arquiteturais e a definição de uma API mínimalística. A implementação foi testada com sucesso em todos os cenários propostos e contribui com o estado da arte através de alguns novos paradigmas para arcabouços OpenFlow.
Software-defined networking (SDN) introduces a network control paradigm that is centered in controller software that communicates with networking devices via standardized protocols in order to configure their forwarding behavior. Current SDN control protocol implementations (such as OpenFlow) are usually built for one controller or networking device platform, and restrict choices regarding programming languages, protocol versions and feature. A single software architecture that enables controllers and networking devices to use the OpenFlow protocol (for existing and future protocol versions) can benefit network application developers and manufacturers, reducing development effort. Towards this goal, we present libfluid: a lightweight (simple and minimalistic) framework for adding OpenFlow support wherever it is needed. We built a single code base for implementing protocol support in a portable, fast and easy to use manner, a challenge that involved technology choices, architectural decisions and the definition of a minimal API. The implementation was shown to work in all proposed scenarios and contributes to the state-of-the-art with a few novel paradigms for OpenFlow frameworks.
Wang, Yingzhuo. "PDF shopping system with the lightweight currency protocol." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2820.
Full textMtita, Collins. "Lightweight serverless protocols for the internet of things." Thesis, Evry, Institut national des télécommunications, 2016. http://www.theses.fr/2016TELE0010/document.
Full textThis thesis addresses the security and privacy challenges relevant to the resource constrained devices in the era of pervasive computing. Pervasive computing, a term coined by Schechter to describe the idea of computing services available anytime, anywhere and on demand, is characterized by seamless interactions between heterogeneous players in the Internet. This phenomenon allows intelligent chips, sensors or microcontrollers to be embedded into everyday objects to enable them generate, communicate and share information. Pervasive computing accelerates technological evolution by integrating small and resource constrained devices to the Internet arena, eventually opening doors to new services requiring seamless interactions and integrations with the existing technologies, infrastructures and services. The nature of the information generated, stored and shared by resource constrained devices may require proper security and privacy guarantees. Towards that end, the classical security solutions are not ideal candidates to solve the security and privacy challenges in pervasive systems for two reasons. First, classical security protocols require a lot of resources from the host devices while most of the pervasive devices have very strict resource constraints. Second, most classical security solutions work in a connected mode, which requires constant communication between devices and centralized servers for authentication and authorization purposes. However, pervasive devices may be working in isolated areas with intermittent network coverage and connectivity. Thus, it is ideal to come up with alternative solutions suitable for heterogeneous pervasive devices to smoothly interact, authenticate and securely share information. One of the suitable alternative solutions is the serverless protocols. The term “serverless protocol” refers to the mechanism of enabling centrally controlled devices to autonomously authenticate one another, or other heterogeneous devices, without an active participation of the centralized authentication or authorization servers. Serverless protocols prioritize on securing proximity communication between heterogeneous devices while optimizing on the little resources available. In this thesis, we tackle the challenges of pervasive systems by proposing lightweight and efficient serverless protocols for authenticating heterogeneous pervasive devices during proximity communication. Our proposed protocols derive their originality from the fact that they do not require the communicating parties to have prior relationships with each other, nor to have any previously shared authentication information with each other. Moreover, our proposed solutions incorporate context information to enforce automatic parameter expiry. This property is not supported by most of the earlier versions of the serverless protocol schemes, hence making them vulnerable to different attacks. Three novel contributions are proposed in this thesis. First, we propose a serverless lightweight mutual authentication protocol for heterogeneous devices. The first contribution includes a formal validation using the AVISPA tool. Second, we propose two complementing protocols using RFID (Radio-Frequency Identification) as a core technology. The first protocol performs mass authentication between an RFID reader and a group of tags and the second protocol performs a secure search for a target tag among a group of tags. The second contribution includes two formal validations; one is done using the AVISPA tool and the other is done using the CryptoVerif tool. After a thorough study of serverless protocols, we propose our third contribution, a concise guide on how to develop secure and efficient serverless protocols relevant to the pervasive systems
Wang, Jun. "Vidi: a Lightweight Protocol Between Visualization Systems and Digital Libraries." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33845.
Full textMaster of Science
Pinto, Carol Suman. "Optimization of Physical Unclonable Function Protocols for Lightweight Processing." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72868.
Full textMaster of Science
McGinnis, Jarred P. "On the mutability of protocols." Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/1403.
Full textAnglés, Tafalla Carles. "Lightweight and Privacy-Preserving Access Protocols for Low Emission Zones." Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670492.
Full textLas Zonas de Bajas Emisiones (ZBE), es decir, áreas donde se aplican ciertas restricciones o recargos a sus usuarios de acuerdo con las emisiones de sus vehículos, se han convertido en uno de los mecanismos más populares para abordar la congestión vial y la contaminación medioambiental en las grandes ciudades. Aunque las ZBE han demostrado ser efectivas contra esta problemática, también han sido motivo de crítica en la literatura actual debido a la amenaza que representan para la privacidad de sus usuarios. Los sistemas desplegados actualmente para hacer cumplir las restricciones que implementan las ZBEs dependen del uso indiscriminado de redes de cámaras para determinar la ubicación de los usuarios, requiriendo un gran número de infraestructuras dificultando su despliegue en escenarios reales. Además, todos estos sistemas revelan una fuerte dependencia hacia entidades centralizadas en la verificación de acceso de vehículos y el cobro de tarifas, introduciendo un “Single Point of Failure” que representa una amenaza para la seguridad y estabilidad de dichos sistemas. El objetivo de esta tesis es contribuir con nuevos protocolos para el control de acceso en ZBE con el fin de abordar los problemas de implementación y centralización presentes en los trabajos de la literatura actual, proporcionando medidas efectivas contra el fraude que preserven la privacidad de los usuarios honestos. Bajo estas premisas, en nuestra primera contribución proponemos un sistema de control de acceso para ZBE lo suficientemente ligero computacionalmente como para ser utilizado en infraestructuras de bajo coste. En lo que respecta a nuestra segunda y tercera contribución, se proponen dos protocolos de control de acceso para ZBE con el objetivo de poner fin a la centralización que ostentan algunas terceras partes en los procesos de registro del acceso de vehículos y cómputo de tarifas en favor del paradigma descentralizado que confiere el Blockchain.
In the last years, Low Emission Zones (LEZ), i.e. areas where some restrictions and surcharges are applied to polluting vehicles, have emerged as one of the most popular mechanisms to tackle urban traffic congestion and environmental pollution. The rapid proliferation of LEZs through all Europe is clear example of this increasing trend. Even though LEZs have proven to be an effective measure against those issues, they have also been criticized in the literature due to the relevant privacy threat that they pose to the drivers passing by. In particular, current deployed systems used to enforce LEZs strongly depend on the indiscriminate use of camera networks to track the drivers' whereabouts, requiring infrastructures that can hinder their deployment in real scenarios. Moreover, these solutions also reveal a strong dependence on centralized entities to manage the vehicles' access acknowledgment, fare ascertaining and fee payment. The inherent reliance on those entities poses a single point of failure, jeopardizing the system's security and stability. The aim of this thesis is to contribute with novel privacy-preserving protocols for LEZ Access Control schemes which tackle the deployability and centralization issues found in the current literature works, while providing effective anti-fraud measures to preserve the privacy of the drivers who behave honestly. Under these premises, in the first contribution, we propose an access control system for LEZs lightweight enough to be used in low-cost infrastructures, whose cornerstone is its deployability in real scenarios. Regarding our second and third contributions, two access control protocols for LEZs are proposed in order to shed the centralized position that third parties, responsible of registering vehicle accesses and charging fees, hold in favor of the blockchain decentralized paradigm. The privacy-preserving mechanisms used in those works address the user's privacy requirements that a public ledger like blockchain demands.
Ferrari, Nico. "Context-Based Authentication and Lightweight Group Key Establishment Protocol for IoT Devices." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36975.
Full textGebremichael, Teklay. "Lightweight Cryptographic Group Key Management Protocols for the Internet of Things." Licentiate thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-35607.
Full textVid tidpunkten för framläggningen av avhandlingen var följande delarbete opublicerat: delarbete 3 (manuskript).
At the time of the defence the following paper was unpublished: paper 3 (manuscript).
SMART (Smarta system och tjänster för ett effektivt och innovativt samhälle)
Books on the topic "Lightweight protokol"
Howes, Tim. LDAP: Programming directory-enabled applications with lightweight directory access protocol. Indianapolis, Ind: Macmillan Technical Publishing, 1997.
Find full textPeter, Loshin, ed. Big book of lightweight directory access protocol (LDAP) RFCs. San Francisco, Calif: Morgan Kaufmann, 2000.
Find full textBlokdyk, Gerardus. Lightweight Directory Access Protocol a Complete Guide - 2020 Edition. Emereo Pty Limited, 2020.
Find full textHillar, Gaston C. Hands-On MQTT Programming with Python: Work with the lightweight IoT protocol in Python. Packt Publishing, 2018.
Find full textBook chapters on the topic "Lightweight protokol"
Heer, Tobias. "Lightweight HIP." In Host Identity Protocol (HIP), 117–59. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.ch8.
Full textCarpent, Xavier, Paolo D’Arco, and Roberto De Prisco. "Ultra-lightweight Authentication." In Security of Ubiquitous Computing Systems, 99–112. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-10591-4_6.
Full textStepan, Jan, Richard Cimler, Jan Matyska, David Sec, and Ondrej Krejcar. "Lightweight Protocol for M2M Communication." In Computational Collective Intelligence, 335–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67077-5_32.
Full textMalcolm, James. "Lightweight Authentication in a Mobile Network." In Security Protocols, 217–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45807-7_31.
Full textBonneau, Joseph, and Rubin Xu. "Scrambling for Lightweight Censorship Resistance." In Security Protocols XIX, 296–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-25867-1_28.
Full textŢiplea, Ferucio Laurenţiu. "A Lightweight Authentication Protocol for RFID." In Communications in Computer and Information Science, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44893-9_10.
Full textVan Roy, Peter, Per Brand, Seif Haridi, and Raphaël Collet. "A Lightweight Reliable Object Migration Protocol." In Internet Programming Languages, 32–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-47959-7_2.
Full textBłaśkiewicz, Przemysław, Marek Klonowski, Mirosław Kutyłowski, and Piotr Syga. "Lightweight Protocol for Trusted Spontaneous Communication." In Trusted Systems, 228–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27998-5_15.
Full textKungpisdan, Supakorn, Bala Srinivasan, and Phu Dung Le. "Lightweight Mobile Credit-Card Payment Protocol." In Progress in Cryptology - INDOCRYPT 2003, 295–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24582-7_22.
Full textPatouni, Eleni, and Nancy Alonistioti. "Lightweight Mechanisms for Self-configuring Protocols." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 112–23. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16644-0_11.
Full textConference papers on the topic "Lightweight protokol"
"[Front cover]." In 2011 Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications (LightSec 2011). IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.20.
Full text"[Copyright notice]." In 2011 Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications (LightSec 2011). IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.3.
Full text"Table of contents." In 2011 Workshop on Lightweight Security & Privacy: Devices, Protocols, and Applications (LightSec 2011). IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.7.
Full textBilgin, Begul, Elif Bilge Kavun, and Tolga Yalcin. "Towards an Ultra Lightweight Crypto Processor." In Privacy: Devices, Protocols, and Applications. IEEE, 2011. http://dx.doi.org/10.1109/lightsec.2011.17.
Full textMulabegovic, Emir, Dan Schonfeld, and Rashid Ansari. "Lightweight Streaming Protocol (LSP)." In the tenth ACM international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/641007.641051.
Full textHammi, Mohamed Tahar, Erwan Livolant, Patrick Bellot, Ahmed Serhrouchni, and Pascale Minet. "A lightweight IoT security protocol." In 2017 1st Cyber Security in Networking Conference (CSNet). IEEE, 2017. http://dx.doi.org/10.1109/csnet.2017.8242001.
Full text"PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION." In International Conference on Security and Cryptography. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0002101002110218.
Full textYuanxin Ouyang, Jiuyue Hao, Ting Zhang, Qiao Ren, and Zhang Xiong. "Research on lightweight RFID Reader Protocol." In 2008 First IEEE International Conference on Ubi-media Computing (U-Media 2008). IEEE, 2008. http://dx.doi.org/10.1109/umedia.2008.4570862.
Full textSun, Aifeng. "Optimization Study for Lightweight Set Protocol." In 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE). IEEE, 2012. http://dx.doi.org/10.1109/icicee.2012.320.
Full textLi, Ying, Liping Du, Guifen Zhao, and Jianwei Guo. "A lightweight identity-based authentication protocol." In 2013 IEEE International Conference on Signal Processing, Communications and Computing. IEEE, 2013. http://dx.doi.org/10.1109/icspcc.2013.6664134.
Full textReports on the topic "Lightweight protokol"
Calhoun, P., R. Suri, N. Cam-Winget, M. Williams, S. Hares, B. O'Hara, and S. Kelly. Lightweight Access Point Protocol. RFC Editor, February 2010. http://dx.doi.org/10.17487/rfc5412.
Full textYeong, W., T. Howes, and S. Kille. Lightweight Directory Access Protocol. RFC Editor, March 1995. http://dx.doi.org/10.17487/rfc1777.
Full textSermersheim, J., ed. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC Editor, June 2006. http://dx.doi.org/10.17487/rfc4511.
Full textWahl, M., T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3). RFC Editor, December 1997. http://dx.doi.org/10.17487/rfc2251.
Full textZeilenga, K. Lightweight Directory Access Protocol (LDAP) Transactions. RFC Editor, March 2010. http://dx.doi.org/10.17487/rfc5805.
Full textYeong, W., T. Howes, and S. Kille. X.500 Lightweight Directory Access Protocol. RFC Editor, July 1993. http://dx.doi.org/10.17487/rfc1487.
Full textSmith, M., O. Natkovich, and J. Parham. Lightweight Directory Access Protocol (LDAP) Client Update Protocol (LCUP). Edited by R. Megginson. RFC Editor, October 2004. http://dx.doi.org/10.17487/rfc3928.
Full textHarrison, R., J. Sermersheim, and Y. Dong. Lightweight Directory Access Protocol (LDAP) Bulk Update/Replication Protocol (LBURP). RFC Editor, January 2006. http://dx.doi.org/10.17487/rfc4373.
Full textZeilenga, K. Lightweight Directory Access Protocol (LDAP) Assertion Control. RFC Editor, June 2006. http://dx.doi.org/10.17487/rfc4528.
Full textZeilenga, K. Lightweight Directory Access Protocol (LDAP) Turn Operation. RFC Editor, June 2006. http://dx.doi.org/10.17487/rfc4531.
Full text