Academic literature on the topic 'Lightweight protocol'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lightweight protocol.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lightweight protocol"
Tsai, Chia-Wei, Chun-Wei Yang, and Narn-Yih Lee. "Lightweight mediated semi-quantum key distribution protocol." Modern Physics Letters A 34, no. 34 (November 5, 2019): 1950281. http://dx.doi.org/10.1142/s021773231950281x.
Full textWu, Yongdong, and Hweehua Pang. "A Lightweight Buyer-Seller Watermarking Protocol." Advances in Multimedia 2008 (2008): 1–7. http://dx.doi.org/10.1155/2008/905065.
Full textGódor, Gyozo, and Sándor Imre. "Simple Lightweight Authentication Protocol." International Journal of Business Data Communications and Networking 6, no. 3 (July 2010): 66–94. http://dx.doi.org/10.4018/jbdcn.2010070104.
Full textYu, Song Sen, Yun Peng, and Jia Jing Zhang. "A Lightweight RFID Mechanism Design." Advanced Materials Research 216 (March 2011): 120–23. http://dx.doi.org/10.4028/www.scientific.net/amr.216.120.
Full text赵, 士琦. "Improved Lightweight Anonymous Authentication Protocol." Advances in Applied Mathematics 09, no. 05 (2020): 759–64. http://dx.doi.org/10.12677/aam.2020.95090.
Full textYu, Ki-soon, Sung-joon Kim, Won-kyu Park, Min-Ho Jang, and Dae-woon Lim. "Implement of Lightweight Security Protocol." Journal of Korean Institute of Communications and Information Sciences 43, no. 4 (April 30, 2018): 723–29. http://dx.doi.org/10.7840/kics.2018.43.4.723.
Full textMansoor, Khwaja, Anwar Ghani, Shehzad Chaudhry, Shahaboddin Shamshirband, Shahbaz Ghayyur, and Amir Mosavi. "Securing IoT-Based RFID Systems: A Robust Authentication Protocol Using Symmetric Cryptography." Sensors 19, no. 21 (November 1, 2019): 4752. http://dx.doi.org/10.3390/s19214752.
Full textSafkhani, Masoumeh, Nasour Bagheri, and Mahyar Shariat. "On the Security of Rotation Operation Based Ultra-Lightweight Authentication Protocols for RFID Systems." Future Internet 10, no. 9 (August 21, 2018): 82. http://dx.doi.org/10.3390/fi10090082.
Full textOh, JiHyeon, SungJin Yu, JoonYoung Lee, SeungHwan Son, MyeongHyun Kim, and YoungHo Park. "A Secure and Lightweight Authentication Protocol for IoT-Based Smart Homes." Sensors 21, no. 4 (February 21, 2021): 1488. http://dx.doi.org/10.3390/s21041488.
Full textChen, Chien-Ming, Shuai-Min Chen, Xinying Zheng, Pei-Yu Chen, and Hung-Min Sun. "A Secure RFID Authentication Protocol Adopting Error Correction Code." Scientific World Journal 2014 (2014): 1–12. http://dx.doi.org/10.1155/2014/704623.
Full textDissertations / Theses on the topic "Lightweight protocol"
Vidal, Allan. "libfluid: a lightweight OpenFlow framework." Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/639.
Full textRedes-definidas por software (SDN) introduzem um paradigma de controle de redes que é centralizado em um software controlador, que se comunica com dispositivos de rede através de protocolos padronizados para configurar suas políticas de encaminhamento. Implementações existentes de protocolos SDN (como OpenFlow) são geralmente construídas para uma plataforma de controlador ou dispositivo de rede e restringem escolhas como linguagem de programação, versões do protocolo a serem usadas e características suportadas. Uma arquitetura de software que permita controladores e dispositivos de rede usarem o protocolo OpenFlow (em versões existentes e futuras) pode beneficiar desenvolvedores de aplicações de redes e fabricantes, reduzindo o esforço de de desenvolvimento. Para este fim, apresentamos libfluid: um arcabouço leve (simples e minimalista) para adicionar suporte a OpenFlow onde ele for necessário. Construímos uma única base de código para implementar suporte ao protocolo de maneira portável, rápida e fácil de usar, um desafio que envolve escolhas de tecnologia, decisões arquiteturais e a definição de uma API mínimalística. A implementação foi testada com sucesso em todos os cenários propostos e contribui com o estado da arte através de alguns novos paradigmas para arcabouços OpenFlow.
Software-defined networking (SDN) introduces a network control paradigm that is centered in controller software that communicates with networking devices via standardized protocols in order to configure their forwarding behavior. Current SDN control protocol implementations (such as OpenFlow) are usually built for one controller or networking device platform, and restrict choices regarding programming languages, protocol versions and feature. A single software architecture that enables controllers and networking devices to use the OpenFlow protocol (for existing and future protocol versions) can benefit network application developers and manufacturers, reducing development effort. Towards this goal, we present libfluid: a lightweight (simple and minimalistic) framework for adding OpenFlow support wherever it is needed. We built a single code base for implementing protocol support in a portable, fast and easy to use manner, a challenge that involved technology choices, architectural decisions and the definition of a minimal API. The implementation was shown to work in all proposed scenarios and contributes to the state-of-the-art with a few novel paradigms for OpenFlow frameworks.
Wang, Yingzhuo. "PDF shopping system with the lightweight currency protocol." CSUSB ScholarWorks, 2005. https://scholarworks.lib.csusb.edu/etd-project/2820.
Full textWang, Jun. "Vidi: a Lightweight Protocol Between Visualization Systems and Digital Libraries." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/33845.
Full textMaster of Science
Ferrari, Nico. "Context-Based Authentication and Lightweight Group Key Establishment Protocol for IoT Devices." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36975.
Full textIsrar, Junaid. "Design of Lightweight Alternatives to Secure Border Gateway Protocol and Mitigate against Control and Data Plane Attacks." Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/22812.
Full textEvans, B. J. "The construction of a virtual multicomputer based on heterogeneous processors by use of a lightweight multicast protocol." Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357126.
Full textEdelev, Sviatoslav [Verfasser], Dieter [Akademischer Betreuer] Hogrefe, and Xiaoming [Akademischer Betreuer] Fu. "Towards a Lightweight, Secure, and Untraceable RFID Authentication Protocol / Sviatoslav Edelev. Gutachter: Dieter Hogrefe ; Xiaoming Fu. Betreuer: Dieter Hogrefe." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2015. http://d-nb.info/1076673597/34.
Full textPorambage, P. (Pawani). "Lightweight authentication and key management of wireless sensor networks for Internet of things." Doctoral thesis, Oulun yliopisto, 2018. http://urn.fi/urn:isbn:9789526219950.
Full textTiivistelmä Esineiden internet (IoT) on viime aikoina yleistynyt konsepti älykkäiden objektien (smart objects) liittämiseksi internetiin käyttämällä erilaisia verkko- ja kommunikaatioteknologioita. Olennaisimpia esineiden internetin pohjalla toimivia teknologioita ovat langattomat sensoriverkot (WSN), jotka ovat esineiden internetin perusrakennuspalikoita. Esineiden internetiin kytketyt langattomat sensoriverkot mahdollistavat laajan joukon erilaisia sovelluksia, kuten älykodit, etäterveydenhuollon, älykkäät kaupungit sekä älykkäät teollisuuden sovellukset. Langattomien sensoriverkkojen ja esineiden internetin yhdistäminen tuo mukanaan myös tietoturvaan liittyviä haasteita, sillä laskentateholtaan yleensä heikot anturit ja toimilaitteet eivät kykene kovin vaativiin tietoturvaoperaatioihin, joihin lukeutuvat mm. tietoturva-avaimen muodostus ja käyttäjäntunnistus. Tässä väitöskirjassa pyritään vastaamaan haasteeseen käyttämällä kevyitä avaimenmuodostus- ja käyttäjäntunnistusratkaisuja esineiden internetiin kytketyissä resurssirajoitetuissa sensoriverkoissa. Väitöstutkimuksessa keskitytään aluksi implisiittisten sertifikaattien käyttöön tietoturvallisten end-to-end-kommunikaatiokanavien alustamisessa resurssirajoitettujen sensori- ja muiden IoT-laitteiden välillä. Implisiittisiä sertifikaatteja käytetään käyttäjäntunnistuksessa sekä avaimenmuodostuksessa. Kehitettyjen ratkaisujen soveltuvuus tarkoitukseen osoitetaan suorituskykymittauksilla sekä vertaamalla niiden tietoturvaomi- naisuuksia. Seuraavaksi väitöskirjassa esitellään kaksi kevyttä ryhmäavaimenmuodostus- protokollaa tietoturvalliseen ryhmäkommunikaatioon resurssirajoitettujen IoT-laitteiden välillä. Lopuksi väitöskirjassa tarkastellaan lupaavia lähestymistapoja olemassa olevien tietoturvaprotokollien räätäläintiin IoT-laitteiden ja -verkkojen ominaisuuksille sopiviksi. Erityistä huomiota kiinnitetään Host Identity -protokollan (HIP) eri versioiden käyttöön dynaamisten ja tietoturvallisten end-to-end-yhteyksien luomiseen toisilleen ennestään tuntemattomien erityyppisten IoT-laitteiden välillä, joiden laitteistoresurssiprofiilit voivat olla hyvin erilaiset. Väitöskirjan keskeinen tulos on väitöskirjatyössä kehitetty Colla- borative HIP (CHIP) -protokolla, joka on resurssitehokas avaimenmuodostusteknologia resurssirajoitetuille IoT-laitteille. Kehitetyn teknologian soveltuvuutta tarkoitukseensa demonstroidaan prototyyppitoteutuksella tehtyjen suorituskykymittausten avulla
Dvorský, Petr. "Datový koncentrátor." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442455.
Full textCherif, Amina. "Sécurité des RFIDs actifs et applications." Thesis, Limoges, 2021. http://www.theses.fr/2021LIMO0015.
Full textOver the 30 last years, active RFID devices have evolved from nodes dedicated to identification to autonomous nodes that, in addition, sense (from environment or other sources) and exchange data. Consequently, the range of their applications has rapidly grown from identification only to monitoring and real time localisation. In recent years, thanks to their advantages, the use of active RFID nodes for mobile data collection has attracted significant attention. However, in most scenarios, these nodes are unattended in an adverse environments, so data must be securely stored and transmitted to prevent attack by active adversaries: even if the nodes are captured, data confidentiality must be ensured. Furthermore, due to the scarce resources available to nodes in terms of energy, storage and/or computation, the used security solution has to be lightweight. This thesis is divided in two parts. In the first, we will study in details the evolution of active RFID nodes and their security. We will then, present, in the second part, a new serverless protocol to enable MDCs (Mobile Data Collectors), such as drones, to collect data from mobile and static Active RFID nodes and then deliver them later to an authorized third party. The whole solution ensures data confidentiality at each step (from the sensing phase, before data collection by the MDC, once data have been collected by MDC, and during final delivery) while fulfilling the lightweight requirements for the resource-limited entities involved. To assess the suitability of the protocol against the performance requirements, we will implement it on the most resource-constrained secure devices to prove its efficiency even in the worst conditions. In addition, to prove the protocol fulfills the security requirements, we will analyze it using security games and we will also formally verify it using the AVISPA and ProVerif tools
Books on the topic "Lightweight protocol"
Howes, Tim. LDAP: Programming directory-enabled applications with lightweight directory access protocol. Indianapolis, Ind: Macmillan Technical Publishing, 1997.
Find full textPeter, Loshin, ed. Big book of lightweight directory access protocol (LDAP) RFCs. San Francisco, Calif: Morgan Kaufmann, 2000.
Find full textBlokdyk, Gerardus. Lightweight Directory Access Protocol a Complete Guide - 2020 Edition. Emereo Pty Limited, 2020.
Find full textHillar, Gaston C. Hands-On MQTT Programming with Python: Work with the lightweight IoT protocol in Python. Packt Publishing, 2018.
Find full textBook chapters on the topic "Lightweight protocol"
Heer, Tobias. "Lightweight HIP." In Host Identity Protocol (HIP), 117–59. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/9780470772898.ch8.
Full textStepan, Jan, Richard Cimler, Jan Matyska, David Sec, and Ondrej Krejcar. "Lightweight Protocol for M2M Communication." In Computational Collective Intelligence, 335–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67077-5_32.
Full textŢiplea, Ferucio Laurenţiu. "A Lightweight Authentication Protocol for RFID." In Communications in Computer and Information Science, 110–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44893-9_10.
Full textVan Roy, Peter, Per Brand, Seif Haridi, and Raphaël Collet. "A Lightweight Reliable Object Migration Protocol." In Internet Programming Languages, 32–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-47959-7_2.
Full textBłaśkiewicz, Przemysław, Marek Klonowski, Mirosław Kutyłowski, and Piotr Syga. "Lightweight Protocol for Trusted Spontaneous Communication." In Trusted Systems, 228–42. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27998-5_15.
Full textKungpisdan, Supakorn, Bala Srinivasan, and Phu Dung Le. "Lightweight Mobile Credit-Card Payment Protocol." In Progress in Cryptology - INDOCRYPT 2003, 295–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-24582-7_22.
Full textRadu, Andreea-Ina, and Flavio D. Garcia. "LeiA: A Lightweight Authentication Protocol for CAN." In Computer Security – ESORICS 2016, 283–300. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45741-3_15.
Full textNăstase, George-Daniel, and Ferucio Laurenţiu Ţiplea. "On a Lightweight Authentication Protocol for RFID." In Innovative Security Solutions for Information Technology and Communications, 212–25. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27179-8_15.
Full textCheng, Xiaohui, Shuai Shen, and Qiong Gui. "Improved Lightweight RFID Bidirectional Authentication Protocol LMAP++." In Communications in Computer and Information Science, 33–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6834-9_4.
Full textZhang, Changlun, and Haibing Mu. "A Lightweight Mutual Authentication Protocol for RFID." In Lecture Notes in Electrical Engineering, 933–40. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7262-5_106.
Full textConference papers on the topic "Lightweight protocol"
Mulabegovic, Emir, Dan Schonfeld, and Rashid Ansari. "Lightweight Streaming Protocol (LSP)." In the tenth ACM international conference. New York, New York, USA: ACM Press, 2002. http://dx.doi.org/10.1145/641007.641051.
Full textHammi, Mohamed Tahar, Erwan Livolant, Patrick Bellot, Ahmed Serhrouchni, and Pascale Minet. "A lightweight IoT security protocol." In 2017 1st Cyber Security in Networking Conference (CSNet). IEEE, 2017. http://dx.doi.org/10.1109/csnet.2017.8242001.
Full text"PROTOCOL INDEPENDENT LIGHTWEIGHT SECURE COMMUNICATION." In International Conference on Security and Cryptography. SciTePress - Science and and Technology Publications, 2006. http://dx.doi.org/10.5220/0002101002110218.
Full textYuanxin Ouyang, Jiuyue Hao, Ting Zhang, Qiao Ren, and Zhang Xiong. "Research on lightweight RFID Reader Protocol." In 2008 First IEEE International Conference on Ubi-media Computing (U-Media 2008). IEEE, 2008. http://dx.doi.org/10.1109/umedia.2008.4570862.
Full textSun, Aifeng. "Optimization Study for Lightweight Set Protocol." In 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE). IEEE, 2012. http://dx.doi.org/10.1109/icicee.2012.320.
Full textLi, Ying, Liping Du, Guifen Zhao, and Jianwei Guo. "A lightweight identity-based authentication protocol." In 2013 IEEE International Conference on Signal Processing, Communications and Computing. IEEE, 2013. http://dx.doi.org/10.1109/icspcc.2013.6664134.
Full textYang, Shun, Xian'ai Long, and Defa Hu. "A Lightweight Buyer-Seller Fingerprinting Protocol." In 2010 International Forum on Information Technology and Applications (IFITA). IEEE, 2010. http://dx.doi.org/10.1109/ifita.2010.148.
Full textAzad, Salahuddin, and Biplob Ray. "A Lightweight Protocol for RFID Authentication." In 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE). IEEE, 2019. http://dx.doi.org/10.1109/csde48274.2019.9162420.
Full textGoutsos, Konstantinos, and Alex Bystrov. "Lightweight PUF-based Continuous Authentication Protocol." In 2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE). IEEE, 2019. http://dx.doi.org/10.1109/iccece46942.2019.8941608.
Full textBezzateev, Sergey, and Danil Kovalev. "RFID advanced ultra lightweight authentication protocol." In 2012 XIII International Symposium on Problems of Redundancy in Information and Control Systems (RED). IEEE, 2012. http://dx.doi.org/10.1109/red.2012.6338395.
Full textReports on the topic "Lightweight protocol"
Calhoun, P., R. Suri, N. Cam-Winget, M. Williams, S. Hares, B. O'Hara, and S. Kelly. Lightweight Access Point Protocol. RFC Editor, February 2010. http://dx.doi.org/10.17487/rfc5412.
Full textYeong, W., T. Howes, and S. Kille. Lightweight Directory Access Protocol. RFC Editor, March 1995. http://dx.doi.org/10.17487/rfc1777.
Full textSermersheim, J., ed. Lightweight Directory Access Protocol (LDAP): The Protocol. RFC Editor, June 2006. http://dx.doi.org/10.17487/rfc4511.
Full textWahl, M., T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3). RFC Editor, December 1997. http://dx.doi.org/10.17487/rfc2251.
Full textSmith, M., O. Natkovich, and J. Parham. Lightweight Directory Access Protocol (LDAP) Client Update Protocol (LCUP). Edited by R. Megginson. RFC Editor, October 2004. http://dx.doi.org/10.17487/rfc3928.
Full textZeilenga, K. Lightweight Directory Access Protocol (LDAP) Transactions. RFC Editor, March 2010. http://dx.doi.org/10.17487/rfc5805.
Full textYeong, W., T. Howes, and S. Kille. X.500 Lightweight Directory Access Protocol. RFC Editor, July 1993. http://dx.doi.org/10.17487/rfc1487.
Full textHarrison, R., J. Sermersheim, and Y. Dong. Lightweight Directory Access Protocol (LDAP) Bulk Update/Replication Protocol (LBURP). RFC Editor, January 2006. http://dx.doi.org/10.17487/rfc4373.
Full textZeilenga, K. Lightweight Directory Access Protocol (LDAP) Assertion Control. RFC Editor, June 2006. http://dx.doi.org/10.17487/rfc4528.
Full textZeilenga, K. Lightweight Directory Access Protocol (LDAP) Turn Operation. RFC Editor, June 2006. http://dx.doi.org/10.17487/rfc4531.
Full text