Academic literature on the topic 'Light Emitting Diodes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Light Emitting Diodes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Light Emitting Diodes"

1

Salman, RK. "Research note: Light emitting diodes as solar power resources." Lighting Research & Technology 51, no. 3 (March 19, 2018): 476–83. http://dx.doi.org/10.1177/1477153518764211.

Full text
Abstract:
This paper investigates the possibility of recycling light emitting diodes from damaged electronic devices, and using them in a similar way to photovoltaic cells in order to reduce environmental pollution. The study used a number of tests with a variety of different parameters for measuring the capability for light emitting diodes to harvest the sun’s rays and to convert them into a useful form of electrical power. The different configurations involved variations of light emitting diode wavelength and number, as well as the connection types between the light emitting diodes (series and parallel) and the angle of incidence of the sun’s rays to the light emitting diode’s base. The results showed promising voltage data for parallel-connected light emitting diodes of lemon (yellow-green) and green colour. The variations in voltage produced by tilting the light emitting diode’s base exhibited similar behaviour to that seen in solar panels. The power that was harvested from the light emitting diodes was extremely low, but the voltage gains showed promising trends that could be employed in useful applications. Hence, light emitting diodes could be re-used to reduce environmental pollution and thus to contribute towards environmental enhancement.
APA, Harvard, Vancouver, ISO, and other styles
2

Hayes, Clinton J., Kerry B. Walsh, and Colin V. Greensill. "Light-emitting diodes as light sources for spectroscopy: Sensitivity to temperature." Journal of Near Infrared Spectroscopy 25, no. 6 (October 10, 2017): 416–22. http://dx.doi.org/10.1177/0967033517736164.

Full text
Abstract:
Understanding of light-emitting diode lamp behaviour is essential to support the use of these devices as illumination sources in near infrared spectroscopy. Spectral variation in light-emitting diode peak output (680, 700, 720, 735, 760, 780, 850, 880 and 940 nm) was assessed over time from power up and with variation in environmental temperature. Initial light-emitting diode power up to full intensity occurred within a measurement cycle (12 ms), then intensity decreased exponentially over approximately 6 min, a result ascribed to an increase in junction temperature as current is passed through the light-emitting diode. Some light-emitting diodes displayed start-up output characteristics on their first use, indicating the need for a short light-emitting diode ‘burn in’ period, which was less than 24 h in all cases. Increasing the ambient temperature produced a logarithmic decrease in overall intensity of the light-emitting diodes and a linear shift to longer wavelength of the peak emission. This behaviour is consistent with the observed decrease in the IAD Index (absorbance difference between 670 nm and 720 nm, A670–A720) with increased ambient temperature, as measured by an instrument utilising light-emitting diode illumination (DA Meter). Instruments using light-emitting diodes should be designed to avoid or accommodate the effect of temperature. If accommodating temperature, as light-emitting diode manufacturer specifications are broad, characterisation is recommended.
APA, Harvard, Vancouver, ISO, and other styles
3

Feng, XF, W. Xu, QY Han, and SD Zhang. "Colour-enhanced light emitting diode light with high gamut area for retail lighting." Lighting Research & Technology 49, no. 3 (October 19, 2015): 329–42. http://dx.doi.org/10.1177/1477153515610621.

Full text
Abstract:
Light emitting diodes with high colour quality were investigated to enhance colour appearance and improve observers' preference for the illuminated objects. The spectral power distributions of the light emitting diodes were optimised by changing the ratios of the narrow band red, green and blue light emitting diodes, and the phosphor-converted broad-band light emitting diode to get the desired colour rendering index and high gamut area index. The influence of the light emitting diode light on different coloured fabrics was investigated. The experimental results and the statistical analysis show that by optimising the red, green, blue components the light emitting diode light can affect the colour appearance of the illuminated fabrics positively and make the fabrics appear more vivid and saturated due to the high gamut area index. Observers indicate a high preference for the colours whose saturations are enhanced. The results reveal that the colour-enhanced light emitting diode light source can better highlight products and improve visual impression over the ceramic metal halide lamp and the phosphor-converted light emitting diode light source.
APA, Harvard, Vancouver, ISO, and other styles
4

Bumai, Yurii, Aleh Vaskou, and Valerii Kononenko. "Measurement and Analysis of Thermal Parameters and Efficiency of Laser Heterostructures and Light-Emitting Diodes." Metrology and Measurement Systems 17, no. 1 (January 1, 2010): 39–45. http://dx.doi.org/10.2478/v10178-010-0004-x.

Full text
Abstract:
Measurement and Analysis of Thermal Parameters and Efficiency of Laser Heterostructures and Light-Emitting DiodesA thermal resistance characterization of semiconductor quantum-well heterolasers in the AlGaInAs-AlGaAs system (λst≈ 0.8 μm), GaSb-based laser diodes (λst≈ 2 μm), and power GaN light-emitting diodes (visible spectral region) was performed. The characterization consists in investigations of transient electrical processes in the diode sources under heating by direct current. The time dependence of the heating temperature of the active region of a source ΔT(t), calculated from direct bias change, is analyzed using a thermalRTCTequivalent circuit (the Foster and Cauer models), whereRTis the thermal resistance andCTis the heat capacity of the source elements and external heat sink. By the developed method, thermal resistances of internal elements of the heterolasers and light-emitting diodes are determined. The dominant contribution of a die attach layer to the internal thermal resistance of both heterolaser sources and light-emitting diodes is observed. Based on the performed thermal characterization, the dependence of the optical power efficiency on current for the laser diodes is determined.
APA, Harvard, Vancouver, ISO, and other styles
5

Muray, Kathleen. "Photometry of diode emitters: light emitting diodes and infrared emitting diodes." Applied Optics 30, no. 16 (June 1, 1991): 2178. http://dx.doi.org/10.1364/ao.30.002178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lewis, R. B., D. A. Beaton, Xianfeng Lu, and T. Tiedje. "light emitting diodes." Journal of Crystal Growth 311, no. 7 (March 2009): 1872–75. http://dx.doi.org/10.1016/j.jcrysgro.2008.11.093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Yueqi. "Performance Improvement Based on Latitude Classification of Perovskite Light-Emitting Diodes." Applied and Computational Engineering 24, no. 1 (November 7, 2023): 185–92. http://dx.doi.org/10.54254/2755-2721/24/20230705.

Full text
Abstract:
The Perovskite Light-emitting Diode (PeLED) can effectively convert light energy and electrical energy, and the study of Light-Emitting Diode (LED) is conducive to the efficient use of energy. Starting from the dimension classification of perovskite light-emitting diodes, this paper introduces the advantages of perovskite in different dimensions and the methods to improve the performance of perovskite light-emitting diodes. It is expected to realize the preparation of low-cost and high-performance perovskite light-emitting diodes. Light-emitting diodes or electroluminescent devices have many excellent properties such as high brightness, wide colour gamut, low power consumption, long life and environmental protection. They have been widely used in the field of display and lighting, and have become one of the most competitive products in the optoelectronic industry. With the development of the LED industry and the higher requirements for LED display in the new era, scientific researchers exploration of new electroluminescent materials has also been gradually strengthened. Among them, organic molecules and new low-dimensional halogenated perovskite have attracted much attention because of their many advantages. The performance of LED depends on the type of light-emitting material and device structure. It is also important to understand the light-emitting mechanism of such devices and their internal carrier transport mechanism. Studying the light-emitting mechanism and carrier transport mechanism of LEDs based on different light-emitting materials is not only of scientific significance, but also can provide a reliable theoretical basis for further improving their performance.
APA, Harvard, Vancouver, ISO, and other styles
8

Shen, Yida. "Comparative analysis between light-emitting diodes using quantum dots and organic light-emitting diodes." Applied and Computational Engineering 23, no. 1 (November 7, 2023): 135–40. http://dx.doi.org/10.54254/2755-2721/23/20230626.

Full text
Abstract:
Due to its customizable emission peaks, high saturation chromaticity, and low cost, quantum dot luminescence technology has gained significant attention as the most cutting-edge technology in the optoelectronics sector. Whether the technology of making light emitting diodes from solution treatable quantum dots-(QLED)-can emerge and compete with organic light emitting diode (OLED) displays will become the focus of this paper. Through the property and function of the quantum dots and by looking at some waveforms of quantum dots, the essay describes the specific structure of QLED and the preparation technology of QLED. Furthermore, using these properties and functions, quantum dot technology produces displays with a wider color gamut. And compared with OLED, the paper comes to the conclusion that although QLEDs are slightly inferior in stability to OLEDs, they are superior in color gamut, low cost, and temperature according to the studies of quantum dots and organic light emitting diodes at different temperatures, color rendering indices, and energy band structures.
APA, Harvard, Vancouver, ISO, and other styles
9

Sherniyozov, А. А., F. A. Shermatova, Sh D. Payziyev, Sh A. Begimkulov, F. M. Kamoliddinov, A. G. Qahhorov, and A. G. Aliboyev. "Simulation of physical processes in light-emitting diode pumped lasers." «Узбекский физический журнал» 23, no. 3 (December 7, 2021): 38–42. http://dx.doi.org/10.52304/.v23i3.262.

Full text
Abstract:
We have developed an end-to-end simulation model for the light-emitting diode-pumped solidstate laser using the Monte Carlo photon tracing technique. The model considers complete specifics and spectral characteristics of light-emitting diodes. This model is the first of its kind to enable comprehensive analysis of light-emitting diode-pumped laser systems to the best of our knowledge. The model revealed several critical implications, which can be considered in the practical realization of light-emitting diode-pumped lasers.
APA, Harvard, Vancouver, ISO, and other styles
10

Hontaruk, O. M. "Low doses effect in GaP light-emitting diodes." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 2 (July 6, 2016): 183–87. http://dx.doi.org/10.15407/spqeo19.02.183.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Light Emitting Diodes"

1

Stevenson, Stuart G. "Dendrimer light-emitting diodes." Thesis, St Andrews, 2008. http://hdl.handle.net/10023/581.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Choi, Wai Kit. "Organic light-emitting diodes." HKBU Institutional Repository, 1999. http://repository.hkbu.edu.hk/etd_ra/190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Chih-Lei. "Processing light-emitting dendrimers for organic light-emitting diodes." Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489420.

Full text
Abstract:
Light-emitting dendrimers with iridium(III) complex cores have given rise to some of the simplest and most efficient organic light-emitting diodes. However, whilst monochrome devices can be prepared there is currently no method for the patterning of the dendrimer films to give rise to pixelated colour displays. The main aim of this project was to develop methodology for the patterning of dendrimer films. In particular, dendrimers are designed that have an oxetane surface group that can be crosslinked to form patterns by a photo-generated acid.
APA, Harvard, Vancouver, ISO, and other styles
4

Rosenow, Thomas. "White Organic Light Emitting Diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-67342.

Full text
Abstract:
Die vorliegende Arbeit beschäftigt sich mit drei Ansätzen der hocheffizienten Erzeugung von weißem Licht mit organischen Leuchtdioden (OLEDs) auf der Basis kleiner Moleküle. Ein Ansatz kombiniert die Emission eines fluoreszenten und zweier phosphoreszenter Emitter in einer einzelnen Emissionsschicht. Da das Triplettniveau des verwendeten Blauemitters niedriger ist als die Triplettniveaus der phosphoreszenten Emitter, werden die Konzentrationen der Emitter so gewählt, dass ein Exzitonenübertrag zwischen ihnen unterbunden wird. Die strahlungslose Rekombination von Tripletts auf dem fluoreszenten Blauemitter begrenzt die Effizienz dieses Ansatzes, jedoch besticht die resultierende weiße OLED durch eine bemerkenswerte Farbstabilität. Der zweite Ansatz basiert auf dem “Triplet Harvesting” Konzept. Ansonsten ungenutzte Triplett Exzitonen werden von einem fluoreszenten Blauemitter auf phosphoreszente Emitter übertragen, wodurch interne Quanteneffizienzen bis zu 100 % möglich sind. Der zur Verfügung stehende Blauemitter 4P-NPD erlaubt aufgrund seines niedrigen Triplettniveaus nicht den Triplett übertrag auf einen grünen Emitter. Daher wird das “Triplet Harvesting” auf zwei unterschiedliche phosphoreszente Emitter, anhand des gelben Emitters Ir(dhfpy)2acac und des roten Emitters Ir(MDQ)2acac untersucht. Es wird gezeigt, dass beide phosphoreszente Emitter indirekt durch Exzitonendiffusion angeregt werden und nicht durch direkte Rekombination von Ladungsträgern auf den Emittermolekülen. Eine genaue Justage der Anregungsverteilung zwischen den phosphoreszenten Emittern ist durch Schichtdickenvariation in der Größenordnung üblicher Schichtdicken möglich. Spätere Produktionsanlagen brauchen daher keinen speziellen Genauigkeitsanforderungen gerecht zu werden. Der dritte und zugleich erfolgreichste Ansatz beruht auf einer Weiterentwicklung des zweiten Ansatzes. Er besteht zunächst darin den Tripletttransfer auf den Übertrag von einem fluoreszenten blauen auf einen phosphoreszenten roten Emitter zu beschränken. Die sich ergebende spektrale Lücke wird durch direktes Prozessieren einer unabhängigen voll phosphoreszenten OLED auf diese erste OLED gefüllt. Verbunden sind beide OLEDs durch eine ladungsträgererzeugende Schicht, in welcher durch das angelegte Feld Elektron/Loch-Paare getrennt werden. Dieser Aufbau entspricht elektrisch der Reihenschaltung zweier OLEDs, welche im Rahmen dieser Arbeit individuell untersucht und optimiert werden. Dabei ergibt sich, dass die Kombination von zwei verschiedenen phosphoreszenten Emittern in einer gemeinsamen Matrix die Ladungsträgerbalance in der Emissionszone sowie die Quanteneffizienz der vollphosphoreszenten OLED stark verbessert. Als Ergebnis steht eine hocheffiziente weiße OLED, welche durch die ausgewogene Emission von vier verschiedenen Emittern farbstabiles Licht mit warm weißen Farbkoordinaten (x, y) = (0.462, 0.429) und ausgezeichneten Farbwiedergabeeigenschaften (CRI = 80.1) erzeugt. Dabei sind die mit diesem Ansatz erreichten Lichtausbeuten (hv = 90.5 lm/W) mit denen von voll phosphoreszenten OLEDs vergleichbar.
APA, Harvard, Vancouver, ISO, and other styles
5

Thomschke, Michael. "Inverted Organic Light Emitting Diodes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-106255.

Full text
Abstract:
This study focuses on the investigation of the key parameters that determine the optical and electrical characteristics of inverted top-emitting organic light emitting diodes (OLED). A co-deposition of small molecules in vacuum is used to establish electrically doped films that are applied in n-i-p layered devices. The knowledge about the functionality of each layer and parameter is important to develop efficient strategies to reach outstanding device performances. In the first part, the thin film optics of top-emitting OLEDs are investigated, focusing on light extraction via cavity tuning, external outcoupling layers (capping layer), and the application of microlens films. Optical simulations are performed to determine the layer configuration with the maximum light extraction efficiency for monochrome phosphorescent devices. The peak efficiency is found at 35%, while varying the thickness of the charge transport layers, the semitransparent anode, and the capping layer simultaneously. Measurements of the spatial light distribution validate, that the capping layer influences the spectral width and the resonance wavelength of the extracted cavity mode, especially for TM polarization. Further, laminated microlens films are applied to benefit from strong microcavity effects in stacked OLEDs by spatial mixing of external and to some extend internal light modes. These findings are used to demonstrate white top-emitting OLEDs on opaque substrates showing power conversion efficiencies up to 30 lm/W and a color rendering index of 93, respectively. In the second part, the charge carrier management of n-i-p layered diodes is investigated as it strongly deviates from that of the p-i-n layered counterparts. The influence of the bottom cathode material and the electron transport layer is found to be negligible in terms of driving voltage, which means that the assumption of an ohmic bottom contact is valid. The hole transport and the charge carrier injection at the anode is much more sensitive to the evaporation sequence, especially when using hole transport materials with a glass transition temperature below 100°C. As a consequence, thermal annealing of fabricated inverted OLEDs is found to drastically improve the device electronics, resulting in lower driving voltages and an increased internal efficiency. The annealing effect on charge transport comes from a reduced charge accumulation due to an altered film morphology of the transport layers, which is proven for electrons and for holes independently. The thermal treatment can further lead to a device degradation. Finally, the thickness and the material of the blocking layers which usually control the charge confinement inside the OLED are found to influence the recombination much more effectively in inverted OLEDs compared to non-inverted ones.
APA, Harvard, Vancouver, ISO, and other styles
6

Gray, Jonathan William. "Resonant cavity light emitting diodes." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hemingway, Leon Robert. "Dendrimers for light emitting diodes." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Yee-Chen. "Polymer blend light-emitting diodes." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Fang, Fang. "Investigation of green light emitting diodes." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Galata, Sotiria. "Sulphur doped silicon light emitting diodes." Thesis, University of Surrey, 2005. http://epubs.surrey.ac.uk/842933/.

Full text
Abstract:
In this thesis light emission from sulphur related impurity in silicon has been reported. Although, sulphur related luminescence from silicon has been stated since the 1980's, no room temperature luminescence has been achieved and no compatible devices that can be integrated to the silicon technology have been invented. Photoluminescence and electroluminescence experiments were made on a set of samples implanted with only with sulphur at doses ranging from 1011-1014 S cm-2 at 30 keV, annealed at 1000 °C or 1100 °C for 10 s and on another set of samples implanted with sulphur as above and further implanted with boron at 1015 B cm-2 at 30 keV, further annealed at 950 °C for 1 min. The experiments revealed two major emissions at 1129.5 nm (1.0997 eV) which is due to the Si TO phonon assisted transition and at 1363 nm (0.9097 eV) which is due to sulphur related impurities. Variable temperature experiments were done at both PL and EL experiments. From the EL variable temperature measurements, it was observed that the two main lines were shifting towards longer wavelengths with the increase of temperature. Sulphur emission was present at room temperature with low intensity compared to the silicon emission which was more dominant at room temperature. Of great interest was the effect of power on silicon and sulphur emission. It has revealed a sublinear and a superlinear behaviour for the sulphur and silicon integrated intensity respectively with the increase of the injection condition, which can be attributed to the saturation of sulphur related levels responsible for the 1.33 nm emission at the high excitation levels. A model of the diffusion of sulphur concentration after the annealing treatments was presented, introducing the two cases of perfect reflection and perfect loss from the samples surfaces. Finally a model explaining our PL and EL power dependence experiments was provided which showed that there are two major radiative routes via the silicon and the sulphur that take place, which are competing at each other along with a non-radiative route coming from the sulphur related level. Our model describes the trends in our experimental data well. Finally, the energy related to the sulphur peak quenching was calculated to be 32.2 +/-1.4 meV.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Light Emitting Diodes"

1

Li, Jinmin, and G. Q. Zhang, eds. Light-Emitting Diodes. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99211-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schubert, E. Fred. Light-Emitting Diodes. 2nd ed. Leiden: Cambridge University Press, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gillessen, Klaus. Light emitting diodes: An introduction. Englewood Cliffs, N.J: Prentice/Hall International, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dutta Gupta, S., ed. Light Emitting Diodes for Agriculture. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5807-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

A, Yoshikawa, and International Symposium on Blue Laser and Light Emitting Diodes (1996 : Chiba Daigaku), eds. Blue laser and light emitting diodes. Tokyo, Japan: Ohmsha, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Adachi, Chihaya, Reiji Hattori, Hironori Kaji, and Takatoshi Tsujimura, eds. Handbook of Organic Light-Emitting Diodes. Tokyo: Springer Japan, 2020. http://dx.doi.org/10.1007/978-4-431-55761-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ohtsu, Motoichi. Silicon Light-Emitting Diodes and Lasers. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42014-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

AG, Siemens. Light emitting diodes data sheets 1.94. [München]: Siemens AG, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Subash, T. D., J. Ajayan, and Wladek Grabinski. Organic and Inorganic Light Emitting Diodes. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003340577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hall, Joshua T. Light-emitting diodes and optoelectronics: New research. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Light Emitting Diodes"

1

Morkoç, Hadis. "Light-Emitting Diodes." In Nitride Semiconductors and Devices, 340–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58562-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Al Tahtamouni, Talal. "Light Emitting Diodes." In Encyclopedia of Nanotechnology, 1–3. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-007-6178-0_100897-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lin, Chien-Chung, Kuo-Ju Chen, Da-Wei Lin, Hau-Vie Han, Wei-Chih Lai, Jian-Jang Huang, Tien-Chang Lu, Shoou-Jinn Chang, and Hao-Chung Kuo. "Light Emitting Diodes." In Topics in Applied Physics, 179–234. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9392-6_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adams, M. J., and I. D. Henning. "Light-Emitting Diodes." In Optical Fibres and Sources for Communications, 53–58. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4899-3710-0_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Al Tahtamouni, Talal. "Light Emitting Diodes." In Encyclopedia of Nanotechnology, 1782–84. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_100897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chwalek, Jennifer, and David J. Goldberg. "Light-Emitting Diodes." In Dermatologic Surgery, 382–86. Oxford, UK: Wiley-Blackwell, 2012. http://dx.doi.org/10.1002/9781118412633.ch53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pode, Ramchandra, and Boucar Diouf. "Light Emitting Diodes." In Green Energy and Technology, 61–95. London: Springer London, 2011. http://dx.doi.org/10.1007/978-1-4471-2134-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Rong, and Xiangqian Xiu. "GaN Substrate Material for III–V Semiconductor Epitaxy Growth." In Light-Emitting Diodes, 1–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99211-2_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Islam, SM, Vladimir Protasenko, Shyam Bharadwaj, Jai Verma, Kevin Lee, Huili (Grace) Xing, and Debdeep Jena. "Enhancing Wall-Plug Efficiency for Deep-UV Light-Emitting Diodes: From Crystal Growth to Devices." In Light-Emitting Diodes, 337–95. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99211-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

De Santi, Carlo, Desiree Monti, Pradip Dalapati, Matteo Meneghini, Gaudenzio Meneghesso, and Enrico Zanoni. "Reliability of Ultraviolet Light-Emitting Diodes." In Light-Emitting Diodes, 397–424. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-99211-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Light Emitting Diodes"

1

Ulla, Hidayath, B. Garudachar, M. N. Satyanarayan, G. Umesh, and A. M. Isloor. "Blue light emitting naphthalimides for organic light emitting diodes." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4791530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dobbertin, Thomas, Daniel Schneider, Anis Kammoun, Jens Meyer, Oliver Werner, Michael Kroeger, Thomas Riedl, et al. "Inverted topside-emitting organic light-emitting diodes." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2004. http://dx.doi.org/10.1117/12.505811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ma, Biwu. "Blue perovskite light emitting diodes." In Organic and Hybrid Light Emitting Materials and Devices XXV, edited by Tae-Woo Lee, Franky So, and Chihaya Adachi. SPIE, 2021. http://dx.doi.org/10.1117/12.2593837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Chi-Feng, Cheng-Chia Wu, and Jhong-Hao Wu. "Modified side emitting light emitting diodes for the bottom-lit backlight module." In Light-Emitting Diode Materials and Devices II. SPIE, 2007. http://dx.doi.org/10.1117/12.764742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khan, M. "Deep Ultraviolet Light Emitting Diodes." In 2006 IEEE LEOS Annual Meeting. IEEE, 2006. http://dx.doi.org/10.1109/leos.2006.278803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schubert, E. Fred. "Innovations in light-emitting diodes." In 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference. IEEE, 2006. http://dx.doi.org/10.1109/cleo.2006.4628169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Windisch, Reiner, Maarten Kuijk, Barundeb Dutta, Alexander Knobloch, Peter Kiesel, Gottfried H. Doehler, Gustaaf Borghs, and Paul L. Heremans. "Nonresonant-cavity light-emitting diodes." In Symposium on Integrated Optoelectronics, edited by H. Walter Yao, Ian T. Ferguson, and E. F. Schubert. SPIE, 2000. http://dx.doi.org/10.1117/12.382829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vescan, Lili, and Toma Stoica. "SiGe-based light-emitting diodes." In Optoelectronics '99 - Integrated Optoelectronic Devices, edited by Derek C. Houghton and Eugene A. Fitzgerald. SPIE, 1999. http://dx.doi.org/10.1117/12.342786.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Paetzold, Ralph, Debora Henseler, Karsten Heuser, Wiebke Sarfert, Georg Wittmann, and Albrecht Winnacker. "Flexible polymeric light-emitting diodes." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2004. http://dx.doi.org/10.1117/12.506835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Liang, Eih-Zhe, Ching-Fuh Lin, Ting-Wien Su, Wu-Ping Huang, and Hsing-Hung Hsieh. "Light-emitting diodes on Si." In Integrated Optoelectronics Devices, edited by E. Fred Schubert, H. Walter Yao, Kurt J. Linden, and Daniel J. McGraw. SPIE, 2003. http://dx.doi.org/10.1117/12.476559.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Light Emitting Diodes"

1

Choquette, Kent D., Jr Raftery, and James J. Photonic Crystal Light Emitting Diodes. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada459348.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Singh, Deepika, and Steve Pearton. Deep Ultra-Violet (DUV) Light Emitting Diodes. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada417107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guillermo Bazan and Alexander Mikhailovsky. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes. Office of Scientific and Technical Information (OSTI), August 2008. http://dx.doi.org/10.2172/1001222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yao, H. W., Ian T. Ferguson, and E. F. Schubert. Light-Emitting Diodes: Research, Manufacturing, and Applications IV. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada384772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamada, Mary, and Dan Chwastyk. Adoption of Light-Emitting Diodes in Common Lighting Applications. Office of Scientific and Technical Information (OSTI), May 2013. http://dx.doi.org/10.2172/1221117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamada, Mary, and Kelsey Stober. Adoption of Light-Emitting Diodes in Common Lighting Applications. Office of Scientific and Technical Information (OSTI), July 2015. http://dx.doi.org/10.2172/1374108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Campbell, I. H., P. S. Davids, and C. M. Heller. Establishing the operational durability of polymer light-emitting diodes. Office of Scientific and Technical Information (OSTI), December 1998. http://dx.doi.org/10.2172/562501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smilgys, Russell V., Neri Shatz, and John Bortz. Novel Coatings for Enhancement of Light-Emitting Diodes (LEDs). Fort Belvoir, VA: Defense Technical Information Center, October 2006. http://dx.doi.org/10.21236/ada458518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elliott, Clay, and Kyung Lee. Adoption of Light-Emitting Diodes in Common Lighting Applications. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1669047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Srour, Merric, Richard Fu, Steven Blomquist, Jianmin Shi, Eric Forsythe, and David Morton. Fabrication and Characterization of Blue Organic Light-emitting Diodes. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada553237.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography