Academic literature on the topic 'Ligase IV/XRCC4'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ligase IV/XRCC4.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ligase IV/XRCC4"

1

Nick McElhinny, Stephanie A., Carey M. Snowden, Joseph McCarville, and Dale A. Ramsden. "Ku Recruits the XRCC4-Ligase IV Complex to DNA Ends." Molecular and Cellular Biology 20, no. 9 (2000): 2996–3003. http://dx.doi.org/10.1128/mcb.20.9.2996-3003.2000.

Full text
Abstract:
ABSTRACT Genetic experiments have determined that Ku, XRCC4, and ligase IV are required for repair of double-strand breaks by the end-joining pathway. The last two factors form a tight complex in cells. However, ligase IV is only one of three known mammalian ligases and is intrinsically the least active in intermolecular ligation; thus, the biochemical basis for requiring this ligase has been unclear. We demonstrate here a direct physical interaction between the XRCC4-ligase IV complex and Ku. This interaction is stimulated once Ku binds to DNA ends. Since XRCC4-ligase IV alone has very low DN
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Peï-Yu, Philippe Frit, SriLakshmi Meesala, et al. "Structural and Functional Interaction between the Human DNA Repair Proteins DNA Ligase IV and XRCC4." Molecular and Cellular Biology 29, no. 11 (2009): 3163–72. http://dx.doi.org/10.1128/mcb.01895-08.

Full text
Abstract:
ABSTRACT Nonhomologous end-joining represents the major pathway used by human cells to repair DNA double-strand breaks. It relies on the XRCC4/DNA ligase IV complex to reseal DNA strands. Here we report the high-resolution crystal structure of human XRCC4 bound to the carboxy-terminal tandem BRCT repeat of DNA ligase IV. The structure differs from the homologous Saccharomyces cerevisiae complex and reveals an extensive DNA ligase IV binding interface formed by a helix-loop-helix structure within the inter-BRCT linker region, as well as significant interactions involving the second BRCT domain,
APA, Harvard, Vancouver, ISO, and other styles
3

Malashetty, Vidyasagar, Audrey Au, Jose Chavez, et al. "The DNA binding domain and the C-terminal region of DNA Ligase IV specify its role in V(D)J recombination." PLOS ONE 18, no. 2 (2023): e0282236. http://dx.doi.org/10.1371/journal.pone.0282236.

Full text
Abstract:
DNA Ligase IV is responsible for the repair of DNA double-strand breaks (DSB), including DSBs that are generated during V(D)J recombination. Like other DNA ligases, Ligase IV contains a catalytic core with three subdomains—the DNA binding (DBD), the nucleotidyltransferase (NTD), and the oligonucleotide/oligosaccharide-fold subdomain (OBD). Ligase IV also has a unique C-terminal region that includes two BRCT domains, a nuclear localization signal sequence and a stretch of amino acid that participate in its interaction with XRCC4. Out of the three mammalian ligases, Ligase IV is the only ligase
APA, Harvard, Vancouver, ISO, and other styles
4

Mahajan, Kiran N., Stephanie A. Nick McElhinny, Beverly S. Mitchell та Dale A. Ramsden. "Association of DNA Polymerase μ (pol μ) with Ku and Ligase IV: Role for pol μ in End-Joining Double-Strand Break Repair". Molecular and Cellular Biology 22, № 14 (2002): 5194–202. http://dx.doi.org/10.1128/mcb.22.14.5194-5202.2002.

Full text
Abstract:
ABSTRACT Mammalian DNA polymerase μ (pol μ) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol μ protein increase. pol μ also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of γH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol μ is thus part of the cellular response to DNA double-strand breaks. pol μ also associates in cell extracts with the nonhomologous end-joining repair factor Ku and
APA, Harvard, Vancouver, ISO, and other styles
5

Przewloka, Marcin R., Paige E. Pardington, Steven M. Yannone, David J. Chen, and Robert B. Cary. "In Vitro and In Vivo Interactions of DNA Ligase IV with a Subunit of the Condensin Complex." Molecular Biology of the Cell 14, no. 2 (2003): 685–97. http://dx.doi.org/10.1091/mbc.e01-11-0117.

Full text
Abstract:
Several findings have revealed a likely role for DNA ligase IV, and interacting protein XRCC4, in the final steps of mammalian DNA double-strand break repair. Recent evidence suggests that the human DNA ligase IV protein plays a critical role in the maintenance of genomic stability. To identify protein–protein interactions that may shed further light on the molecular mechanisms of DSB repair and the biological roles of human DNA ligase IV, we have used the yeast two-hybrid system in conjunction with traditional biochemical methods. These efforts have resulted in the identification of a physica
APA, Harvard, Vancouver, ISO, and other styles
6

Francis, Dailia B., Mikhail Kozlov, Jose Chavez, et al. "DNA Ligase IV regulates XRCC4 nuclear localization." DNA Repair 21 (September 2014): 36–42. http://dx.doi.org/10.1016/j.dnarep.2014.05.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Roy, Sunetra, Abinadabe J. de Melo, Yao Xu, et al. "XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation." Molecular and Cellular Biology 35, no. 17 (2015): 3017–28. http://dx.doi.org/10.1128/mcb.01503-14.

Full text
Abstract:
The classic nonhomologous end-joining (c-NHEJ) pathway is largely responsible for repairing double-strand breaks (DSBs) in mammalian cells. XLF stimulates the XRCC4/DNA ligase IV complex by an unknown mechanism. XLF interacts with XRCC4 to form filaments of alternating XRCC4 and XLF dimers that bridge DNA endsin vitro, providing a mechanism by which XLF might stimulate ligation. Here, we characterize two XLF mutants that do not interact with XRCC4 and cannot form filaments or bridge DNAin vitro. One mutant is fully sufficient in stimulating ligation by XRCC4/Lig4in vitro; the other is not. Thi
APA, Harvard, Vancouver, ISO, and other styles
8

Recuero-Checa, María A., Andrew S. Doré, Ernesto Arias-Palomo, et al. "Electron microscopy of Xrcc4 and the DNA ligase IV–Xrcc4 DNA repair complex." DNA Repair 8, no. 12 (2009): 1380–89. http://dx.doi.org/10.1016/j.dnarep.2009.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hayden, Patrick, Prerna Tewari, Anthony Staines, et al. "Variation in DNA Repair Genes XRCC3, XRCC4, and XRCC5 and Risk of Myeloma." Blood 108, no. 11 (2006): 3416. http://dx.doi.org/10.1182/blood.v108.11.3416.3416.

Full text
Abstract:
Abstract Aberrant class switch recombination (CSR), the physiological process that regulates maturation of the antibody response, is believed to be an early event in the pathogenesis of myeloma. The genetic basis of CSR, from initiation of the DNA double-strand break through to detection and repair, has been elucidated. We hypothesised that germline polymorphisms in the genes implicated in DNA double strand break repair may contribute to susceptibility to myeloma. We therefore assessed 32 SNPs in 3 genes central to the DNA repair pathway in patients with myeloma and controls from the EpiLymph
APA, Harvard, Vancouver, ISO, and other styles
10

Hsu, Hsin-Ling, Steven M. Yannone, and David J. Chen. "Defining interactions between DNA-PK and ligase IV/XRCC4." DNA Repair 1, no. 3 (2002): 225–35. http://dx.doi.org/10.1016/s1568-7864(01)00018-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!