Academic literature on the topic 'Ligand/substrate identification'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ligand/substrate identification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ligand/substrate identification":

1

Singh, Manvi, Priya Kempanna, and Kavitha Bharatham. "Identification of Mtb GlmU Uridyltransferase Domain Inhibitors by Ligand-Based and Structure-Based Drug Design Approaches." Molecules 27, no. 9 (April 28, 2022): 2805. http://dx.doi.org/10.3390/molecules27092805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Targeting enzymes that play a role in the biosynthesis of the bacterial cell wall has long been a strategy for antibacterial discovery. In particular, the cell wall of Mycobacterium tuberculosis (Mtb) is a complex of three layers, one of which is Peptidoglycan, an essential component providing rigidity and strength. UDP-GlcNAc, a precursor for the synthesis of peptidoglycan, is formed by GlmU, a bi-functional enzyme. Inhibiting GlmU Uridyltransferase activity has been proven to be an effective anti-bacterial, but its similarity with human enzymes has been a deterrent to drug development. To develop Mtb selective hits, the Mtb GlmU substrate binding pocket was compared with structurally similar human enzymes to identify selectivity determining factors. Substrate binding pockets and conformational changes upon substrate binding were analyzed and MD simulations with substrates were performed to quantify crucial interactions to develop critical pharmacophore features. Thereafter, two strategies were applied to propose potent and selective bacterial GlmU Uridyltransferase domain inhibitors: (i) optimization of existing inhibitors, and (ii) identification by virtual screening. The binding modes of hits identified from virtual screening and ligand growing approaches were evaluated further for their ability to retain stable contacts within the pocket during 20 ns MD simulations. Hits that are predicted to be more potent than existing inhibitors and selective against human homologues could be of great interest for rejuvenating drug discovery efforts towards targeting the Mtb cell wall for antibacterial discovery.
2

Rothweiler, Elisabeth M., Paul E. Brennan, and Kilian V. M. Huber. "Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators." Biological Chemistry 403, no. 4 (February 23, 2022): 391–402. http://dx.doi.org/10.1515/hsz-2021-0396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract Ubiquitination is a key regulatory mechanism vital for maintenance of cellular homeostasis. Protein degradation is induced by E3 ligases via attachment of ubiquitin chains to substrates. Pharmacological exploitation of this phenomenon via targeted protein degradation (TPD) can be achieved with molecular glues or bifunctional molecules facilitating the formation of ternary complexes between an E3 ligase and a given protein of interest (POI), resulting in ubiquitination of the substrate and subsequent proteolysis by the proteasome. Recently, the development of novel covalent fragment screening approaches has enabled the identification of first-in-class ligands for E3 ligases and deubiquitinases revealing so far unexplored binding sites which highlights the potential of these methods to uncover and expand druggable space for new target classes.
3

Fernández, Rico-Jiménez, Ortega, Daddaoua, García García, Martín-Mora, Torres, Tajuelo, Matilla, and Krell. "Determination of Ligand Profiles for Pseudomonas aeruginosa Solute Binding Proteins." International Journal of Molecular Sciences 20, no. 20 (October 17, 2019): 5156. http://dx.doi.org/10.3390/ijms20205156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Solute binding proteins (SBPs) form a heterogeneous protein family that is found in all kingdoms of life. In bacteria, the ligand-loaded forms bind to transmembrane transporters providing the substrate. We present here the SBP repertoire of Pseudomonas aeruginosa PAO1 that is composed of 98 proteins. Bioinformatic predictions indicate that many of these proteins have a redundant ligand profile such as 27 SBPs for proteinogenic amino acids, 13 proteins for spermidine/putrescine, or 9 proteins for quaternary amines. To assess the precision of these bioinformatic predictions, we have purified 17 SBPs that were subsequently submitted to high-throughput ligand screening approaches followed by isothermal titration calorimetry studies, resulting in the identification of ligands for 15 of them. Experimentation revealed that PA0222 was specific for γ-aminobutyrate (GABA), DppA2 for tripeptides, DppA3 for dipeptides, CysP for thiosulphate, OpuCC for betaine, and AotJ for arginine. Furthermore, RbsB bound D-ribose and D-allose, ModA bound molybdate, tungstate, and chromate, whereas AatJ recognized aspartate and glutamate. The majority of experimentally identified ligands were found to be chemoattractants. Data show that the ligand class recognized by SPBs can be predicted with confidence using bioinformatic methods, but experimental work is necessary to identify the precise ligand profile.
4

Wang, Wenyuan, Junli Zhu, Qi Huang, Lei Zhu, Ding Wang, Weimin Li, and Wenjie Yu. "DFT Exploration of Metal Ion–Ligand Binding: Toward Rational Design of Chelating Agent in Semiconductor Manufacturing." Molecules 29, no. 2 (January 8, 2024): 308. http://dx.doi.org/10.3390/molecules29020308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Chelating agents are commonly employed in microelectronic processes to prevent metal ion contamination. The ligand fragments of a chelating agent largely determine its binding strength to metal ions. Identification of ligands with suitable characteristics will facilitate the design of chelating agents to enhance the capture and removal of metal ions from the substrate in microelectronic processes. This study employed quantum chemical calculations to simulate the binding process between eleven ligands and the hydrated forms of Ni2+, Cu2+, Al3+, and Fe3+ ions. The binding strength between the metal ions and ligands was quantified using binding energy and binding enthalpy. Additionally, we explored the binding interaction mechanisms and explained the differences in binding abilities of the eleven ligands using frontier molecular orbitals, nucleophilic indexes, electrostatic potentials, and energy decomposition calculations based on molecular force fields. Based on our computational results, promising chelating agent structures are proposed, aiming to guide the design of new chelating agents to address metal ion contamination issues in integrated circuit processes.
5

Weng, Z., S. M. Thomas, R. J. Rickles, J. A. Taylor, A. W. Brauer, C. Seidel-Dugan, W. M. Michael, G. Dreyfuss, and J. S. Brugge. "Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains." Molecular and Cellular Biology 14, no. 7 (July 1994): 4509–21. http://dx.doi.org/10.1128/mcb.14.7.4509-4521.1994.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.
6

Weng, Z., S. M. Thomas, R. J. Rickles, J. A. Taylor, A. W. Brauer, C. Seidel-Dugan, W. M. Michael, G. Dreyfuss, and J. S. Brugge. "Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains." Molecular and Cellular Biology 14, no. 7 (July 1994): 4509–21. http://dx.doi.org/10.1128/mcb.14.7.4509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Src homology 3 (SH3) domains mediate protein-protein interactions necessary for the coupling of cellular proteins involved in intracellular signal transduction. We previously established solution-binding conditions that allow affinity isolation of Src SH3-binding proteins from cellular extracts (Z. Weng, J. A. Taylor, C. E. Turner, J. S. Brugge, and C. Seidel-Dugan, J. Biol. Chem. 268:14956-14963, 1993). In this report, we identified three of these proteins: Shc, a signaling protein that couples membrane tyrosine kinases with Ras; p62, a protein which can bind to p21rasGAP; and heterogeneous nuclear ribonucleoprotein K, a pre-mRNA-binding protein. All of these proteins contain proline-rich peptide motifs that could serve as SH3 domain ligands, and the binding of these proteins to the Src SH3 domain was inhibited with a proline-rich Src SH3 peptide ligand. These three proteins, as well as most of the other Src SH3 ligands, also bound to the SH3 domains of the closely related protein tyrosine kinases Fyn and Lyn. However, Src- and Lyn-specific SH3-binding proteins were also detected, suggesting subtle differences in the binding specificity of the SH3 domains from these related proteins. Several Src SH3-binding proteins were phosphorylated in Src-transformed cells. The phosphorylation of these proteins was not detected in cells transformed by a mutant variant of Src lacking the SH3 domain, while there was little change in tyrosine phosphorylation of other Src-induced phosphoproteins. In addition, the coprecipitation of v-Src with two tyrosyl-phosphorylated proteins with M(r)s of 62,000 and 130,000 was inhibited by incubation with a Src SH3 peptide ligand, suggesting that the binding of these substrate proteins is dependent on interactions with the SH3 domain. These results strongly suggest a role for the Src SH3 domain in the recruitment of substrates to this protein tyrosine kinase, either through direct interaction with the SH3 domain or indirectly through interactions with proteins that bind to the SH3 domain.
7

Evans, S. W., D. Rennick, and W. L. Farrar. "Identification of a signal-transduction pathway shared by haematopoietic growth factors with diverse biological specificity." Biochemical Journal 244, no. 3 (June 15, 1987): 683–91. http://dx.doi.org/10.1042/bj2440683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The haematopoietic growth factors multi-colony-stimulating factor, granulocyte/macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin 2 specifically control the production and proliferation of distinct leucocyte series. Each growth factor acts on a unique surface receptor associated with an appropriate signal-transduction apparatus. In this report we identify a 68 kDa substrate which is phosphorylated after stimulation of different cell types with multi-colony-stimulating factor, granulocyte colony-stimulating factor and interleukin 2. The 68 kDa substrate is also phosphorylated in each cell line stimulated with synthetic diacylglycerol, a direct activator of protein kinase C. Interestingly, granulocyte/macrophage colony-stimulating factor does not induce phosphorylation of the 68 kDa molecule. The 68 kDa molecule that is phosphorylated after stimulation with each ligand yielded similar peptide maps after chymotryptic digestion; furthermore, the substrate was always phosphorylated on threonine residues. Phosphorylation of the same residues in the 68 kDa substrate suggests that activation of protein kinase C is one common signal-transduction event associated with the action of multi-colony-stimulating factor, granulocyte colony-stimulating factor and interleukin 2.
8

Duarte Filho, Luiz Antonio Miranda de Souza, Cintia Emi Yanaguibashi Leal, Pierre-Edouard Bodet, Edilson Beserra de Alencar Filho, Jackson Roberto Guedes da Silva Almeida, Manon Porta Zapata, Oussama Achour, et al. "The Identification of Peptide Inhibitors of the Coronavirus 3CL Protease from a Fucus ceranoides L. Hydroalcoholic Extract Using a Ligand-Fishing Strategy." Marine Drugs 22, no. 6 (May 27, 2024): 244. http://dx.doi.org/10.3390/md22060244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Brown seaweeds of the Fucus genus represent a rich source of natural antiviral products. In this study, a Fucus ceranoides hydroalcoholic extract (FCHE) was found to inhibit 74.2 ± 1.3% of the proteolytic activity of the free SARS-CoV-2 3CL protease (3CLpro), an enzyme that plays a pivotal role in polyprotein processing during coronavirus replication and has been identified as a relevant drug discovery target for SARS- and MERS-CoVs infections. To purify and identify 3CLpro ligands with potential inhibitory activity using a one-step approach, we immobilized the enzyme onto magnetic microbeads (3CLpro-MPs), checked that the enzymatic activity was maintained after grafting, and used this bait for a ligand-fishing strategy followed by a high-resolution mass spectrometry analysis of the fished-out molecules. Proof of concept for the ligand-fishing capacity of the 3CLpro-MPs was demonstrated by doping the FCHE extract with the substrate peptide TSAVLQ-pNA, resulting in the preferential capture of this high-affinity peptide within the macroalgal complex matrix. Ligand fishing in the FCHE alone led to the purification and identification via high-resolution mass spectrometry (HRMS) of seven hepta-, octa-, and decapeptides in an eluate mix that significantly inhibited the free 3CLpro more than the starting FCHE (82.7 ± 2.2% inhibition). Molecular docking simulations of the interaction between each of the seven peptides and the 3CLpro demonstrated a high affinity for the enzyme’s proteolytic active site surpassing that of the most affine peptide ligand identified so far (a co-crystallographic peptide). Testing of the corresponding synthetic peptides demonstrated that four out of seven significantly inhibited the free 3CLpro (from 46.9 ± 6.4 to 76.8 ± 3.6% inhibition at 10 µM). This study is the first report identifying peptides from Fucus ceranoides with high inhibitory activity against the SARS-CoV-2 3CLprotease which bind with high affinity to the protease’s active site. It also confirms the effectiveness of the ligand-fishing strategy for the single-step purification of enzyme inhibitors from complex seaweed matrices.
9

Drexler, Hannes C. A., Matthias Vockel, Christian Polaschegg, Maike Frye, Kevin Peters, and Dietmar Vestweber. "Vascular Endothelial Receptor Tyrosine Phosphatase: Identification of Novel Substrates Related to Junctions and a Ternary Complex with EPHB4 and TIE2." Molecular & Cellular Proteomics 18, no. 10 (August 19, 2019): 2058–77. http://dx.doi.org/10.1074/mcp.ra119.001716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Vascular endothelial protein tyrosine phosphatase (VE-PTP, PTPRB) is a receptor type phosphatase that is crucial for the regulation of endothelial junctions and blood vessel development. We and others have shown recently that VE-PTP regulates vascular integrity by dephosphorylating substrates that are key players in endothelial junction stability, such as the angiopoietin receptor TIE2, the endothelial adherens junction protein VE-cadherin and the vascular endothelial growth factor receptor VEGFR2. Here, we have systematically searched for novel substrates of VE-PTP in endothelial cells by utilizing two approaches. First, we studied changes in the endothelial phosphoproteome on exposing cells to a highly VE-PTP-specific phosphatase inhibitor followed by affinity isolation and mass-spectrometric analysis of phosphorylated proteins by phosphotyrosine-specific antibodies. Second, we used a substrate trapping mutant of VE-PTP to pull down phosphorylated substrates in combination with SILAC-based quantitative mass spectrometry measurements. We identified a set of substrate candidates of VE-PTP, of which a remarkably large fraction (29%) is related to cell junctions. Several of those were found in both screens and displayed very high connectivity in predicted functional interaction networks. The receptor protein tyrosine kinase EPHB4 was the most prominently phosphorylated protein on VE-PTP inhibition among those VE-PTP targets that were identified by both proteomic approaches. Further analysis revealed that EPHB4 forms a ternary complex with VE-PTP and TIE2 in endothelial cells. VE-PTP controls the phosphorylation of each of these two tyrosine kinase receptors. Despite their simultaneous presence in a ternary complex, stimulating each of the receptors with their own specific ligand did not cross-activate the respective partner receptor. Our systematic approach has led to the identification of novel substrates of VE-PTP, of which many are relevant for the control of cellular junctions further promoting the importance of VE-PTP as a key player of junctional signaling.
10

Lamaze, C., and S. L. Schmid. "Recruitment of epidermal growth factor receptors into coated pits requires their activated tyrosine kinase." Journal of Cell Biology 129, no. 1 (April 1, 1995): 47–54. http://dx.doi.org/10.1083/jcb.129.1.47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
EGF-receptor (EGF-R) tyrosine kinase is required for the down-regulation of activated EGF-R. However, controversy exists as to whether ligand-induced activation of the EGF-R tyrosine kinase is required for internalization or for lysosomal targeting. We have addressed this issue using a cell-free assay that selectively measures the recruitment of EGF-R into coated pits. Here we show that EGF bound to wild-type receptors is efficiently sequestered in coated pits. In contrast, sequestration of kinase-deficient receptors occurs inefficiently and at the same basal rate of endocytosis of unoccupied receptors or receptors lacking any cytoplasmic domain. Sequestration of deletion mutants of the EGF-R that lack autophosphorylation sites also requires an active tyrosine kinase. This suggests that a tyrosine kinase substrate(s) other than the EGF-R itself, is required for its efficient ligand-induced recruitment into coated pits. Addition of a soluble EGF-R tyrosine kinase fully and specifically restores the recruitment of kinase-deficient EGF-R into coated pits providing a powerful functional assay for identification of these substrate(s).

Dissertations / Theses on the topic "Ligand/substrate identification":

1

Sylvestre-Gonon, Elodie. "Caractérisation biochimique et structurale de quelques glutathion transférases de la classe Tau d'arabette (Arabidopsis thaliana) et de peuplier (Populus trichocarpa)." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les glutathion transférases (GSTs) constituent une famille multigénique d’enzymes ubiquitaires impliquées notamment dans la détoxication des xénobiotiques et le métabolisme secondaire. Les GSTs canoniques sont constituées d’un domaine N-terminal de type thiorédoxine et d’un domaine C-terminal formé d’hélices α. Chez les plantes terrestres, les GSTs peuvent être regroupées en 14 classes et selon le résidu conservé au sein de leur motif catalytique en GSTs à cystéine (Cys-GSTs) ou à sérine (Ser-GSTs). Les Ser-GSTs présentent des activités de réduction des peroxydes et/ou de conjugaison de glutathion (GSH) alors que les Cys-GSTs portent des activités de déglutathionylation et déshydroascorbate réductase. Certaines d’entre elles présentent également des propriétés non-catalytiques de type ligandine à des fins de transport ou de stockage de molécules diverses. Les GSTs Tau (GSTUs) correspondent à la classe regroupant le plus d’isoformes chez les plantes et leur sont spécifiques. Les GSTUs sont souvent surexprimées lors de stress biotiques et abiotiques et participent notamment à la détoxication des herbicides. Toutefois, le rôle physiologique des GSTUs reste encore lacunaire in planta. En combinant des approches phylogénétiques, biochimiques et structurales, ces travaux ont conduit à la caractérisation de neuf GSTUs d’Arabidopsis thaliana (AtGSTUs) et de six GSTUs de Populus trichocarpa (PtGSTUs). L’analyse phylogénétique des Ser-GSTs d’organismes photosynthétiques a révélé que l’expansion des GSTUs est apparue de façon concomitante à l’apparition du réseau vasculaire chez les plantes bien que quelques mousses et bryophytes possèdent des GSTUs. Au sein d’un organisme, les GSTUs peuvent être classées en groupes distincts en fonction de leur motif catalytique. Les essais enzymatiques réalisés ont montré que quasiment toutes les GSTUs d’intérêt portent des activités de conjugaison du GSH et de réduction des peroxydes envers différents substrats modèles (CDNB, dérivés d’isothiocyanates, hydroperoxydes). Les structures tridimensionnelles de deux GSTUs ont été résolues et ces dernières présentent le repliement classique des GSTs canoniques avec des différences notables entre elles. Les analyses biochimiques et structurales réalisées sur les protéines AtGSTUs et PtGSTUs d’intérêt ont montré que certaines d’entre elles lient des porphyrines bactériennes et d’autres des composés polyphénoliques. Parmi les complexes enzyme-ligand identifiés, la structure d’un complexe baicaléine-GSTU a été résolue. L’utilisation d’échantillons enrichis en métabolites extraits de plantes représente la prochaine étape sur le chemin de l’analyse fonctionnelle des GSTUs
Glutathione transferases (GSTs) constitute a ubiquitous multigene superfamily of enzymes involved in xenobiotic detoxification and secondary metabolism. Canonical GSTs consist of an N-terminal thioredoxin domain and a α-helical C-terminal domain. In terrestrial plants, GSTs can be grouped in 14 classes but also according to the conserved residue found in their catalytic site either cysteine (Cys-GSTs) or serine (Ser-GSTs) GSTs. Ser-GSTs exhibit reduction of peroxides and/or glutathione (GSH) conjugation activities while Cys-GSTs rather exhibit deglutathionylation and dehydroascorbate reductase activities. Some of them also appear to have non-catalytic ligandin properties for the transport or storage of various molecules. The plant-specific Tau GST (GSTU) class is usually the most expanded one. The GSTUs are often over-expressed during biotic and abiotic stresses contributing notably to herbicide detoxification. However, the physiological role of most GSTUs is still poorly documented in planta. By combining phylogenetic, biochemical and structural approaches, this work led to the characterisation of nine GSTUs from Arabidopsis thaliana (AtGSTUs) and six GSTUs from Populus trichocarpa (PtGSTUs). Phylogenetic analysis of the Ser-GSTs present in photosynthetic organisms revealed that the expansion of GSTUs occurred concomitantly with the appearance of vasculature in plants, although some mosses and bryophytes possess GSTUs. Within an organism, GSTUs can be classified into distinct groups according to their catalytic motif. Enzymatic tests using recombinant proteins showed that almost all studied GSTUs exhibit GSH conjugation and peroxide reduction activities against different model substrates (CDNB, isothiocyanate derivatives, hydroperoxides). The three-dimensional structures of two GSTUs have been resolved and these adopt the classical canonical GST fold with some notable difference between them. The biochemical and structural analyses of these AtGSTUs and PtGSTUs further showed that some of them bind bacterial porphyrins while others bind polyphenolic compounds. Among the enzyme-ligand complexes identified, the structure of a bacalein-GSTU has been solved. The use of metabolites enriched samples extracted from A. thaliana and P. trichocarpa is the next step to decipher the role of GSTUs in planta
2

Williams, Jamie John Lewis. "Identification of substrates for the EPAC1-inducible E3 ubiquitin ligase component SOCS3." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/4013/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
It is now accepted that there is a link between obesity and several diseases such as cardiovascular disease (CVD), diabetes, rheumatoid arthritis (RA), and atherosclerosis with the common initiating factor in pathogenesis being a state of low grade, chronic inflammation. This state, characterised by elevated levels of pro-inflammatory cytokines such as interleukin (IL) 6, leads to sustained activation of inflammatory signalling pathways such as the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway and subsequently pathogenesis. Suppressor of cytokine signalling (SOCS) 3 is inducible by several stimuli including IL6 and 3'-5'-cyclic adenosine monophosphate (cAMP), and via these routes has been demonstrated to terminate IL6 signalling thus quenching JAK/STAT signalling and an inflammatory response. While SOCS3 was primarily characterised as a competitive inhibitor of intracellular signalling, it also functions as specificity factor for an elongin-cullin-SOCS (ECS)-type E3 ubiquitin ligase. In this role, it has been demonstrated to direct ubiquitin-mediated proteasomal degradation of several substrates and lysosomal routing. However, the full spectrum of SOCS3-dependently ubiquitinated substrates is unknown. Given that JAK/STAT signalling is critical in the development of chronic inflammatory disorders, delineating the role of SOCS3 as an E3 ligase might be therapeutically beneficial. However, given the broad range of SOCS3 stimuli, the availability of certain SOCS3 substrates might be conditional on the route of SOCS3 induction. Using a global proteomics approach, this study aimed to identify SOCS3-dependently ubiquitinated substrates in response to cAMP and thus elaborate on the already well-established role of cAMP in inflammation. Differentially stable isotope labelling of amino acids in cell culture (SILAC)-labelled, tandem affinity purified ubiquitinomes of wild type (WT) murine embryonic fibroblasts (MEFs) and SOCS3-/- MEFs, each expressing epitope-tagged forms of ubiquitin, were compared using mass spectrometry (MS) following cAMP-mediated SOCS3 induction. Using this approach, proteins modified by SOCS3 with the epitope-tagged form of ubiquitin should be enriched in WT MEFs but not SOCS3-/- MEFs. MaxQuant analysis of raw mass spectromeric data identified several candidate SOCS3 substrates. Of these, SOCS3 was found to interact with PTRF/cavin-1, a regulator of caveolae formation and stability. Other substrates were tested but with limited success. Co-immunoprecipitation studies showed that SOCS3 could precipitate cavin-1 however the interaction was reduced following the inhibition of protein tyrosine phosphatases (PTPs) using sodium orthovanadate and hydrogen peroxide. This was surprising since all known SOCS3 substrates are tyrosine-phosphorylated prior to interacting with SOCS3 via its Src-homology (SH) 2 domain. Consistent with this finding, SOCS3 did not interact with known cavin-1 tyrosine-phosphorylated peptides spotted on a peptide array. However, a full-length cavin-1 peptide array spotted with non-tyrosine-phosphorylated peptides showed specific interactions at multiple sites. It is proposed that this interaction might influence the localisation and stability of either protein. While SOCS3 was demonstrated to impact cavin-1 ubiquitination, the mechanism by which it does so or the functional consequence is still not clear. Immunoprecipitation of cavin-1 following the introduction of SOCS3 was accompanied by a shift in the polyubiquitin signal from a high molecular weight, seen with cavin-1 alone, to a low molecular weight. Furthermore, an enhanced K48-polyubiquitin signal was detectable in this low molecular weight fraction, which was focused around the molecular weight of cavin-1. It is not known if this ubiquitin signal is SOCS3-dependent. In conclusion, the project has identified and validated a novel substrate of SOCS3. However, the mechanism by which SOCS3 regulates cavin-1 ubiquitination or the biological function of the interaction is currently unknown.
3

Burande, Clara. "Identification des substracts d'ASB2alpha, la sous-unité de spécificité d'une E3 ubiquitine ligase impliquée dans la différenciation hématopoïétique." Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1639/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La dégradation des protéines dépendante de l'ubiquitine est une voie de protéolyse contrôlée cruciale chez les Eucaryotes dont la spécificité est apportée par les E3 ubiquitine ligases impliquées dans la reconnaissance des protéines à polyubiquitinyler et donc dégradées par le protéasome. Au cours de ma thèse, j'ai développé une nouvelle stratégie d'identification de substrats d'E3 ubiquitine ligases par protéomique quantitative sans marquage, appliquée à l'étude d'ASB2alpha. La protéine ASB2alpha est la sous-unité de spécificité d'une E3 ubiquitine ligase exprimée dans les cellules hématopoïétiques capable d'induire la polyubiquitylation et donc la dégradation des filamines A et B (FLNa et FLNb). Après avoir démontré la pertinence de cette approche, nous avons mis en évidence la dégradation du troisième membre de la famille filamine, la FLNc. Cette nouvelle stratégie applicable à toutes les E3 ubiquitine ligases ciblant ses substrats au protéasome présente l'avantage d'être applicable à différents contextes physiologiques et de s'affranchir des difficultés rencontrées lors de l'utilisation des méthodes d'identification dites classiques. Par ailleurs, nous avons montré qu'ASB2alpha en induisant la dégradation des filamines, était un régulateur de la motilité cellulaire. De plus, nous avons établi les bases moléculaires de la reconnaissance de la FLNa par ASB2alpha. L'identification de leurs substrats et la caractérisation des mécanismes de leur reconnaissance apparaissent comme essentiels pour la compréhension de nombreux processus cellulaires et pathologiques
The ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. E3 ubiquitin ligases are responsible for the specificity of this system. They provide platforms for binding specific substrates thereby coordinating their ubiquitination and subsequent degradation by the proteasome. We have developed a global proteomic strategy to identified E3 ubiquitin ligase substrates targeted to proteasomal degradation. The proof of principle of this strategy is provided by our results highlighting FLNa and FLNb as substrates of the ASB2alpha E3 ubiquitin ligase that is involved in hematopoiesis. Furthermore, we have shown that FLNc, the third member of the filamin family, is also a target of ASB2alpha. This study provides a new strategy for the identification of E3 ubiquitin ligase substrates that have to be degraded in physiologically relevant settings. We have also demonstrated that ASB2alpha, through degradation of FLNs, can regulate integrin-dependent cell motility. Moreover, structural and cell biology studies have unraveled the domain of ASB2α that is involved in the recruitment of its substrate, FLNa. This study has provided an original strategy to identify E3 ubiquitin ligase substrates targeted to degradation. Furthermore, our work has contributed to the understanding of the function and mechanisms of action of ASB2α in hematopoietic cells

Book chapters on the topic "Ligand/substrate identification":

1

Cox, Eric, Ijeoma Uzoma, Catherine Guzzo, Jun Seop Jeong, Michael Matunis, Seth Blackshaw, and Heng Zhu. "Identification of SUMO E3 Ligase-Specific Substrates Using the HuProt Human Proteome Microarray." In Methods in Molecular Biology, 455–63. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2550-6_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jing, Lei, Xin Huo, Yufeng Li, Yuyin Li, and Aipo Diao. "Identification of the Binding Domains of Nedd4 E3 Ubiquitin Ligase with Its Substrate Protein TMEPAI." In Lecture Notes in Electrical Engineering, 47–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45657-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ayad, Nagi G., Susannah Rankin, Danny Ooi, Michael Rape, and Marc W. Kirschner. "Identification of Ubiquitin Ligase Substrates by In Vitro Expression Cloning." In Methods in Enzymology, 404–14. Elsevier, 2005. http://dx.doi.org/10.1016/s0076-6879(05)99028-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ligand/substrate identification":

1

Geddes, V. A., G. V. Louie, G. D. Brayer, and R. T. A. MacGillivray. "MOLECULAR BASIS OF HEMOPHILIA B: IDENTIFICATION OF THE DEFECT IN FACTOR IX VANCOUVER." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643872.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Factor IX Vancouver (fIX-V) is the cause of a moderate form of hemophilia B. An individual presenting with this disorder had 2.6% of normal procoagulant activity in his plasma but had 62% of the normal factor IX antigen level. Specific antibodies showed that fIX-V contains epitopes for both the heavy and light chains of factor IXa. To identify the defect involved, DNA was isolated from the lymphocytes of the male hemophiliac. Southern blot analysis using a full-length factor IX cDNA as a hybridization probe showed no gross differences between the fIX-V gene and the normal factor IX gene. The DNA from the hemophiliac was then partially digested with Sau3A and the resulting fragments (10-20kbp in size) were ligated into the BamHI site of λEMBL3. The DNA was then packaged into phage particles in vitro, and the recombinant phage were screened with the factor IX cDNA as a probe. Eight phage were isolated that contained overlapping DNA covering the complete gene for fIX-V. DNA sequence analysis of the protein-encoding regions, the intron/exon junctions and 5'-and 3'-flanking sequences revealed a single nucleotide change from the normal factor IX gene. The codon for amino acid 397 was changed from ATA (lie) to ACA (Thr). This mutation is in the catalytic domain of factor IXa and is novel amongst those hemophilia B mutations reported to date. Based on the known three dimensional structures of the pancreatic serine proteases, trypsin, elastase and chymotrypsin, models have been constructed for the structures of the catalytic domains of both the normal and Thr-397 mutant of factor IXa. These results suggest that the Thr-397 mutation may alter the conformation of the substrate binding region in the active site of factor IXa Vancouver through the formation of a hydrogen bond between the hydroxyl group of the Thr-397 side chain and the main chain carbonyl group of Trp-385. The postulated conformational change would lead to reduced binding affinity for the factor IXa substrate resulting in a reduction in the catalytic activity of fIXa-Vancouver.Supported in part by grants from the Medical Research Council of Canada (to GDB and RTAM).

To the bibliography