Journal articles on the topic 'Ligand binding interactions'

To see the other types of publications on this topic, follow the link: Ligand binding interactions.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Ligand binding interactions.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Marsh, Lorraine. "Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites." BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/746980.

Full text
Abstract:
Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorableΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorableΔGbecause of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total bindingΔGarising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where “nonspecific” interactions contribute to biological function.
APA, Harvard, Vancouver, ISO, and other styles
2

Leigh, David A. "Summing Up Ligand Binding Interactions." Chemistry & Biology 10, no. 12 (December 2003): 1143–44. http://dx.doi.org/10.1016/j.chembiol.2003.12.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kaiser, Anette, and Irene Coin. "Capturing Peptide–GPCR Interactions and Their Dynamics." Molecules 25, no. 20 (October 15, 2020): 4724. http://dx.doi.org/10.3390/molecules25204724.

Full text
Abstract:
Many biological functions of peptides are mediated through G protein-coupled receptors (GPCRs). Upon ligand binding, GPCRs undergo conformational changes that facilitate the binding and activation of multiple effectors. GPCRs regulate nearly all physiological processes and are a favorite pharmacological target. In particular, drugs are sought after that elicit the recruitment of selected effectors only (biased ligands). Understanding how ligands bind to GPCRs and which conformational changes they induce is a fundamental step toward the development of more efficient and specific drugs. Moreover, it is emerging that the dynamic of the ligand–receptor interaction contributes to the specificity of both ligand recognition and effector recruitment, an aspect that is missing in structural snapshots from crystallography. We describe here biochemical and biophysical techniques to address ligand–receptor interactions in their structural and dynamic aspects, which include mutagenesis, crosslinking, spectroscopic techniques, and mass-spectrometry profiling. With a main focus on peptide receptors, we present methods to unveil the ligand–receptor contact interface and methods that address conformational changes both in the ligand and the GPCR. The presented studies highlight a wide structural heterogeneity among peptide receptors, reveal distinct structural changes occurring during ligand binding and a surprisingly high dynamics of the ligand–GPCR complexes.
APA, Harvard, Vancouver, ISO, and other styles
4

Langelaan, David N., and Jan K. Rainey. "Membrane catalysis of peptide–receptor bindingThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process." Biochemistry and Cell Biology 88, no. 2 (April 2010): 203–10. http://dx.doi.org/10.1139/o09-129.

Full text
Abstract:
The membrane catalysis hypothesis states that a peptide ligand activates its target receptor after an initial interaction with the surrounding membrane. Upon membrane binding and interaction, the ligand is structured such that receptor binding and activation is encouraged. As evidence for this hypothesis, there are numerous studies concerning the conformation that peptides adopt in membrane mimetic environments. This mini-review analyzes the features of ligand peptides with an available high-resolution membrane-induced structure and a characterized membrane-binding region. At the peptide–membrane interface, both amphipathic helices and turn structures are commonly formed in peptide ligands and both hydrophobic and electrostatic interactions can be responsible for membrane binding. Apelin is the ligand to the G-protein coupled receptor (GPCR) named APJ, with various important physiological effects, which we have recently characterized both in solution and bound to anionic micelles. The structural changes that apelin undergoes when binding to micelles provide strong evidence for membrane catalysis of apelin–APJ interactions.
APA, Harvard, Vancouver, ISO, and other styles
5

Tozer, Eileen Collins, Paul E. Hughes, and Joseph C. Loftus. "Ligand binding and affinity modulation of integrins." Biochemistry and Cell Biology 74, no. 6 (December 1, 1996): 785–98. http://dx.doi.org/10.1139/o96-085.

Full text
Abstract:
Integrins are cell adhesion receptors that mediate cell–cell and cell–extracellular matrix interactions. The extracellular domains of these receptors possess binding sites for a diverse range of protein ligands. Ligand binding is divalent cation dependent and involves well-defined motifs in the ligand. Integrins can dynamically regulate their affinity for ligands (inside-out signaling). This ability to rapidly modulate their affinity state is key to their involvement in such processes as cell migration and platelet aggregation. This review will focus on two aspects of integrin function: first, on the molecular basis of ligand–integrin interactions and, second, on the underlying mechanisms controlling the affinity state of integrins for their ligands.Key words: integrins, ligand binding, affinity modulation.
APA, Harvard, Vancouver, ISO, and other styles
6

Sharma, Ankur, Annapoorni Rangarajan, and Rajan R. Dighe. "Antibodies against the extracellular domain of human Notch1 receptor reveal the critical role of epidermal-growth-factor-like repeats 25–26in ligand binding and receptor activation." Biochemical Journal 449, no. 2 (December 14, 2012): 519–30. http://dx.doi.org/10.1042/bj20121153.

Full text
Abstract:
The Notch signalling pathway is implicated in a wide variety of cellular processes throughout metazoan development. Although the downstream mechanism of Notch signalling has been extensively studied, the details of its ligand-mediated receptor activation are not clearly understood. Although the role of Notch ELRs [EGF (epidermal growth factor)-like-repeats] 11–12 in ligand binding is known, recent studies have suggested interactions within different ELRs of the Notch receptor whose significance remains to be understood. Here, we report critical inter-domain interactions between human Notch1 ELRs 21–30 and the ELRs 11–15 that are modulated by calcium. Surface plasmon resonance analysis revealed that the interaction between ELRs 21–30 and ELRs 11–15 is ~10-fold stronger than that between ELRs 11–15 and the ligands. Although there was no interaction between Notch1 ELRs 21–30 and the ligands in vitro, addition of pre-clustered Jagged1Fc resulted in the dissociation of the preformed complex between ELRs 21–30 and 11–15, suggesting that inter-domain interactions compete for ligand binding. Furthermore, the antibodies against ELRs 21–30 inhibited ligand binding to the full-length Notch1 and subsequent receptor activation, with the antibodies against ELRs 25–26 being the most effective. These results suggest that the ELRs 25–26 represent a cryptic ligand-binding site which becomes exposed only upon the presence of the ligand. Thus, using specific antibodies against various domains of the Notch1 receptor, we demonstrate that, although ELRs 11–12 are the principal ligand-binding site, the ELRs 25–26 serve as a secondary binding site and play an important role in receptor activation.
APA, Harvard, Vancouver, ISO, and other styles
7

Urien, S., P. Nguyen, S. Berlioz, F. Brée, F. Vacherot, and J. P. Tillement. "Characterization of discrete classes of binding sites of human serum albumin by application of thermodynamic principles." Biochemical Journal 302, no. 1 (August 15, 1994): 69–72. http://dx.doi.org/10.1042/bj3020069.

Full text
Abstract:
The binding interactions of four ligands differing in acid-base properties with human serum albumin (HSA) were examined as a function of temperature. Binding to HSA decreased with increasing temperature for all four ligands. The bound and free ligand concentrations obtained at different temperatures were satisfactorily fitted to a model that incorporates the effect of temperature as an independent covariable and that directly allows the estimation of the enthalpic and entropic components of the ligand-albumin interaction, along with the precision of this estimation. Using this analysis, the binding of acidic ligands could be resolved into two classes of saturable sites, with the determination of the corresponding number of sites, whereas interpretation of binding data at each isolated temperature allowed only the determination of one saturable plus one non-saturable class of site. The thermodynamic constants indicate that binding of ionizable ligands to HSA involves electrostatic plus hydrophobic interactions, whereas only hydrophobic interactions are involved in binding to a second low-affinity class of site when present. Binding of non-ionizable ligands resembles that of the second class of low-affinity sites of ionizable ligands.
APA, Harvard, Vancouver, ISO, and other styles
8

Katzenellenbogen, J. A., and R. Muthyala. "Interactions of exogenous endocrine active substances with nuclear receptors." Pure and Applied Chemistry 75, no. 11-12 (January 1, 2003): 1797–817. http://dx.doi.org/10.1351/pac200375111797.

Full text
Abstract:
Nuclear receptors function as ligand-regulated transcription factors and modulate the expression of sets of genes in response to varying concentrations of ligands. The ligand modulators can be endogenous metabolites that function as hormones, or they can be exogenous substances, such as pharmaceutical agents or environmental substances of natural or man-made origin, which in some cases can cause endocrine disruption. Ligands modulate nuclear receptor activity by binding to their ligand-binding domains and stabilizing conformations that lead either to transcriptional activation or repression. The ligand-binding pocket is somewhat flexible, and binding affinities can be measured over a 10-million-fold range (i.e., with equilibrium dissociation constant values ranging from ca. 0.01 nM to 100 μM). Thus, it is not surprising that by binding a large variety of structures, some nuclear receptors can appear to be promiscuous; however, when affinity is considered, the binding patterns are more restricted. The spectrum of ligands that bind to the estrogen receptor has been most thoroughly investigated. Those from natural sources include natural products in food, such as soy isoflavones and whole grain lignans, as well as microbial products and components from wood. Aside from pharmaceuticals, man-made estrogen ligands can be found in industrial products, such as alkyl phenols from nonionic detergents, bisphenols from plastics, indicator dye impurities, polymer chemicals, and chlorinated aromatics and pesticides. Exogenous ligands are also known for the androgen and progesterone receptors. While it is possible that endocrine disruption can result from exogenous chemicals acting directly as ligands for the nuclear receptors, endocrine disruption needs to be considered in the broader context; thus, compounds also need to be assessed for their effects at other levels, such as on endogenous hormone production, transport, metabolism, and clearance, and at points in signal transduction cascades that are beyond the ligand-receptor interaction.
APA, Harvard, Vancouver, ISO, and other styles
9

Micovic, Vuk, Milovan Ivanovic, and Ljiljana Dosen-Micovic. "Structural requirements for ligands of the δ-opioid receptor." Journal of the Serbian Chemical Society 74, no. 11 (2009): 1207–17. http://dx.doi.org/10.2298/jsc0911207m.

Full text
Abstract:
The ?-opioid receptor is sensitive to ligand geometry. In order to assist the synthesis of new ?-selective opioid ligands, the structure elements of ?-selective opioid ligands necessary for their effective binding were investigated. The automated docking procedure with a flexible ligand was used to simulate the binding of 17 ?-selective ligands to the ?-receptor. It was found that voluminous N-alkyl groups reduce the binding potency of naltrindole derivatives by preventing the ligands from adopting the preferred conformation in the receptor. This was confirmed by enantiospecific binding of chiral compounds where only one enantiomer adopts the naltrindole-like preferred conformation in the binding pocket. Voluminous groups replacing the hydroxyl group in the 3-hydroxybenzyl fragment of naltrindole analogs reduce the binding potency due to unfavorable steric interactions with the receptor. The two diastereoisomers of the potent ?-opioid ligand SNC80 confirmed the preferred binding conformation and the major receptor-ligand interactions.
APA, Harvard, Vancouver, ISO, and other styles
10

Moldogazieva, Nurbubu T., Daria S. Ostroverkhova, Nikolai N. Kuzmich, Vladimir V. Kadochnikov, Alexander A. Terentiev, and Yuri B. Porozov. "Elucidating Binding Sites and Affinities of ERα Agonists and Antagonists to Human Alpha-Fetoprotein by In Silico Modeling and Point Mutagenesis." International Journal of Molecular Sciences 21, no. 3 (January 30, 2020): 893. http://dx.doi.org/10.3390/ijms21030893.

Full text
Abstract:
Alpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting a variety of hydrophobic ligands, including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth, which can be attributed to its estrogen-binding ability. Despite AFP having long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP–ligand interaction remains obscure. In our study, we constructed a homology-based 3D model of human AFP (HAFP) with the purpose of molecular docking of ERα ligands, three agonists (17β-estradiol, estrone and diethylstilbestrol), and three antagonists (tamoxifen, afimoxifene and endoxifen) into the obtained structure. Based on the ligand-docked scoring functions, we identified three putative estrogen- and antiestrogen-binding sites with different ligand binding affinities. Two high-affinity binding sites were located (i) in a tunnel formed within HAFP subdomains IB and IIA and (ii) on the opposite side of the molecule in a groove originating from a cavity formed between domains I and III, while (iii) the third low-affinity binding site was found at the bottom of the cavity. Here, 100 ns molecular dynamics (MD) simulation allowed us to study their geometries and showed that HAFP–estrogen interactions were caused by van der Waals forces, while both hydrophobic and electrostatic interactions were almost equally involved in HAFP–antiestrogen binding. Molecular mechanics/Generalized Born surface area (MM/GBSA) rescoring method exploited for estimation of binding free energies (ΔGbind) showed that antiestrogens have higher affinities to HAFP as compared to estrogens. We performed in silico point substitutions of amino acid residues to confirm their roles in HAFP–ligand interactions and showed that Thr132, Leu138, His170, Phe172, Ser217, Gln221, His266, His316, Lys453, and Asp478 residues, along with two disulfide bonds (Cys224–Cys270 and Cys269–Cys277), have key roles in both HAFP–estrogen and HAFP–antiestrogen binding. Data obtained in our study contribute to understanding mechanisms underlying protein–ligand interactions and anticancer therapy strategies based on ERα-binding ligands.
APA, Harvard, Vancouver, ISO, and other styles
11

González, Javier M., and S. Zoë Fisher. "Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)." Acta Crystallographica Section F Structural Biology Communications 71, no. 2 (January 28, 2015): 163–70. http://dx.doi.org/10.1107/s2053230x14027897.

Full text
Abstract:
Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.
APA, Harvard, Vancouver, ISO, and other styles
12

Crabb, John W., Zuquin Nie, Yang Chen, Jeffrey D. Hulmes, Karen A. West, James T. Kapron, Sarah E. Ruuska, Noa Noy, and John C. Saari. "Cellular Retinaldehyde-binding Protein Ligand Interactions." Journal of Biological Chemistry 273, no. 33 (August 14, 1998): 20712–20. http://dx.doi.org/10.1074/jbc.273.33.20712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Bode, Wolfram, and Robert Huber. "Ligand binding: proteinase-protein inhibitor interactions." Current Opinion in Structural Biology 1, no. 1 (February 1991): 45–52. http://dx.doi.org/10.1016/0959-440x(91)90010-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Sukalovic, Vladimir, Vukic Soskic, Deana Andric, Goran Roglic, and Sladjana Kostic-Rajacic. "Modeling key interactions between dopamine D2 receptor second extracellular loop and arylpiperazine ligands." Journal of the Serbian Chemical Society 77, no. 3 (2012): 259–77. http://dx.doi.org/10.2298/jsc111028212s.

Full text
Abstract:
Second extracellular loop (ecl2) of dopamine (DA) D2 receptor is an essential part of dopaminergic ligands binding pocket. To form a part of the ligand binding surface it has to fold down into the transmembrane domain of the DA receptor. The current study describes the modeling of the D2 DA receptor ecl2 and its interactions with arylpiperazine ligands. In order to model D2 DA receptor ecl2, the number of arylpiperazine ligands was used to propose pharmacophore model. D2 DA receptor ecl2 model was built using Accelrys Discovery Studio. To test the proposed model, docking analysis was performed and key amino acid residues were determined. Proposed receptor-ligand iteractions were rationalized and compared with measured binding affinity. It is shown that D2 DA receptor ecl2 significantly participates in receptor-ligand complex formation through aromatic, hydrophobic and polar interaction. Taking them in account would benefit GPCR molecular modeling and facilitate the design of novel active compounds.
APA, Harvard, Vancouver, ISO, and other styles
15

Folkertsma, Simon, Paula I. van Noort, Arnold de Heer, Peter Carati, Ralph Brandt, Arie Visser, Gerrit Vriend, and Jacob de Vlieg. "The Use of in Vitro Peptide Binding Profiles and in Silico Ligand-Receptor Interaction Profiles to Describe Ligand-Induced Conformations of the Retinoid X Receptor α Ligand-Binding Domain." Molecular Endocrinology 21, no. 1 (January 1, 2007): 30–48. http://dx.doi.org/10.1210/me.2006-0072.

Full text
Abstract:
Abstract It is hypothesized that different ligand-induced conformational changes can explain the different interactions of nuclear receptors with regulatory proteins, resulting in specific biological activities. Understanding the mechanism of how ligands regulate cofactor interaction facilitates drug design. To investigate these ligand-induced conformational changes at the surface of proteins, we performed a time-resolved fluorescence resonance energy transfer assay with 52 different cofactor peptides measuring the ligand-induced cofactor recruitment to the retinoid X receptor-α (RXRα) in the presence of 11 compounds. Simultaneously we analyzed the binding modes of these compounds by molecular docking. An automated method converted the complex three-dimensional data of ligand-protein interactions into two-dimensional fingerprints, the so-called ligand-receptor interaction profiles. For a subset of compounds the conformational changes at the surface, as measured by peptide recruitment, correlate well with the calculated binding modes, suggesting that clustering of ligand-receptor interaction profiles is a very useful tool to discriminate compounds that may induce different conformations and possibly different effects in a cellular environment. In addition, we successfully combined ligand-receptor interaction profiles and peptide recruitment data to reveal structural elements that are possibly involved in the ligand-induced conformations. Interestingly, we could predict a possible binding mode of LG100754, a homodimer antagonist that showed no effect on peptide recruitment. Finally, the extensive analysis of the peptide recruitment profiles provided novel insight in the potential cellular effect of the compound; for the first time, we showed that in addition to the induction of coactivator peptide binding, all well-known RXRα agonists also induce binding of corepressor peptides to RXRα.
APA, Harvard, Vancouver, ISO, and other styles
16

Urien, S., F. Brée, B. Testa, and J. P. Tillement. "pH-dependency of basic ligand binding to α1-acid glycoprotein (orosomucoid)." Biochemical Journal 280, no. 1 (November 15, 1991): 277–80. http://dx.doi.org/10.1042/bj2800277.

Full text
Abstract:
The binding interactions of a series of basic ligands with alpha 1-acid glycoprotein (AAG) were examined as a function of pH. The binding to AAG increased with increasing pH, and the binding data were satisfactorily fitted to a model that incorporates the effect of pH and discriminates the association constants of neutral (non-protonated) and protonated forms of ligands. It was shown that ligands in the neutral form have a markedly higher affinity for AAG than the protonated forms, resulting in a concomitant decrease in the pKa of bound ligands. The u.v.-visible difference spectra generated upon binding of a representative ligand to AAG also showed that there was a contribution to the binding arising from the deprotonation of the ligand. It is suggested that all tested ligands bind similarly to AAG and that hydrophobic interactions dominate high-affinity binding to AAG.
APA, Harvard, Vancouver, ISO, and other styles
17

Mondoro, TH, CD Wall, MM White, and LK Jennings. "Selective induction of a glycoprotein IIIa ligand-induced binding site by fibrinogen and von Willebrand factor." Blood 88, no. 10 (November 15, 1996): 3824–30. http://dx.doi.org/10.1182/blood.v88.10.3824.bloodjournal88103824.

Full text
Abstract:
Ligand-induced binding sites (LIBS) are neoantigenic regions of glycoprotein (GP)IIb-IIIa that are exposed upon interaction of the receptor with the ligand fibrinogen or the ligand recognition sequence (RGDS). LIBS have been suggested to contribute to postreceptor occupancy events such as full-scale platelet aggregation, adhesion to collagen, and clot retraction. This study examined the induction requirements of a GPIIIa LIBS with regard to ligand specificity. Through the use of the anti-LIBS D3, we report that this complex- activating antibody induces fibrinogen-and von Willebrand factor-binding to GPIIb-IIIa on intact platelets. Bound ligand was detected by flow cytometric analysis and platelet aggregation assays. These bound ligands increased the number of D3-binding sites and altered the affinity of D3 for GPIIb-IIIa on platelets. In contrast, activation of platelet GPIIb-IIIa by D3 did not increase the binding of another RGD- containing ligand, vitronectin. Furthermore, bound vitronectin on thrombin-stimulated platelets did not cause the expression of the D3 LIBS epitope. We conclude direct activation of GPIIb-IIIa in the absence of platelet activation results in selective ligand interaction and that D3 LIBS induction requires the binding of the multivalent ligands, fibrinogen or von Willebrand factor. Thus, the region of GPIIIa recognized by D3 may be an important regulatory domain in ligand- receptor interactions that directly mediate platelet aggregation.
APA, Harvard, Vancouver, ISO, and other styles
18

Polakovičová, M., and R. Čižmáriková. "Molecular Docking Study on the Binding Mode of Cardioselective Phenoxyaminopropanol Blocker into β-adrenergic Receptor Subtypes." Acta Facultatis Pharmaceuticae Universitatis Comenianae 59, no. 2 (December 28, 2012): 44–53. http://dx.doi.org/10.2478/v10219-012-0024-6.

Full text
Abstract:
AbstractStructural understanding of subtype specific ligand-binding pocket variations and interactions of ligand with receptor may facilitate design of novel selective drugs. To gain insights into the subtype selectivity of β-blockers we performed flexible molecular docking study to analyze the interaction mode of cardioselective phenoxyaminopropanol blocker into the β1 and β2-adrenergic receptor. The binding site analysis reveals a strong identity between important amino acid residues and interactions with ligand in orthosteric catecholamine- binding pocket. The differences in the binding mode of selective ligand have been identified in the extracellular region of receptor subtypes.
APA, Harvard, Vancouver, ISO, and other styles
19

Kobren, Shilpa Nadimpalli, and Mona Singh. "Systematic domain-based aggregation of protein structures highlights DNA-, RNA- and other ligand-binding positions." Nucleic Acids Research 47, no. 2 (December 7, 2018): 582–93. http://dx.doi.org/10.1093/nar/gky1224.

Full text
Abstract:
Abstract Domains are fundamental subunits of proteins, and while they play major roles in facilitating protein–DNA, protein–RNA and other protein–ligand interactions, a systematic assessment of their various interaction modes is still lacking. A comprehensive resource identifying positions within domains that tend to interact with nucleic acids, small molecules and other ligands would expand our knowledge of domain functionality as well as aid in detecting ligand-binding sites within structurally uncharacterized proteins. Here, we introduce an approach to identify per-domain-position interaction ‘frequencies’ by aggregating protein co-complex structures by domain and ascertaining how often residues mapping to each domain position interact with ligands. We perform this domain-based analysis on ∼91000 co-complex structures, and infer positions involved in binding DNA, RNA, peptides, ions or small molecules across 4128 domains, which we refer to collectively as the InteracDome. Cross-validation testing reveals that ligand-binding positions for 2152 domains are highly consistent and can be used to identify residues facilitating interactions in ∼63–69% of human genes. Our resource of domain-inferred ligand-binding sites should be a great aid in understanding disease etiology: whereas these sites are enriched in Mendelian-associated and cancer somatic mutations, they are depleted in polymorphisms observed across healthy populations. The InteracDome is available at http://interacdome.princeton.edu.
APA, Harvard, Vancouver, ISO, and other styles
20

Linne, Christine, Daniele Visco, Stefano Angioletti-Uberti, Liedewij Laan, and Daniela J. Kraft. "Direct visualization of superselective colloid-surface binding mediated by multivalent interactions." Proceedings of the National Academy of Sciences 118, no. 36 (August 31, 2021): e2106036118. http://dx.doi.org/10.1073/pnas.2106036118.

Full text
Abstract:
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell–cell or virus–cell recognition, the initiation of signal transduction, and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this “superselectivity.” However, a versatile, controlled experimental model system that allows quantitative measurements on the ligand–receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster resonance energy transfer (FRET), we can directly observe the binding and recruitment of the ligand–receptor pairs in the contact area. We find a nonlinear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand–receptor interactions, and we confirm that the timescale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand–receptor level provide dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial–temporal ligand–receptor dynamics on colloid-surface binding.
APA, Harvard, Vancouver, ISO, and other styles
21

Zlatovic, Mario, Vladimir Sukalovic, Goran Roglic, Sladjana Kostic-Rajacic, and Deana Andric. "The influence of dispersive interactions on the binding affinities of ligands with an arylpiperazine moiety to the dopamine D2 receptor." Journal of the Serbian Chemical Society 74, no. 10 (2009): 1051–61. http://dx.doi.org/10.2298/jsc0910051z.

Full text
Abstract:
Several isosteric 1,3-dihydro-5-[2-(4-aryl-1-piperazinyl)ethyl]-2H-benzimidazole-2-thiones were used to investigate the interactions of different ligands with the binding site of the D2 receptor. Due to limitations of the simulation methods, docking analysis failed to show precisely the interactions that influence the binding affinity of the ligands. It is presumed that dispersive forces or more precisely edge-to-face interactions play an important role in the binding process, especially for the lipophilic part of the ligands. In order to confirm this hypothesis, ab initio calculations were applied on a model system in order to find the stabilization energies of potential edge-to-face interactions and then to correlate them with the ligand affinity. The obtained results indicate that there is a significant correlation between the strength of dispersive interactions and ligand affinity. It was shown that for the calculation of stabilization energies of modeled receptor-ligand complexes the Becke 'half-and-half' hybrid DFT method can be used, thus speeding up the usually long calculation time and reducing the required computer strength.
APA, Harvard, Vancouver, ISO, and other styles
22

Singh, Omkar, Kunal Sawariya, and Polamarasetty Aparoy. "Graphlet signature-based scoring method to estimate protein–ligand binding affinity." Royal Society Open Science 1, no. 4 (December 2014): 140306. http://dx.doi.org/10.1098/rsos.140306.

Full text
Abstract:
Over the years, various computational methodologies have been developed to understand and quantify receptor–ligand interactions. Protein–ligand interactions can also be explained in the form of a network and its properties. The ligand binding at the protein-active site is stabilized by formation of new interactions like hydrogen bond, hydrophobic and ionic. These non-covalent interactions when considered as links cause non-isomorphic sub-graphs in the residue interaction network. This study aims to investigate the relationship between these induced sub-graphs and ligand activity. Graphlet signature-based analysis of networks has been applied in various biological problems; the focus of this work is to analyse protein–ligand interactions in terms of neighbourhood connectivity and to develop a method in which the information from residue interaction networks, i.e. graphlet signatures, can be applied to quantify ligand affinity. A scoring method was developed, which depicts the variability in signatures adopted by different amino acids during inhibitor binding, and was termed as GSUS (graphlet signature uniqueness score). The score is specific for every individual inhibitor. Two well-known drug targets, COX-2 and CA-II and their inhibitors, were considered to assess the method. Residue interaction networks of COX-2 and CA-II with their respective inhibitors were used. Only hydrogen bond network was considered to calculate GSUS and quantify protein–ligand interaction in terms of graphlet signatures. The correlation of the GSUS with pIC 50 was consistent in both proteins and better in comparison to the Autodock results. The GSUS scoring method was better in activity prediction of molecules with similar structure and diverse activity and vice versa. This study can be a major platform in developing approaches that can be used alone or together with existing methods to predict ligand affinity from protein–ligand complexes.
APA, Harvard, Vancouver, ISO, and other styles
23

Colvin, Richard A., Gabriele S. V. Campanella, Lindsay A. Manice, and Andrew D. Luster. "CXCR3 Requires Tyrosine Sulfation for Ligand Binding and a Second Extracellular Loop Arginine Residue for Ligand-Induced Chemotaxis." Molecular and Cellular Biology 26, no. 15 (August 1, 2006): 5838–49. http://dx.doi.org/10.1128/mcb.00556-06.

Full text
Abstract:
ABSTRACT CXCR3 is a G-protein-coupled seven-transmembrane domain chemokine receptor that plays an important role in effector T-cell and NK cell trafficking. Three gamma interferon-inducible chemokines activate CXCR3: CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC). Here, we identify extracellular domains of CXCR3 that are required for ligand binding and activation. We found that CXCR3 is sulfated on its N terminus and that sulfation is required for binding and activation by all three ligands. We also found that the proximal 16 amino acid residues of the N terminus are required for CXCL10 and CXCL11 binding and activation but not CXCL9 activation. In addition, we found that residue R216 in the second extracellular loop is required for CXCR3-mediated chemotaxis and calcium mobilization but is not required for ligand binding or ligand-induced CXCR3 internalization. Finally, charged residues in the extracellular loops contribute to the receptor-ligand interaction. These findings demonstrate that chemokine activation of CXCR3 involves both high-affinity ligand-binding interactions with negatively charged residues in the extracellular domains of CXCR3 and a lower-affinity receptor-activating interaction in the second extracellular loop. This lower-affinity interaction is necessary to induce chemotaxis but not ligand-induced CXCR3 internalization, further suggesting that different domains of CXCR3 mediate distinct functions.
APA, Harvard, Vancouver, ISO, and other styles
24

Tateing, Suriya, and Nuttee Suree. "Decoding molecular recognition of inhibitors targeting HDAC2 via molecular dynamics simulations and configurational entropy estimation." PLOS ONE 17, no. 8 (August 18, 2022): e0273265. http://dx.doi.org/10.1371/journal.pone.0273265.

Full text
Abstract:
Molecular recognition by enzymes is a complicated process involving thermodynamic energies governing protein-ligand interactions. In order to aid the estimation of inhibitory activity of compounds targeting an enzyme, several computational methods can be employed to dissect this intermolecular contact. Herein, we report a structural dynamics investigation of an epigenetic enzyme HDAC2 in differentiating its binding to various inhibitors within the sub-sites of its active site. Molecular dynamics (MD) simulation was employed to elucidate the intermolecular interactions as well as the dynamics behavior of ligand binding. MD trajectories of five distinct HDAC2-inhibitor complexes reveal that compounds lacking adequate contacts with the opening rim of the active site possess high fluctuation along the cap portion, thus weakening the overall affinity. Key intermolecular interactions determining the effective binding of inhibitors include hydrogen bonds with Gly154, Asp181, and Tyr308; hydrophobic interactions between Phe155/Phe210 and the linker region; and a pi-stacking with Arg39 at the foot pocket. Decomposition of the binding free energy calculated per-residue by MM/PBSA also indicates that the interactions within the internal foot pocket, especially with residues Met35, Leu144, Gly305, and Gly306, can contribute significantly to the ligand binding. Additionally, configurational entropy of the binding was estimated and compared to the scale of the binding free energy in order to assess its contribution to the binding and to differentiate various ligand partners. It was found that the levels of entropic contribution are comparable among a set of structurally similar carbamide ligands, while it is greatly different for the set of unrelated ligands, ranging from 2.75 to 16.38 kcal/mol for the five inhibitors examined. These findings exemplify the importance of assessing molecular dynamics as well as estimating the entropic contribution in evaluating the ligand binding mechanism.
APA, Harvard, Vancouver, ISO, and other styles
25

Fu, Yi, Ji Zhao, and Zhiguo Chen. "Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Protein." Computational and Mathematical Methods in Medicine 2018 (December 4, 2018): 1–12. http://dx.doi.org/10.1155/2018/3502514.

Full text
Abstract:
Protein-ligand interactions are a necessary prerequisite for signal transduction, immunoreaction, and gene regulation. Protein-ligand interaction studies are important for understanding the mechanisms of biological regulation, and they provide a theoretical basis for the design and discovery of new drug targets. In this study, we analyzed the molecular interactions of protein-ligand which was docked by AutoDock 4.2 software. In AutoDock 4.2 software, we used a new search algorithm, hybrid algorithm of random drift particle swarm optimization and local search (LRDPSO), and the classical Lamarckian genetic algorithm (LGA) as energy optimization algorithms. The best conformations of each docking algorithm were subjected to molecular dynamic (MD) simulations to further analyze the molecular mechanisms of protein-ligand interactions. Here, we analyze the binding energy between protein receptors and ligands, the interactions of salt bridges and hydrogen bonds in the docking region, and the structural changes during complex unfolding. Our comparison of these complexes highlights differences in the protein-ligand interactions between the two docking methods. It also shows that salt bridge and hydrogen bond interactions play a crucial role in protein-ligand stability. The present work focuses on extracting the deterministic characteristics of docking interactions from their dynamic properties, which is important for understanding biological functions and determining which amino acid residues are crucial to docking interactions.
APA, Harvard, Vancouver, ISO, and other styles
26

Hussain, Rohanah, Edoardo Longo, and Giuliano Siligardi. "UV-Denaturation Assay to Assess Protein Photostability and Ligand-Binding Interactions Using the High Photon Flux of Diamond B23 Beamline for SRCD." Molecules 23, no. 8 (July 31, 2018): 1906. http://dx.doi.org/10.3390/molecules23081906.

Full text
Abstract:
Light irradiation with high photon flux in the vacuum and far-UV region is known to denature the conformation of biopolymers. Measures are in place at Diamond Light Source B23 beamline for Synchrotron Radiation Circular Dichroism (SRCD) to control and make this effect negligible. However, UV denaturation of proteins can also be exploited as a novel method for assessing biopolymer photostability as well as ligand-binding interactions. Usually, host–ligand binding interactions can be assessed monitoring CD changes of the host biopolymer upon ligand addition. The novel method of identifying ligand binding monitoring the change of relative rate of UV denaturation using SRCD is especially important when there are very little or insignificant secondary structure changes of the host protein upon ligand binding. The temperature study, another method used to determine molecular interactions, can often be inconclusive when the thermal effect associated with the displacement of the bound solvent molecules by the ligand is also small, making the determination of the binding interaction inconclusive. Herein we present a review on the UV-denaturation assay as a novel method to determine the relative photostability of protein formulations as well as the screening of ligand-binding interactions using the high photon flux Diamond B23 beamline for SRCD.
APA, Harvard, Vancouver, ISO, and other styles
27

Jóźwiak, Krzysztof, and Anita Płazińska. "Structural Insights into Ligand—Receptor Interactions Involved in Biased Agonism of G-Protein Coupled Receptors." Molecules 26, no. 4 (February 6, 2021): 851. http://dx.doi.org/10.3390/molecules26040851.

Full text
Abstract:
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Ligand directed signaling is observed when agonists, upon binding to the same receptor, trigger significantly different configuration of intracellular events. The current work reviews the structurally defined ligand – receptor interactions that can be related to specific molecular mechanisms of ligand directed signaling across different receptors belonging to class A of GPCRs. Recent advances in GPCR structural biology allow for mapping receptors’ binding sites with residues particularly important in recognition of ligands’ structural features that are responsible for biased signaling. Various studies show particular role of specific residues lining the extended ligand binding domains, biased agonists may alternatively affect their interhelical interactions and flexibility what can be translated into intracellular loop rearrangements. Studies on opioid and angiotensin receptors indicate importance of residues located deeper within the binding cavity and direct interactions with receptor residues linking the ortosteric ligand binding site with the intracellular transducer binding domain. Collection of results across different receptors may suggest elements of common molecular mechanisms which are responsible for passing alternative signals from biased agonists.
APA, Harvard, Vancouver, ISO, and other styles
28

Lecut, Christelle, Véronique Arocas, Hans Ulrichts, Anthony Elbaz, Jean-Luc Villeval, Jean-Jacques Lacapère, Hans Deckmyn, and Martine Jandrot-Perrus. "Identification of Residues within Human Glycoprotein VI Involved in the Binding to Collagen." Journal of Biological Chemistry 279, no. 50 (October 4, 2004): 52293–99. http://dx.doi.org/10.1074/jbc.m406342200.

Full text
Abstract:
Glycoprotein VI (GPVI) has a crucial role in platelet responses to collagen. Still, little is known about its interaction with its ligands. In binding assays using soluble or cell-expressed human GPVI, we observed that (i) collagen, and the GPVI-specific ligands collagen-related peptides (CRP) and convulxin, competed with one another for the binding to GPVI and (ii) monoclonal antibodies directed against the extracellular part of the human receptor displayed selective inhibitory properties on GPVI interaction with its ligands. Monoclonal antibody 9E18 strongly reduced the binding of GPVI to collagen/CRP, 3F8 inhibited its interaction with convulxin, whereas 9O12 prevented all three interactions. These observations suggest that ligand-binding sites are distinct, exhibiting specific features but at the same time also sharing some common residues participating in the recognition of these ligands. The epitope of 9O12 was mapped by phage display, along with molecular modeling of human GPVI, which allowed the identification of residues within GPVI potentially involved in ligand recognition. Site-directed mutagenesis revealed that valine 34 and leucine 36 are critical for GPVI interaction with collagen and CRP. The loop might thus be part of a collagen/CRP-binding site.
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, Caihua, Juan Liu, Fei Luo, Zixing Deng, and Qian-Nan Hu. "Predicting target-ligand interactions using protein ligand-binding site and ligand substructures." BMC Systems Biology 9, Suppl 1 (2015): S2. http://dx.doi.org/10.1186/1752-0509-9-s1-s2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gettins, Peter G. W., and Klavs Dolmer. "A proximal pair of positive charges provides the dominant ligand-binding contribution to complement-like domains from the LRP (low-density lipoprotein receptor-related protein)." Biochemical Journal 443, no. 1 (March 14, 2012): 65–73. http://dx.doi.org/10.1042/bj20111867.

Full text
Abstract:
The LRP (low-density lipoprotein receptor-related protein) can bind a wide range of structurally diverse ligands to regions composed of clusters of ~40 residue Ca2+-dependent, disulfide-rich, CRs (complement-like repeats). Whereas lysine residues from the ligands have been implicated in binding, there has been no quantification of the energetic contributions of such interactions and hence of their relative importance in overall affinity, or of the ability of arginine or histidine residues to bind. We have used four representative CR domains from the principal ligand-binding cluster of LRP to determine the energetics of interaction with well-defined small ligands that include methyl esters of lysine, arginine, histidine and aspartate, as well as N-terminally blocked lysine methyl ester. We found that not only lysine but also arginine and histidine bound well, and when present with an additional proximal positive charge, accounted for about half of the total binding energy of a protein ligand such as PAI-1 (plasminogen activator inhibitor-1). Two such sets of interactions, one to each of two CR domains could thus account for almost all of the necessary binding energy of a real ligand such as PAI-1. For the CR domains, a central aspartate residue in the sequence DxDxD tightens the Kd by ~20-fold, whereas DxDDD is no more effective. Together these findings establish the rules for determining the binding specificity of protein ligands to LRP and to other LDLR (low-density lipoprotein receptor) family members.
APA, Harvard, Vancouver, ISO, and other styles
31

Gaboriaud, Christine, Lynn Gregory-Pauron, Florence Teillet, Nicole M. Thielens, Isabelle Bally, and Gérard J. Arlaud. "Structure and properties of the Ca2+-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions." Biochemical Journal 439, no. 2 (September 28, 2011): 185–93. http://dx.doi.org/10.1042/bj20111027.

Full text
Abstract:
CUB domains are 110-residue protein motifs exhibiting a β-sandwich fold and mediating protein–protein interactions in various extracellular proteins. Recent X-ray structural and mutagenesis studies have led to the identification of a particular CUB domain subset, cbCUB (Ca2+-binding CUB domain). Unlike other CUB domains, these harbour a homologous Ca2+-binding site that underlies a conserved binding site mediating ionic interaction between two of the three conserved acidic Ca2+ ligands and a basic (lysine or arginine) residue of a protein ligand, similar to the interactions mediated by the low-density lipoprotein receptor family. cbCUB-mediated protein–ligand interactions usually involve multipoint attachment through several cbCUBs, resulting in high-affinity binding through avidity, despite the low affinity of individual interactions. The aim of the present review is to summarize our current knowledge about the structure and functions of cbCUBs, which represent the majority of the known CUB repertoire and are involved in a variety of major biological functions, including immunity and development, as well as in various cancer types. Examples discussed in the present review include a wide range of soluble and membrane-associated human proteins, as well as some archaeal and invertebrate proteins. The fact that these otherwise unrelated proteins share a common Ca2+-dependent ligand-binding ability suggests a mechanism inheri-ted from very primitive ancestors. The information provided in the present review should stimulate further investigations on the crucial interactions mediated by cbCUB-containing proteins.
APA, Harvard, Vancouver, ISO, and other styles
32

Issa, Naiem T., Stephen W. Byers, and Sivanesan Dakshanamurthy. "ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening." International Journal of Molecular Sciences 23, no. 23 (November 27, 2022): 14830. http://dx.doi.org/10.3390/ijms232314830.

Full text
Abstract:
Electrostatic interactions drive biomolecular interactions and associations. Computational modeling of electrostatics in biomolecular systems, such as protein-ligand, protein–protein, and protein-DNA, has provided atomistic insights into the binding process. In drug discovery, finding biologically plausible ligand-protein target interactions is challenging as current virtual screening and adjuvant techniques such as docking methods do not provide optimal treatment of electrostatic interactions. This study describes a novel electrostatics-driven virtual screening method called ‘ES-Screen’ that performs well across diverse protein target systems. ES-Screen provides a unique treatment of electrostatic interaction energies independent of total electrostatic free energy, typically employed by current software. Importantly, ES-Screen uses initial ligand pose input obtained from a receptor-based pharmacophore, thus independent of molecular docking. ES-Screen integrates individual polar and nonpolar replacement energies, which are the energy costs of replacing the cognate ligand for a target with a query ligand from the screening. This uniquely optimizes thermodynamic stability in electrostatic and nonpolar interactions relative to an experimentally determined stable binding state. ES-Screen also integrates chemometrics through shape and other physicochemical properties to prioritize query ligands with the greatest physicochemical similarities to the cognate ligand. The applicability of ES-Screen is demonstrated with in vitro experiments by identifying novel targets for many drugs. The present version includes a combination of many other descriptor components that, in a future version, will be purely based on electrostatics. Therefore, ES-Screen is a first-in-class unique electrostatics-driven virtual screening method with a unique implementation of replacement electrostatic interaction energies with broad applicability in drug discovery.
APA, Harvard, Vancouver, ISO, and other styles
33

Kumar, Prashant, and Paulina Maria Dominiak. "Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease." Molecules 26, no. 13 (June 24, 2021): 3872. http://dx.doi.org/10.3390/molecules26133872.

Full text
Abstract:
Computational analysis of protein–ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions, such as in docking programs, all rely on equations that sum each type of protein–ligand interactions in order to predict the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions constitute one of the most important part of total interactions between macromolecules. Unlike dispersion forces, they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this study, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and darunavir) were analyzed by using charge densities from the transferable aspherical-atom University at Buffalo Databank (UBDB). Moreover, we analyzed the electrostatic interaction energy for an ensemble of structures, using molecular dynamic simulations to highlight the main features of electrostatic interactions important for binding affinity.
APA, Harvard, Vancouver, ISO, and other styles
34

Valenzano, Kenneth J., Wendy Miller, Jared N. Kravitz, Philippe Samama, Dan Fitzpatrick, and Kevin Seeley. "Development of a Fluorescent Ligand-Binding Assay Using the AcroWell Filter Plate." Journal of Biomolecular Screening 5, no. 6 (December 2000): 455–61. http://dx.doi.org/10.1177/108705710000500608.

Full text
Abstract:
One of the most powerful tools for receptor research and drug discovery is the use of receptor-ligand affinity screening of combinatorial libraries. Early work involved the use of radioactive ligands to identify a binding event; however, there are numerous limitations involved in the use of radioactivity for high throughput screening. These limitations have led to the creation of highly sensitive, nonradioactive alternatives to investigate receptor-ligand interactions. Pall Gelman Laboratory has introduced the AcroWell, a patented low-fluorescent-background membrane and sealing process together with a filter plate design that is compatible with robotic systems. Taken together, these allow the AcroWell 96-well filter plate to detect trace quantities of lanthanide-labeled ligands for cell-, bead-, or membrane-based assays using time-resolved fluorescence. Using europium-labeled galanin, we have demonstrated that saturation binding experiments can be performed with low-background fluorescence and signal-to-noise ratios that rival traditional radioisotopic techniques while maintaining biological integrity of the receptor-ligand interaction. In addition, the ability to discriminate between active and inactive compounds in a mock galanin screen is demonstrated with low well-to-well variability, allowing reliable determination of positive hits even for low-affinity interactions.
APA, Harvard, Vancouver, ISO, and other styles
35

Jahmidi-Azizi, Nisrine, Stewart Gault, Charles S. Cockell, Rosario Oliva, and Roland Winter. "Ions in the Deep Subsurface of Earth, Mars, and Icy Moons: Their Effects in Combination with Temperature and Pressure on tRNA–Ligand Binding." International Journal of Molecular Sciences 22, no. 19 (October 8, 2021): 10861. http://dx.doi.org/10.3390/ijms221910861.

Full text
Abstract:
The interactions of ligands with nucleic acids are central to numerous reactions in the biological cell. How such reactions are affected by harsh environmental conditions such as low temperatures, high pressures, and high concentrations of destructive ions is still largely unknown. To elucidate the ions’ role in shaping habitability in extraterrestrial environments and the deep subsurface of Earth with respect to fundamental biochemical processes, we investigated the effect of selected salts (MgCl2, MgSO4, and Mg(ClO4)2) and high hydrostatic pressure (relevant for the subsurface of that planet) on the complex formation between tRNA and the ligand ThT. The results show that Mg2+ salts reduce the binding tendency of ThT to tRNA. This effect is largely due to the interaction of ThT with the salt anions, which leads to a strong decrease in the activity of the ligand. However, at mM concentrations, binding is still favored. The ions alter the thermodynamics of binding, rendering complex formation that is more entropy driven. Remarkably, the pressure favors ligand binding regardless of the type of salt. Although the binding constant is reduced, the harsh conditions in the subsurface of Earth, Mars, and icy moons do not necessarily preclude nucleic acid–ligand interactions of the type studied here.
APA, Harvard, Vancouver, ISO, and other styles
36

Adasme, Melissa F., Katja L. Linnemann, Sarah Naomi Bolz, Florian Kaiser, Sebastian Salentin, V. Joachim Haupt, and Michael Schroeder. "PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA." Nucleic Acids Research 49, W1 (May 5, 2021): W530—W534. http://dx.doi.org/10.1093/nar/gkab294.

Full text
Abstract:
Abstract With the growth of protein structure data, the analysis of molecular interactions between ligands and their target molecules is gaining importance. PLIP, the protein–ligand interaction profiler, detects and visualises these interactions and provides data in formats suitable for further processing. PLIP has proven very successful in applications ranging from the characterisation of docking experiments to the assessment of novel ligand–protein complexes. Besides ligand–protein interactions, interactions with DNA and RNA play a vital role in many applications, such as drugs targeting DNA or RNA-binding proteins. To date, over 7% of all 3D structures in the Protein Data Bank include DNA or RNA. Therefore, we extended PLIP to encompass these important molecules. We demonstrate the power of this extension with examples of a cancer drug binding to a DNA target, and an RNA–protein complex central to a neurological disease. PLIP is available online at https://plip-tool.biotec.tu-dresden.de and as open source code. So far, the engine has served over a million queries and the source code has been downloaded several thousand times.
APA, Harvard, Vancouver, ISO, and other styles
37

Valley, Christopher, and Jonathan Sachs. "Stabilizing Interactions In TNF Ligand-receptor Binding." Biophysical Journal 96, no. 3 (February 2009): 446a. http://dx.doi.org/10.1016/j.bpj.2008.12.2292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Boz, Esra, and Matthias Stein. "Accurate Receptor-Ligand Binding Free Energies from Fast QM Conformational Chemical Space Sampling." International Journal of Molecular Sciences 22, no. 6 (March 17, 2021): 3078. http://dx.doi.org/10.3390/ijms22063078.

Full text
Abstract:
Small molecule receptor-binding is dominated by weak, non-covalent interactions such as van-der-Waals hydrogen bonding or electrostatics. Calculating these non-covalent ligand-receptor interactions is a challenge to computational means in terms of accuracy and efficacy since the ligand may bind in a number of thermally accessible conformations. The conformational rotamer ensemble sampling tool (CREST) uses an iterative scheme to efficiently sample the conformational space and calculates energies using the semi-empirical ‘Geometry, Frequency, Noncovalent, eXtended Tight Binding’ (GFN2-xTB) method. This combined approach is applied to blind predictions of the modes and free energies of binding for a set of 10 drug molecule ligands to the cucurbit[n]urils CB[8] receptor from the recent ‘Statistical Assessment of the Modeling of Proteins and Ligands’ (SAMPL) challenge including morphine, hydromorphine, cocaine, fentanyl, and ketamine. For each system, the conformational space was sufficiently sampled for the free ligand and the ligand-receptor complexes using the quantum chemical Hamiltonian. A multitude of structures makes up the final conformer-rotamer ensemble, for which then free energies of binding are calculated. For those large and complex molecules, the results are in good agreement with experimental values with a mean error of 3 kcal/mol. The GFN2-xTB energies of binding are validated by advanced density functional theory calculations and found to be in good agreement. The efficacy of the automated QM sampling workflow allows the extension towards other complex molecular interaction scenarios.
APA, Harvard, Vancouver, ISO, and other styles
39

Johansson, Lotta, Ann Båvner, Jane S. Thomsen, MatHias Färnegårdh, Jan-Åke Gustafsson, and Eckardt Treuter. "The Orphan Nuclear Receptor SHP Utilizes Conserved LXXLL-Related Motifs for Interactions with Ligand-Activated Estrogen Receptors." Molecular and Cellular Biology 20, no. 4 (February 15, 2000): 1124–33. http://dx.doi.org/10.1128/mcb.20.4.1124-1133.2000.

Full text
Abstract:
ABSTRACT SHP (short heterodimer partner) is an unusual orphan nuclear receptor consisting only of a ligand-binding domain, and it exhibits unique features of interaction with conventional nuclear receptors. While the mechanistic basis of these interactions has remained enigmatic, SHP has been suggested to inhibit nuclear receptor activation by at least three alternatives; inhibition of DNA binding via dimerization, direct antagonism of coactivator function via competition, and possibly transrepression via recruitment of putative corepressors. We now show that SHP binds directly to estrogen receptors via LXXLL-related motifs. Similar motifs, referred to as NR (nuclear receptor) boxes, are usually critical for the binding of coactivators to the ligand-regulated activation domain AF-2 within nuclear receptors. In concordance with the NR box dependency, SHP requires the intact AF-2 domain of agonist-bound estrogen receptors for interaction. Mutations within the ligand-binding domain helix 12, or binding of antagonistic ligands, which are known to result in an incomplete AF-2 surface, abolish interactions with SHP. Supporting the idea that SHP directly antagonizes receptor activation via AF-2 binding, we demonstrate that SHP variants, carrying either interaction-defective NR box mutations or a deletion of the repressor domain, have lost the capacity to inhibit agonist-dependent transcriptional estrogen receptor activation. Furthermore, our studies indicate that SHP may function as a cofactor via the formation of ternary complexes with dimeric receptors on DNA. These novel insights provide a mechanistic explanation for the inhibitory role of SHP in nuclear receptor signaling, and they may explain how SHP functions as a negative coregulator or corepressor for ligand-activated receptors, a novel and unique function for an orphan nuclear receptor.
APA, Harvard, Vancouver, ISO, and other styles
40

Mailfait, S., E. Thoreau, D. Belaiche, and P. Formstecher And B Sablonnie. "Critical role of the H6-H7 loop in the conformational adaptation of all-trans retinoic acid and synthetic retinoids within the ligand-binding site of RARalpha." Journal of Molecular Endocrinology 24, no. 3 (June 1, 2000): 353–64. http://dx.doi.org/10.1677/jme.0.0240353.

Full text
Abstract:
The pleiotropic effects of the natural and synthetic retinoids are mediated by the activation of the two subfamilies of nuclear receptors, the retinoic acid receptors (RARs) and the retinoic X receptors (RXRs). At the molecular level, these events begin with the specific ligand recognition by a nuclear receptor subtype. The adaptation of ligands to the receptor binding site leads to an optimal number of interactions for binding and selectivity which justifies elucidation of the structural requirements of the ligand binding pocket. To explore the contribution of H6-H7 loop folding in the ligand-induced conformational changes explained by the mouse-trap model, four RARalpha mutants were constructed. Ligand binding and transactivation studies revealed that three residues from the H6-H7 loop (Gly(301), Phe(302) and Gly(303)) are critical for the conformational adaptation of both synthetic agonists and antagonists. Model building and analysis of both RARalpha-ATRA and RARalpha-CD367 complexes demonstrate that accommodation of CD367 results in a less tight contact of the saturated ring of this ligand with the amino acid side chains of the receptor ligand-binding pocket compared with that of ATRA. According to the flexibility of the agonists tested (ATRA>TTNPB=Am580> CD367), we observed a decrease in binding that was dependent on ligand structure rigidity. In contrast, the binding and transactivating activities of the L266A mutant confirmed the structural constraints imposed by synthetic ligands on binding affinity for the receptor and revealed that subtle local rearrangements induced by specific conformational adaptation changes result in different binding affinities. Our results illustrate the dynamic nature of the interaction between RARalpha and its ligands and demonstrate the critical role of the H6-H7 loop in the binding of both synthetic retinoid agonists and antagonists.
APA, Harvard, Vancouver, ISO, and other styles
41

Bueschbell, Beatriz, Carlos Barreto, António Preto, Anke Schiedel, and Irina Moreira. "A Complete Assessment of Dopamine Receptor- Ligand Interactions through Computational Methods." Molecules 24, no. 7 (March 27, 2019): 1196. http://dx.doi.org/10.3390/molecules24071196.

Full text
Abstract:
Background: Selectively targeting dopamine receptors (DRs) has been a persistent challenge in the last years for the development of new treatments to combat the large variety of diseases involving these receptors. Although, several drugs have been successfully brought to market, the subtype-specific binding mode on a molecular basis has not been fully elucidated. Methods: Homology modeling and molecular dynamics were applied to construct robust conformational models of all dopamine receptor subtypes (D1-like and D2-like). Fifteen structurally diverse ligands were docked. Contacts at the binding pocket were fully described in order to reveal new structural findings responsible for selective binding to DR subtypes. Results: Residues of the aromatic microdomain were shown to be responsible for the majority of ligand interactions established to all DRs. Hydrophobic contacts involved a huge network of conserved and non-conserved residues between three transmembrane domains (TMs), TM2-TM3-TM7. Hydrogen bonds were mostly mediated by the serine microdomain. TM1 and TM2 residues were main contributors for the coupling of large ligands. Some amino acid groups form electrostatic interactions of particular importance for D1R-like selective ligands binding. Conclusions: This in silico approach was successful in showing known receptor-ligand interactions as well as in determining unique combinations of interactions, which will support mutagenesis studies to improve the design of subtype-specific ligands.
APA, Harvard, Vancouver, ISO, and other styles
42

Anand, Praveen, Deepesh Nagarajan, Sumanta Mukherjee, and Nagasuma Chandra. "ABS–Scan: In silico alanine scanning mutagenesis for binding site residues in protein–ligand complex." F1000Research 3 (September 9, 2014): 214. http://dx.doi.org/10.12688/f1000research.5165.1.

Full text
Abstract:
Most physiological processes in living systems are fundamentally regulated by protein–ligand interactions. Understanding the process of ligand recognition by proteins is a vital activity in molecular biology and biochemistry. It is well known that the residues present at the binding site of the protein form pockets that provide a conducive environment for recognition of specific ligands. In many cases, the boundaries of these sites are not well defined. Here, we provide a web-server to systematically evaluate important residues in the binding site of the protein that contribute towards the ligand recognition through in silico alanine-scanning mutagenesis experiments. Each of the residues present at the binding site is computationally mutated to alanine. The ligand interaction energy is computed for each mutant and the corresponding ΔΔG values are computed by comparing it to the wild type protein, thus evaluating individual residue contributions towards ligand interaction. The server will thus provide clues to researchers about residues to obtain loss-of-function mutations and to understand drug resistant mutations. This web-tool can be freely accessed through the following address: http://proline.biochem.iisc.ernet.in/abscan/.
APA, Harvard, Vancouver, ISO, and other styles
43

Anand, Praveen, Deepesh Nagarajan, Sumanta Mukherjee, and Nagasuma Chandra. "ABS–Scan: In silico alanine scanning mutagenesis for binding site residues in protein–ligand complex." F1000Research 3 (December 1, 2014): 214. http://dx.doi.org/10.12688/f1000research.5165.2.

Full text
Abstract:
Most physiological processes in living systems are fundamentally regulated by protein–ligand interactions. Understanding the process of ligand recognition by proteins is a vital activity in molecular biology and biochemistry. It is well known that the residues present at the binding site of the protein form pockets that provide a conducive environment for recognition of specific ligands. In many cases, the boundaries of these sites are not well defined. Here, we provide a web-server to systematically evaluate important residues in the binding site of the protein that contribute towards the ligand recognition through in silico alanine-scanning mutagenesis experiments. Each of the residues present at the binding site is computationally mutated to alanine. The ligand interaction energy is computed for each mutant and the corresponding ΔΔG values are calculated by comparing it to the wild type protein, thus evaluating individual residue contributions towards ligand interaction. The server will thus provide a ranked list of residues to the user in order to obtain loss-of-function mutations. This web-tool can be freely accessed through the following address: http://proline.biochem.iisc.ernet.in/abscan/.
APA, Harvard, Vancouver, ISO, and other styles
44

Copoiu, Liviu, Pedro H. M. Torres, David B. Ascher, Tom L. Blundell, and Sony Malhotra. "ProCarbDB: a database of carbohydrate-binding proteins." Nucleic Acids Research 48, no. D1 (October 10, 2019): D368—D375. http://dx.doi.org/10.1093/nar/gkz860.

Full text
Abstract:
Abstract Carbohydrate-binding proteins play crucial roles across all organisms and viruses. The complexity of carbohydrate structures, together with inconsistencies in how their 3D structures are reported, has led to difficulties in characterizing the protein–carbohydrate interfaces. In order to better understand protein–carbohydrate interactions, we have developed an open-access database, ProCarbDB, which, unlike the Protein Data Bank (PDB), clearly distinguishes between the complete carbohydrate ligands and their monomeric units. ProCarbDB is a comprehensive database containing over 5200 3D X-ray crystal structures of protein–carbohydrate complexes. In ProCarbDB, the complete carbohydrate ligands are annotated and all their interactions are displayed. Users can also select any protein residue in the proximity of the ligand to inspect its interactions with the carbohydrate ligand and with other neighbouring protein residues. Where available, additional curated information on the binding affinity of the complex and the effects of mutations on the binding have also been provided in the database. We believe that ProCarbDB will be an invaluable resource for understanding protein–carbohydrate interfaces. The ProCarbDB web server is freely available at http://www.procarbdb.science/procarb.
APA, Harvard, Vancouver, ISO, and other styles
45

Beshnova, Daria A., Joana Pereira, and Victor S. Lamzin. "Estimation of the protein–ligand interaction energy for model building and validation." Acta Crystallographica Section D Structural Biology 73, no. 3 (March 1, 2017): 195–202. http://dx.doi.org/10.1107/s2059798317003400.

Full text
Abstract:
Macromolecular X-ray crystallography is one of the main experimental techniques to visualize protein–ligand interactions. The high complexity of the ligand universe, however, has delayed the development of efficient methods for the automated identification, fitting and validation of ligands in their electron-density clusters. The identification and fitting are primarily based on the density itself and do not take into account the protein environment, which is a step that is only taken during the validation of the proposed binding mode. Here, a new approach, based on the estimation of the major energetic terms of protein–ligand interaction, is introduced for the automated identification of crystallographic ligands in the indicated binding site withARP/wARP. The applicability of the method to the validation of protein–ligand models from the Protein Data Bank is demonstrated by the detection of models that are `questionable' and the pinpointing of unfavourable interatomic contacts.
APA, Harvard, Vancouver, ISO, and other styles
46

Tu, L., A. Chen, M. D. Delahunty, K. L. Moore, S. R. Watson, R. P. McEver, and T. F. Tedder. "L-selectin binds to P-selectin glycoprotein ligand-1 on leukocytes: interactions between the lectin, epidermal growth factor, and consensus repeat domains of the selectins determine ligand binding specificity." Journal of Immunology 157, no. 9 (November 1, 1996): 3995–4004. http://dx.doi.org/10.4049/jimmunol.157.9.3995.

Full text
Abstract:
Abstract The selectins mediate cellular interactions by binding carbohydrate determinants present on a limited number of glycoprotein ligands. L-selectin binds multiple ligands expressed on endothelial cells, while P-selectin interacts exclusively with P-selectin glycoprotein ligand-1 (PSGL-1) on leukocytes. In this study, L-selectin was shown to bind leukocytes through the P-selectin ligand, PSGL-1, although at lower levels than P-selectin. L-selectin binding to PSGL-1 is specific since it was blocked by Abs to L-selectin or PSGL-1, required appropriate glycosylation of PSGL-1, and was Ca2+ dependent. The contributions of the extracellular domains of the selectins to ligand binding was assessed using a panel of chimeric selectins created by exchange of domains between L-selectin and P- or E-selectin. The lectin and epidermal growth factor domains of L- and P-selectin contributed significantly to binding through similar, if not identical, regions of PSGL-1. The different chimeric selectins revealed that the lectin domain was the dominant determinant for ligand binding, while cooperative interactions between the lectin, epidermal growth factor, and short consensus repeat domains of the selectins also modified ligand binding specificity. L-selectin binding to PSGL-1 expressed by leukocytes may mediate neutrophil rolling on stationary leukocytes bound to cytokine-induced endothelial cells, which was previously reported to be a L-selectin-dependent process.
APA, Harvard, Vancouver, ISO, and other styles
47

Chao, Hui, and Liang-Nian Ji. "DNA Interactions with Ruthenium(II) Polypyridine Complexes Containing Asymmetric Ligands." Bioinorganic Chemistry and Applications 3, no. 1-2 (2005): 15–28. http://dx.doi.org/10.1155/bca.2005.15.

Full text
Abstract:
In an attempt to probe nucleic acid structures, numerous Ru(II) complexes with different ligands have been synthesized and investigated. In this contribution we focus on the DNA-binding properties of ruthenium(II) complexes containing asymmetric ligands that have attracted little attention in the past decades. The influences of the shape and size of the ligand on the binding modes, affinity, enantioselectivities and photocleavage of the complexes to DNA are described.
APA, Harvard, Vancouver, ISO, and other styles
48

Szulc, Natalia A., Zuzanna Mackiewicz, Janusz M. Bujnicki, and Filip Stefaniak. "fingeRNAt—A novel tool for high-throughput analysis of nucleic acid-ligand interactions." PLOS Computational Biology 18, no. 6 (June 2, 2022): e1009783. http://dx.doi.org/10.1371/journal.pcbi.1009783.

Full text
Abstract:
Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt—a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt)—a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction fingerprint-based similarity as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of interaction fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties. The fingeRNAt software is freely available at https://github.com/n-szulc/fingeRNAt.
APA, Harvard, Vancouver, ISO, and other styles
49

Zheng, Fang, and Chang-Guo Zhan. "Computational Modeling of Solvent Effects on Protein-Ligand Interactions Using Fully Polarizable Continuum Model and Rational Drug Design." Communications in Computational Physics 13, no. 1 (January 2013): 31–60. http://dx.doi.org/10.4208/cicp.130911.121011s.

Full text
Abstract:
AbstractThis is a brief review of the computational modeling of protein-ligand interactions using a recently developed fully polarizable continuum model (FPCM) and rational drug design. Computational modeling has become a powerful tool in understanding detailed protein-ligand interactions at molecular level and in rational drug design. To study the binding of a protein with multiple molecular species of a ligand, one must accurately determine both the relative free energies of all of the molecular species in solution and the corresponding microscopic binding free energies for all of the molecular species binding with the protein. In this paper, we aim to provide a brief overview of the recent development in computational modeling of the solvent effects on the detailed protein-ligand interactions involving multiple molecular species of a ligand related to rational drug design. In particular, we first briefly discuss the main challenges in computational modeling of the detailed protein-ligand interactions involving the multiple molecular species and then focus on the FPCM model and its applications. The FPCM method allows accurate determination of the solvent effects in the first-principles quantum mechanism (QM) calculations on molecules in solution. The combined use of the FPCM-based QM calculations and other computational modeling and simulations enables us to accurately account for a protein binding with multiple molecular species of a ligand in solution. Based on the computational modeling of the detailed protein-ligand interactions, possible new drugs may be designed rationally as either small-molecule ligands of the protein or engineered proteins that bind/metabolize the ligand. The computational drug design has successfully led to discovery and development of promising drugs.
APA, Harvard, Vancouver, ISO, and other styles
50

van Royen, Martin E., Sónia M. Cunha, Maartje C. Brink, Karin A. Mattern, Alex L. Nigg, Hendrikus J. Dubbink, Pernette J. Verschure, Jan Trapman, and Adriaan B. Houtsmuller. "Compartmentalization of androgen receptor protein–protein interactions in living cells." Journal of Cell Biology 177, no. 1 (April 9, 2007): 63–72. http://dx.doi.org/10.1083/jcb.200609178.

Full text
Abstract:
Steroid receptors regulate gene expression in a ligand-dependent manner by binding specific DNA sequences. Ligand binding also changes the conformation of the ligand binding domain (LBD), allowing interaction with coregulators via LxxLL motifs. Androgen receptors (ARs) preferentially interact with coregulators containing LxxLL-related FxxLF motifs. The AR is regulated at an extra level by interaction of an FQNLF motif in the N-terminal domain with the C-terminal LBD (N/C interaction). Although it is generally recognized that AR coregulator and N/C interactions are essential for transcription regulation, their spatiotemporal organization is largely unknown. We performed simultaneous fluorescence resonance energy transfer and fluorescence redistribution after photobleaching measurements in living cells expressing ARs double tagged with yellow and cyan fluorescent proteins. We provide evidence that AR N/C interactions occur predominantly when ARs are mobile, possibly to prevent unfavorable or untimely cofactor interactions. N/C interactions are largely lost when AR transiently binds to DNA, predominantly in foci partly overlapping transcription sites. AR coregulator interactions occur preferentially when ARs are bound to DNA.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography